JCC-DeepOD/README.rst

306 lines
13 KiB
ReStructuredText

Python Deep Outlier/Anomaly Detection (DeepOD)
==================================================
.. image:: https://github.com/xuhongzuo/DeepOD/actions/workflows/testing.yml/badge.svg
:target: https://github.com/xuhongzuo/DeepOD/actions/workflows/testing.yml
:alt: testing2
.. image:: https://readthedocs.org/projects/deepod/badge/?version=latest
:target: https://deepod.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://app.codacy.com/project/badge/Grade/2c587126aac2441abb917c032189fbe8
:target: https://app.codacy.com/gh/xuhongzuo/DeepOD/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade
:alt: codacy
.. image:: https://coveralls.io/repos/github/xuhongzuo/DeepOD/badge.svg?branch=main
:target: https://coveralls.io/github/xuhongzuo/DeepOD?branch=main
:alt: coveralls
.. image:: https://static.pepy.tech/personalized-badge/deepod?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads
:target: https://pepy.tech/project/deepod
:alt: downloads
.. image:: https://img.shields.io/badge/license-BSD2-blue
:alt: license
``DeepOD`` is an open-source python library for Deep Learning-based `Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_
and `Anomaly Detection <https://en.wikipedia.org/wiki/Anomaly_detection>`_. ``DeepOD`` supports tabular anomaly detection and time-series anomaly detection.
DeepOD includes **27** deep outlier detection / anomaly detection algorithms (in unsupervised/weakly-supervised paradigm).
More baseline algorithms will be included later.
**DeepOD is featured for**:
* **Unified APIs** across various algorithms.
* **SOTA models** includes reconstruction-, representation-learning-, and self-superivsed-based latest deep learning methods.
* **Comprehensive Testbed** that can be used to directly test different models on benchmark datasets (highly recommend for academic research).
* **Versatile** in different data types including tabular and time-series data (DeepOD will support other data types like images, graph, log, trace, etc. in the future, welcome PR :telescope:).
* **Diverse Network Structures** can be plugged into detection models, we now support LSTM, GRU, TCN, Conv, and Transformer for time-series data. (welcome PR as well :sparkles:)
If you are interested in our project, we are pleased to have your stars and forks :thumbsup: :beers: .
Installation
~~~~~~~~~~~~~~
The DeepOD framework can be installed via:
.. code-block:: bash
pip install deepod
install a developing version (strongly recommend)
.. code-block:: bash
git clone https://github.com/xuhongzuo/DeepOD.git
cd DeepOD
pip install .
Usages
~~~~~~~~~~~~~~~~~
Directly use detection models in DeepOD:
::::::::::::::::::::::::::::::::::::::::::
DeepOD can be used in a few lines of code. This API style is the same with `Sklean <https://github.com/scikit-learn/scikit-learn>`_ and `PyOD <https://github.com/yzhao062/pyod>`_.
**for tabular anomaly detection:**
.. code-block:: python
# unsupervised methods
from deepod.models.tabular import DeepSVDD
clf = DeepSVDD()
clf.fit(X_train, y=None)
scores = clf.decision_function(X_test)
# weakly-supervised methods
from deepod.models.tabular import DevNet
clf = DevNet()
clf.fit(X_train, y=semi_y) # semi_y uses 1 for known anomalies, and 0 for unlabeled data
scores = clf.decision_function(X_test)
# evaluation of tabular anomaly detection
from deepod.metrics import tabular_metrics
auc, ap, f1 = tabular_metrics(y_test, scores)
**for time series anomaly detection:**
.. code-block:: python
# time series anomaly detection methods
from deepod.models.time_series import TimesNet
clf = TimesNet()
clf.fit(X_train)
scores = clf.decision_function(X_test)
# evaluation of time series anomaly detection
from deepod.metrics import ts_metrics
from deepod.metrics import point_adjustment # execute point adjustment for time series ad
eval_metrics = ts_metrics(labels, scores)
adj_eval_metrics = ts_metrics(labels, point_adjustment(labels, scores))
Testbed usage:
::::::::::::::::::::::::::::::::::::::::::
Testbed contains the whole process of testing an anomaly detection model, including data loading, preprocessing, anomaly detection, and evaluation.
Please refer to ``testbed/``
* ``testbed/testbed_unsupervised_ad.py`` is for testing unsupervised tabular anomaly detection models.
* ``testbed/testbed_unsupervised_tsad.py`` is for testing unsupervised time-series anomaly detection models.
