This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
This reverts commit a1255dc467.
This patch results in:
llvm/lib/CodeGen/SanitizerBinaryMetadata.cpp:57:17: error: no member
named 'size' in 'llvm::MDTuple'
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
The KCFI sanitizer emits "kcfi" operand bundles to indirect
call instructions, which the LLVM back-end lowers into an
architecture-specific type check with a known machine instruction
sequence. Currently, KCFI operand bundle lowering is supported only
on 64-bit X86 and AArch64 architectures.
As a lightweight forward-edge CFI implementation that doesn't
require LTO is also useful for non-Linux low-level targets on
other machine architectures, add a generic KCFI operand bundle
lowering pass that's only used when back-end lowering support is not
available and allows -fsanitize=kcfi to be enabled in Clang on all
architectures.
This relands commit eb2a57ebc7 with
fixes.
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D135411
Breaks build of LLVMgold here:
```
/repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1108:19: error: no matching function for call to 'localCache'
Cache = check(localCache("ThinLTO", "Thin", options::cache_dir, AddBuffer));
^~~~~~~~~~
/repositories/llvm-project/llvm/include/llvm/Support/Caching.h:72:21: note: candidate function not viable: no known conversion from '(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1102:20)' to 'llvm::AddBufferFn' (aka 'function<void (unsigned int, const llvm::Twine &, std::unique_ptr<MemoryBuffer>)>') for 4th argument
Expected<FileCache> localCache(
^
/repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1110:18: error: no viable conversion from '(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20)' to 'llvm::AddStreamFn' (aka 'function<Expected<std::unique_ptr<CachedFileStream>> (unsigned int, const llvm::Twine &)>')
check(Lto->run(AddStream, Cache));
^~~~~~~~~
/usr/bin/../lib/gcc/x86_64-linux-gnu/12/../../../../include/c++/12/bits/std_function.h:375:7: note: candidate constructor not viable: no known conversion from '(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20)' to 'std::nullptr_t' for 1st argument
function(nullptr_t) noexcept
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/12/../../../../include/c++/12/bits/std_function.h:386:7: note: candidate constructor not viable: no known conversion from '(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20)' to 'const std::function<llvm::Expected<std::unique_ptr<llvm::CachedFileStream>> (unsigned int, const llvm::Twine &)> &' for 1st argument
function(const function& __x)
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/12/../../../../include/c++/12/bits/std_function.h:404:7: note: candidate constructor not viable: no known conversion from '(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20)' to 'std::function<llvm::Expected<std::unique_ptr<llvm::CachedFileStream>> (unsigned int, const llvm::Twine &)> &&' for 1st argument
function(function&& __x) noexcept
^
/usr/bin/../lib/gcc/x86_64-linux-gnu/12/../../../../include/c++/12/bits/std_function.h:435:2: note: candidate template ignored: requirement '_Callable<(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20) &, (lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20), std::__invoke_result<(lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20) &, unsigned int, const llvm::Twine &>>::value' was not satisfied [with _Functor = (lambda at /repositories/llvm-project/llvm/tools/gold/gold-plugin.cpp:1094:20) &]
function(_Functor&& __f)
^
/repositories/llvm-project/llvm/include/llvm/LTO/LTO.h:278:25: note: passing argument to parameter 'AddStream' here
Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
^
```
This reverts commit 387620aa8c.
Currently the lto native object files have names like main.exe.lto.1.obj. In
PDB, those names are used as names for each compiland. Microsoft’s tool
SizeBench uses those names to present to users the size of each object files.
So, names like main.exe.lto.1.obj is not user friendly.
This patch makes the lto native object file names more readable by using
the bitcode file names as part of the file names. For example, if the input
bitcode file has path like "path/to/foo.obj", its corresponding lto native
object file path would be "path/to/main.exe.lto.foo.obj". Since the lto native
object file name only bothers PDB, this patch only changes the lld-linker's
behavior.
Reviewed By: tejohnson, MaskRay, #lld-macho
Differential Revision: https://reviews.llvm.org/D137217
Enable using -module-summary with -S
(similarly to what currently can be achieved with opt <input> -o - | llvm-dis).
