forked from JointCloud/JCC-DeepOD
![]() |
||
---|---|---|
.github/workflows | ||
data | ||
deepod | ||
docs | ||
examples | ||
testbed | ||
.gitignore | ||
.readthedocs.yaml | ||
.travis.yml | ||
LICENSE | ||
README.rst | ||
TODO.md | ||
environment.yml | ||
requirements.txt | ||
requirements_ci.yml | ||
setup.py |
README.rst
Python Deep Outlier/Anomaly Detection (DeepOD) ================================================== .. image:: https://github.com/xuhongzuo/DeepOD/actions/workflows/testing.yml/badge.svg :target: https://github.com/xuhongzuo/DeepOD/actions/workflows/testing.yml :alt: testing2 .. image:: https://readthedocs.org/projects/deepod/badge/?version=latest :target: https://deepod.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://app.codacy.com/project/badge/Grade/2c587126aac2441abb917c032189fbe8 :target: https://app.codacy.com/gh/xuhongzuo/DeepOD/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade :alt: codacy .. image:: https://coveralls.io/repos/github/xuhongzuo/DeepOD/badge.svg?branch=main :target: https://coveralls.io/github/xuhongzuo/DeepOD?branch=main :alt: coveralls .. image:: https://static.pepy.tech/personalized-badge/deepod?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads :target: https://pepy.tech/project/deepod :alt: downloads .. image:: https://img.shields.io/badge/license-BSD2-blue :alt: license ``DeepOD`` is an open-source python library for Deep Learning-based `Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_ and `Anomaly Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_. ``DeepOD`` supports tabular anomaly detection and time-series anomaly detection. DeepOD includes **27** deep outlier detection / anomaly detection algorithms (in unsupervised/weakly-supervised paradigm). More baseline algorithms will be included later. **DeepOD is featured for**: * **Unified APIs** across various algorithms. * **SOTA models** includes reconstruction-, representation-learning-, and self-superivsed-based latest deep learning methods. * **Comprehensive Testbed** that can be used to directly test different models on benchmark datasets (highly recommend for academic research). * **Versatile** in different data types including tabular and time-series data (DeepOD will support other data types like images, graph, log, trace, etc. in the future, welcome PR :telescope:). * **Diverse Network Structures** can be plugged into detection models, we now support LSTM, GRU, TCN, Conv, and Transformer for time-series data. (welcome PR as well :sparkles:) If you are interested in our project, we are pleased to have your stars and forks :thumbsup: :beers: . Installation ~~~~~~~~~~~~~~ The DeepOD framework can be installed via: .. code-block:: bash pip install deepod install a developing version (strongly recommend) .. code-block:: bash git clone https://github.com/xuhongzuo/DeepOD.git cd DeepOD pip install . Usages ~~~~~~~~~~~~~~~~~ Directly use detection models in DeepOD: :::::::::::::::::::::::::::::::::::::::::: DeepOD can be used in a few lines of code. This API style is the same with `Sklean <https://github.com/scikit-learn/scikit-learn>`_ and `PyOD <https://github.com/yzhao062/pyod>`_. **for tabular anomaly detection:** .. code-block:: python # unsupervised methods from deepod.models.tabular import DeepSVDD clf = DeepSVDD() clf.fit(X_train, y=None) scores = clf.decision_function(X_test) # weakly-supervised methods from deepod.models.tabular import DevNet clf = DevNet() clf.fit(X_train, y=semi_y) # semi_y uses 1 for known anomalies, and 0 for unlabeled data scores = clf.decision_function(X_test) # evaluation of tabular anomaly detection from deepod.metrics import tabular_metrics auc, ap, f1 = tabular_metrics(y_test, scores) **for time series anomaly detection:** .. code-block:: python # time series anomaly detection methods from deepod.models.time_series import TimesNet clf = TimesNet() clf.fit(X_train) scores = clf.decision_function(X_test) # evaluation of time series anomaly detection from deepod.metrics import ts_metrics from deepod.metrics import point_adjustment # execute point adjustment for time series ad eval_metrics = ts_metrics(labels, scores) adj_eval_metrics = ts_metrics(labels, point_adjustment(labels, scores)) Testbed usage: :::::::::::::::::::::::::::::::::::::::::: Testbed contains the whole process of testing an anomaly detection model, including data loading, preprocessing, anomaly detection, and evaluation. Please refer to ``testbed/`` * ``testbed/testbed_unsupervised_ad.py`` is for testing unsupervised tabular anomaly detection models. * ``testbed/testbed_unsupervised_tsad.py`` is for testing unsupervised time-series anomaly detection models. Key arguments: * ``--input_dir``: name of the folder that contains datasets (.csv, .npy) * ``--dataset``: "FULL" represents testing all the files within the folder, or a list of dataset names using commas to split them (e.g., "10_cover*,20_letter*") * ``--model``: anomaly detection model name * ``--runs``: how many times running the detection model, finally report an average performance with standard deviation values Example: 1. Download `ADBench <https://github.com/Minqi824/ADBench/tree/main/adbench/datasets/>`_ datasets. 2. modify the ``dataset_root`` variable as the directory of the dataset. 3. ``input_dir`` is the sub-folder name of the ``dataset_root``, e.g., ``Classical`` or ``NLP_by_BERT``. 4. use the following command in the bash .. code-block:: bash cd DeepOD pip install . cd testbed python testbed_unsupervised_ad.py --model DeepIsolationForest --runs 5 --input_dir ADBench Implemented Models ~~~~~~~~~~~~~~~~~~~ **Tabular Anomaly Detection models:** .. csv-table:: :header: "Model", "Venue", "Year", "Type", "Title" :widths: 4, 4, 4, 8, 20 Deep SVDD, ICML, 2018, unsupervised, Deep One-Class Classification [#Ruff2018Deep]_ REPEN, KDD, 2018, unsupervised, Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection [#Pang2019Repen]_ RDP, IJCAI, 2020, unsupervised, Unsupervised Representation Learning by Predicting Random Distances [#Wang2020RDP]_ RCA, IJCAI, 2021, unsupervised, RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection [#Liu2021RCA]_ GOAD, ICLR, 2020, unsupervised, Classification-Based Anomaly Detection for General Data [#Bergman2020GOAD]_ NeuTraL, ICML, 2021, unsupervised, Neural Transformation Learning for Deep Anomaly Detection Beyond Images [#Qiu2021Neutral]_ ICL, ICLR, 2022, unsupervised, Anomaly Detection for Tabular Data with Internal Contrastive Learning [#Shenkar2022ICL]_ DIF, TKDE, 2023, unsupervised, Deep Isolation Forest for Anomaly Detection [#Xu2023DIF]_ SLAD, ICML, 2023, unsupervised, Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning [#Xu2023SLAD]_ DevNet, KDD, 2019, weakly-supervised, Deep Anomaly Detection with Deviation Networks [#Pang2019DevNet]_ PReNet, KDD, 2023, weakly-supervised, Deep Weakly-supervised Anomaly Detection [#Pang2023PreNet]_ Deep SAD, ICLR, 2020, weakly-supervised, Deep Semi-Supervised Anomaly Detection [#Ruff2020DSAD]_ FeaWAD, TNNLS, 2021, weakly-supervised, Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection [#Zhou2021FeaWAD]_ RoSAS, IP&M, 2023, weakly-supervised, RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision [#Xu2023RoSAS]_ **Time-series Anomaly Detection models:** .. csv-table:: :header: "Model", "Venue", "Year", "Type", "Title" :widths: 4, 4, 4, 8, 20 DCdetector, KDD, 2023, unsupervised, DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection [#Yang2023dcdetector]_ TimesNet, ICLR, 2023, unsupervised, TIMESNET: Temporal 2D-Variation Modeling for General Time Series Analysis [#Wu2023timesnet]_ AnomalyTransformer, ICLR, 2022, unsupervised, Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy [#Xu2022transformer]_ NCAD, IJCAI, 2022, unsupervised, Neural Contextual Anomaly Detection for Time Series [#Carmona2022NCAD]_ TranAD, VLDB, 2022, unsupervised, TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data [#Tuli2022TranAD]_ COUTA, arXiv, 2022, unsupervised, Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection [#Xu2022COUTA]_ USAD, KDD, 2020, unsupervised, USAD: UnSupervised Anomaly Detection on Multivariate Time Series DIF, TKDE, 2023, unsupervised, Deep Isolation Forest for Anomaly Detection [#Xu2023DIF]_ TcnED, TNNLS, 2021, unsupervised, An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series [#Garg2021Evaluation]_ Deep SVDD (TS), ICML, 2018, unsupervised, Deep One-Class Classification [#Ruff2018Deep]_ DevNet (TS), KDD, 2019, weakly-supervised, Deep Anomaly Detection with Deviation Networks [#Pang2019DevNet]_ PReNet (TS), KDD, 2023, weakly-supervised, Deep Weakly-supervised Anomaly Detection [#Pang2023PreNet]_ Deep SAD (TS), ICLR, 2020, weakly-supervised, Deep Semi-Supervised Anomaly Detection [#Ruff2020DSAD]_ NOTE: - For Deep SVDD, DevNet, PReNet, and DeepSAD, we employ network structures that can handle time-series data. These models' classes have a parameter named ``network`` in these models, by changing it, you can use different networks. - We currently support 'TCN', 'GRU', 'LSTM', 'Transformer', 'ConvSeq', and 'DilatedConv'. Citation ~~~~~~~~~~~~~~~~~ If you use this library in your work, please cite this paper: Hongzuo Xu, Guansong Pang, Yijie Wang and Yongjun Wang, "Deep Isolation Forest for Anomaly Detection," in IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2023.3270293. You can also use the BibTex entry below for citation. .. code-block:: bibtex @ARTICLE{xu2023deep, author={Xu, Hongzuo and Pang, Guansong and Wang, Yijie and Wang, Yongjun}, journal={IEEE Transactions on Knowledge and Data Engineering}, title={Deep Isolation Forest for Anomaly Detection}, year={2023}, volume={}, number={}, pages={1-14}, doi={10.1109/TKDE.2023.3270293} } Star History ~~~~~~~~~~~~~~~~~ Current stars: .. image:: https://img.shields.io/github/stars/xuhongzuo/deepod?labelColor=black&color=red :alt: GitHub Repo stars .. image:: https://api.star-history.com/svg?repos=xuhongzuo/DeepOD&type=Date :target: https://star-history.com/#xuhongzuo/DeepOD&Date :align: center Reference ~~~~~~~~~~~~~~~~~ .. [#Ruff2018Deep] Ruff, Lukas, et al. "Deep one-class classification." ICML. 2018. .. [#Pang2019Repen] Pang, Guansong, et al. "Learning representations of ultrahigh-dimensional data for random distance-based outlier detection". KDD (pp. 2041-2050). 2018. .. [#Wang2020RDP] Wang, Hu, et al. "Unsupervised Representation Learning by Predicting Random Distances". IJCAI (pp. 2950-2956). 2020. .. [#Liu2021RCA] Liu, Boyang, et al. "RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection". IJCAI (pp. 1505-1511). 2021. .. [#Bergman2020GOAD] Bergman, Liron, and Yedid Hoshen. "Classification-Based Anomaly Detection for General Data". ICLR. 2020. .. [#Qiu2021Neutral] Qiu, Chen, et al. "Neural Transformation Learning for Deep Anomaly Detection Beyond Images". ICML. 2021. .. [#Shenkar2022ICL] Shenkar, Tom, et al. "Anomaly Detection for Tabular Data with Internal Contrastive Learning". ICLR. 2022. .. [#Pang2019DevNet] Pang, Guansong, et al. "Deep Anomaly Detection with Deviation Networks". KDD. 2019. .. [#Pang2023PreNet] Pang, Guansong, et al. "Deep Weakly-supervised Anomaly Detection". KDD. 2023. .. [#Ruff2020DSAD] Ruff, Lukas, et al. "Deep Semi-Supervised Anomaly Detection". ICLR. 2020. .. [#Zhou2021FeaWAD] Zhou, Yingjie, et al. "Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection". TNNLS. 2021. .. [#Xu2022transformer] Xu, Jiehui, et al. "Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy". ICLR, 2022. .. [#Wu2023timesnet] Wu, Haixu, et al. "TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis". ICLR. 2023. .. [#Yang2023dcdetector] Yang, Yiyuan, et al. "DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection". KDD. 2023 .. [#Tuli2022TranAD] Tuli, Shreshth, et al. "TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data". VLDB. 2022. .. [#Carmona2022NCAD] Carmona, Chris U., et al. "Neural Contextual Anomaly Detection for Time Series". IJCAI. 2022. .. [#Garg2021Evaluation] Garg, Astha, et al. "An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series". TNNLS. 2021. .. [#Xu2022COUTA] Xu, Hongzuo et al. "Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection". arXiv:2207.12201. 2022. .. [#Xu2023DIF] Xu, Hongzuo et al. "Deep Isolation Forest for Anomaly Detection". TKDE. 2023. .. [#Xu2023SLAD] Xu, Hongzuo et al. "Fascinating supervisory signals and where to find them: deep anomaly detection with scale learning". ICML. 2023. .. [#Xu2023RoSAS] Xu, Hongzuo et al. "RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision". IP&M. 2023.