Key arguments:
* ``--input_dir``: name of the folder that contains datasets (.csv, .npy)
* ``--dataset``: "FULL" represents testing all the files within the folder, or a list of dataset names using commas to split them (e.g., "10_cover*,20_letter*")
* ``--model``: anomaly detection model name
* ``--runs``: how many times running the detection model, finally report an average performance with standard deviation values
Example:
1. Download `ADBench <https://github.com/Minqi824/ADBench/tree/main/adbench/datasets/>`_ datasets.
2. modify the ``dataset_root`` variable as the directory of the dataset.
3. ``input_dir`` is the sub-folder name of the ``dataset_root``, e.g., ``Classical`` or ``NLP_by_BERT``.
4. use the following command in the bash
.. code-block:: bash
cd DeepOD
pip install .
cd testbed
python testbed_unsupervised_ad.py --model DeepIsolationForest --runs 5 --input_dir ADBench
Implemented Models
~~~~~~~~~~~~~~~~~~~
**Tabular Anomaly Detection models:**
.. csv-table::
:header: "Model", "Venue", "Year", "Type", "Title"
:widths: 4, 4, 4, 8, 20
Deep SVDD, ICML, 2018, unsupervised, Deep One-Class Classification [#Ruff2018Deep]_
REPEN, KDD, 2018, unsupervised, Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection [#Pang2019Repen]_
RDP, IJCAI, 2020, unsupervised, Unsupervised Representation Learning by Predicting Random Distances [#Wang2020RDP]_
RCA, IJCAI, 2021, unsupervised, RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection [#Liu2021RCA]_
GOAD, ICLR, 2020, unsupervised, Classification-Based Anomaly Detection for General Data [#Bergman2020GOAD]_
NeuTraL, ICML, 2021, unsupervised, Neural Transformation Learning for Deep Anomaly Detection Beyond Images [#Qiu2021Neutral]_
ICL, ICLR, 2022, unsupervised, Anomaly Detection for Tabular Data with Internal Contrastive Learning [#Shenkar2022ICL]_
DIF, TKDE, 2023, unsupervised, Deep Isolation Forest for Anomaly Detection [#Xu2023DIF]_
SLAD, ICML, 2023, unsupervised, Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning [#Xu2023SLAD]_
DevNet, KDD, 2019, weakly-supervised, Deep Anomaly Detection with Deviation Networks [#Pang2019DevNet]_
PReNet, KDD, 2023, weakly-supervised, Deep Weakly-supervised Anomaly Detection [#Pang2023PreNet]_
Deep SAD, ICLR, 2020, weakly-supervised, Deep Semi-Supervised Anomaly Detection [#Ruff2020DSAD]_
FeaWAD, TNNLS, 2021, weakly-supervised, Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection [#Zhou2021FeaWAD]_
RoSAS, IP&M, 2023, weakly-supervised, RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision [#Xu2023RoSAS]_
**Time-series Anomaly Detection models:**
.. csv-table::
:header: "Model", "Venue", "Year", "Type", "Title"
:widths: 4, 4, 4, 8, 20
DCdetector, KDD, 2023, unsupervised, DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection [#Yang2023dcdetector]_
TimesNet, ICLR, 2023, unsupervised, TIMESNET: Temporal 2D-Variation Modeling for General Time Series Analysis [#Wu2023timesnet]_
AnomalyTransformer, ICLR, 2022, unsupervised, Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy [#Xu2022transformer]_
NCAD, IJCAI, 2022, unsupervised, Neural Contextual Anomaly Detection for Time Series [#Carmona2022NCAD]_
TranAD, VLDB, 2022, unsupervised, TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data [#Tuli2022TranAD]_
COUTA, arXiv, 2022, unsupervised, Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection [#Xu2022COUTA]_
USAD, KDD, 2020, unsupervised, USAD: UnSupervised Anomaly Detection on Multivariate Time Series
DIF, TKDE, 2023, unsupervised, Deep Isolation Forest for Anomaly Detection [#Xu2023DIF]_
TcnED, TNNLS, 2021, unsupervised, An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series [#Garg2021Evaluation]_
Deep SVDD (TS), ICML, 2018, unsupervised, Deep One-Class Classification [#Ruff2018Deep]_
DevNet (TS), KDD, 2019, weakly-supervised, Deep Anomaly Detection with Deviation Networks [#Pang2019DevNet]_
PReNet (TS), KDD, 2023, weakly-supervised, Deep Weakly-supervised Anomaly Detection [#Pang2023PreNet]_
Deep SAD (TS), ICLR, 2020, weakly-supervised, Deep Semi-Supervised Anomaly Detection [#Ruff2020DSAD]_
NOTE:
- For Deep SVDD, DevNet, PReNet, and DeepSAD, we employ network structures that can handle time-series data. These models' classes have a parameter named ``network`` in these models, by changing it, you can use different networks.