This is a recommit of ef9e62469.
Test plan: ninja check-all
Differential revision: https://reviews.llvm.org/D137768
This diff splits out (from LLVMCore) IR printing passes into IRPrinter.
This structure is similar to what we already have for IRReader and
enables us to avoid circular dependencies between LLVMCore and Analysis
(this is a preparation for https://reviews.llvm.org/D137768).
The legacy interface is left unchanged, once the legacy pass manager
is removed (in the future) we will be able to clean it up further.
The bazel build configuration has been updated as well.
Test plan:
1/ Tested the following cmake configurations: static/dynamic linking * lld/gold * clang/gcc
2/ bazel build --config=generic_clang @llvm-project//...
Differential revision: https://reviews.llvm.org/D138081
This reverts commit eb2a57ebc7.
llvm/include/llvm/Transforms/Instrumentation/KCFI.h including
llvm/CodeGen is a layering violation. We should use an approach where
Instrumementation/ doesn't need to include CodeGen/.
Sorry for not spotting this in the review.
The KCFI sanitizer emits "kcfi" operand bundles to indirect
call instructions, which the LLVM back-end lowers into an
architecture-specific type check with a known machine instruction
sequence. Currently, KCFI operand bundle lowering is supported only
on 64-bit X86 and AArch64 architectures.
As a lightweight forward-edge CFI implementation that doesn't
require LTO is also useful for non-Linux low-level targets on
other machine architectures, add a generic KCFI operand bundle
lowering pass that's only used when back-end lowering support is not
available and allows -fsanitize=kcfi to be enabled in Clang on all
architectures.
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D135411
The conditions for which Clang emits the `unsafe-fp-math` function
attribute has been modified as part of
`84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7`.
In the backend code generators `"unsafe-fp-math"="true"` enable floating
point contraction for the whole function.
The intent of the change in `84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7`
was to prevent backend code generators performing contractions when that
is not expected.
However the change is inaccurate and incomplete because it allows
`unsafe-fp-math` to be set also when only in-statement contraction is
allowed.
Consider the following example
```
float foo(float a, float b, float c) {
float tmp = a * b;
return tmp + c;
}
```
and compile it with the command line
```
clang -fno-math-errno -funsafe-math-optimizations -ffp-contract=on \
-O2 -mavx512f -S -o -
```
The resulting assembly has a `vfmadd213ss` instruction which corresponds
to a fused multiply-add. From the user perspective there shouldn't be
any contraction because the multiplication and the addition are not in
the same statement.
The optimized IR is:
```
define float @test(float noundef %a, float noundef %b, float noundef %c) #0 {
%mul = fmul reassoc nsz arcp afn float %b, %a
%add = fadd reassoc nsz arcp afn float %mul, %c
ret float %add
}
attributes #0 = {
[...]
"no-signed-zeros-fp-math"="true"
"no-trapping-math"="true"
[...]
"unsafe-fp-math"="true"
}
```
The `"unsafe-fp-math"="true"` function attribute allows the backend code
generator to perform `(fadd (fmul a, b), c) -> (fmadd a, b, c)`.
In the current IR representation there is no way to determine the
statement boundaries from the original source code.
Because of this for in-statement only contraction the generated IR
doesn't have instructions with the `contract` fast-math flag and
`llvm.fmuladd` is being used to represent contractions opportunities
that occur within a single statement.
Therefore `"unsafe-fp-math"="true"` can only be emitted when contraction
across statements is allowed.
Moreover the change in `84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7` doesn't
take into account that the floating point math function attributes can
be refined during IR code generation of a function to handle the cases
where the floating point math options are modified within a compound
statement via pragmas (see `CGFPOptionsRAII`).
For consistency `unsafe-fp-math` needs to be disabled if the contraction
mode for any scope/operation is not `fast`.
Similarly for consistency reason the initialization of `UnsafeFPMath` of
in `TargetOptions` for the backend code generation should take into
account the contraction mode as well.
Reviewed By: zahiraam
Differential Revision: https://reviews.llvm.org/D136786
This reverts commit bf8381a8bc.