- We currently support 'TCN', 'GRU', 'LSTM', 'Transformer', 'ConvSeq', and 'DilatedConv'.
Citation
~~~~~~~~~~~~~~~~~
If you use this library in your work, please cite this paper:
Hongzuo Xu, Guansong Pang, Yijie Wang and Yongjun Wang, "Deep Isolation Forest for Anomaly Detection," in IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2023.3270293.
You can also use the BibTex entry below for citation.
.. code-block:: bibtex
@ARTICLE{xu2023deep,
author={Xu, Hongzuo and Pang, Guansong and Wang, Yijie and Wang, Yongjun},
journal={IEEE Transactions on Knowledge and Data Engineering},
title={Deep Isolation Forest for Anomaly Detection},
year={2023},
volume={},
number={},
pages={1-14},
doi={10.1109/TKDE.2023.3270293}
}
Star History
~~~~~~~~~~~~~~~~~
Current stars:
.. image:: https://img.shields.io/github/stars/xuhongzuo/deepod?labelColor=black&color=red
:alt: GitHub Repo stars
.. image:: https://api.star-history.com/svg?repos=xuhongzuo/DeepOD&type=Date
:target: https://star-history.com/#xuhongzuo/DeepOD&Date
:align: center
Reference
~~~~~~~~~~~~~~~~~
.. [#Ruff2018Deep] Ruff, Lukas, et al. "Deep one-class classification." ICML. 2018.
.. [#Pang2019Repen] Pang, Guansong, et al. "Learning representations of ultrahigh-dimensional data for random distance-based outlier detection". KDD (pp. 2041-2050). 2018.
.. [#Wang2020RDP] Wang, Hu, et al. "Unsupervised Representation Learning by Predicting Random Distances". IJCAI (pp. 2950-2956). 2020.
.. [#Liu2021RCA] Liu, Boyang, et al. "RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection". IJCAI (pp. 1505-1511). 2021.
.. [#Bergman2020GOAD] Bergman, Liron, and Yedid Hoshen. "Classification-Based Anomaly Detection for General Data". ICLR. 2020.
.. [#Qiu2021Neutral] Qiu, Chen, et al. "Neural Transformation Learning for Deep Anomaly Detection Beyond Images". ICML. 2021.
.. [#Shenkar2022ICL] Shenkar, Tom, et al. "Anomaly Detection for Tabular Data with Internal Contrastive Learning". ICLR. 2022.
.. [#Pang2019DevNet] Pang, Guansong, et al. "Deep Anomaly Detection with Deviation Networks". KDD. 2019.
.. [#Pang2023PreNet] Pang, Guansong, et al. "Deep Weakly-supervised Anomaly Detection". KDD. 2023.
.. [#Ruff2020DSAD] Ruff, Lukas, et al. "Deep Semi-Supervised Anomaly Detection". ICLR. 2020.
.. [#Zhou2021FeaWAD] Zhou, Yingjie, et al. "Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection". TNNLS. 2021.
.. [#Xu2022transformer] Xu, Jiehui, et al. "Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy". ICLR, 2022.
.. [#Wu2023timesnet] Wu, Haixu, et al. "TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis". ICLR. 2023.
.. [#Yang2023dcdetector] Yang, Yiyuan, et al. "DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection". KDD. 2023
.. [#Tuli2022TranAD] Tuli, Shreshth, et al. "TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data". VLDB. 2022.
.. [#Carmona2022NCAD] Carmona, Chris U., et al. "Neural Contextual Anomaly Detection for Time Series". IJCAI. 2022.
.. [#Garg2021Evaluation] Garg, Astha, et al. "An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series". TNNLS. 2021.
.. [#Xu2022COUTA] Xu, Hongzuo et al. "Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection". arXiv:2207.12201. 2022.
.. [#Xu2023DIF] Xu, Hongzuo et al. "Deep Isolation Forest for Anomaly Detection". TKDE. 2023.
.. [#Xu2023SLAD] Xu, Hongzuo et al. "Fascinating supervisory signals and where to find them: deep anomaly detection with scale learning". ICML. 2023.
.. [#Xu2023RoSAS] Xu, Hongzuo et al. "RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision". IP&M. 2023.