There is a layering violation: LLVMAnalysis depends on LLVMCore, so
LLVMCore should not include LLVMAnalysis header
llvm/Analysis/ModuleSummaryAnalysis.h
Enable using -module-summary with -S
(similarly to what currently can be achieved with opt <input> -o - | llvm-dis).
This is a recommit of ef9e62469.
Test plan: ninja check-all
Differential revision: https://reviews.llvm.org/D137768
Enable using -module-summary with -S
(similarly to what currently can be achieved with opt <input> -o - | llvm-dis).
Test plan: ninja check-all
Differential revision: https://reviews.llvm.org/D137768
Move these to the new PM if they're used there.
Part of removing the legacy pass manager for optimization pipeline.
Reland with UseNewGVN usage in clang removed.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D137915
Reverted in 98fa95492f.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
This patch plumbs the AssignmentTrackingPass (AKA declare-to-assign), added in
the previous patch in this set, into the optimisation pipeline from
clang. clang/test/CodeGen/assignment-tracking/assignment-tracking.cpp is the
main test for this patch.
Note: while clang (with the help of the declare-to-assign pass) can now emit
Assignment Tracking metadata, the llvm middle and back ends don't yet
understand it.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132226
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
This patch plumbs the AssignmentTrackingPass (AKA declare-to-assign), added in
the previous patch in this set, into the optimisation pipeline from
clang. clang/test/CodeGen/assignment-tracking/assignment-tracking.cpp is the
main test for this patch.
Note: while clang (with the help of the declare-to-assign pass) can now emit
Assignment Tracking metadata, the llvm middle and back ends don't yet
understand it.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132226
Avoid calling getenv in the MC layer and let the clang driver do it so
that it is reflected in the command-line as an -mllvm option.
rdar://101558354
Differential Revision: https://reviews.llvm.org/D136888
Restore GlobalsAA if sanitizers inserted at early optimize callback.
The analysis can be useful for the following FunctionPassManager.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133537
Set the EmulatedTLS option based on `Triple::hasDefaultEmulatedTLS()`
if the user didn't specify it; set `ExplicitEmulatedTLS` to true
in `llvm::TargetOptions` and set `EmulatedTLS` to Clang's
opinion of what the default or preference is.
This avoids any risk of deviance between the two.
This affects one check of `getCodeGenOpts().EmulatedTLS` in
`shouldAssumeDSOLocal` in CodeGenModule, but as that check only
is done for `TT.isWindowsGNUEnvironment()`, and
`hasDefaultEmulatedTLS()` returns false for such environments
it doesn't make any current testable difference - thus NFC.
Some mingw distributions carry a downstream patch, that enables
emulated TLS by default for mingw targets in `hasDefaultEmulatedTLS()`
- and for such cases, this patch does make a difference and fixes the
detection of emulated TLS, if it is implicitly enabled.
Differential Revision: https://reviews.llvm.org/D132916
Introduces the frontend flag -fexperimental-sanitize-metadata=, which
enables SanitizerBinaryMetadata instrumentation.
The first intended user of the binary metadata emitted will be a variant
of GWP-TSan [1]. The plan is to open source a stable and production
quality version of GWP-TSan. The development of which, however, requires
upstream compiler support.
[1] https://llvm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf
Until the tool has been open sourced, we mark this kind of
instrumentation as "experimental", and reserve the option to change
binary format, remove features, and similar.
Reviewed By: vitalybuka, MaskRay
Differential Revision: https://reviews.llvm.org/D130888
Debugify in OriginalDebugInfo mode, introduced with D82545,
runs only with legacy PassManager.
This patch enables this utility for the NewPM.
Differential Revision: https://reviews.llvm.org/D115351
Now that we have the sanitizer metadata that is actually on the global
variable, and now that we use debuginfo in order to do symbolization of
globals, we can delete the 'llvm.asan.globals' IR synthesis.
This patch deletes the 'location' part of the __asan_global that's
embedded in the binary as well, because it's unnecessary. This saves
about ~1.7% of the optimised non-debug with-asserts clang binary.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D127911
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258