This reverts commit b7c922607c.
This seems to cause some problems with some modules related things,
which makes me think I should have updated the version-major in
ast-bit-codes? Going to revert to confirm this was a problem, then
change that and re-try a commit.
As that bug reports, the problem here is that the lambda's
'context-decl' was not set to the concept, and the lambda picked up
template arguments from the concept. SO, we failed to get the correct
template arguments in SemaTemplateInstantiate.
However, a Concept Specialization is NOT a decl, its an expression, so
we weren't able to put the concept in the decl tree like we needed.
This patch introduces a ConceptSpecializationDecl, which is the smallest
type possible to use for this purpose, containing only the template
arguments.
The net memory impliciation of this is turning a
trailing-objects into a pointer to a type with trailing-objects, so it
should be minor.
As future work, we may consider giving this type more responsibility, or
figuring out how to better merge duplicates, but as this is just a
template-argument collection at the moment, there isn't much value to
it.
Differential Revision: https://reviews.llvm.org/D136451
Clang is generating different mangled names for the same lambda
function in slightly changed builds (like with non-related
source/Macro change). This is due to the fact that clang uses a
cross-translation-unit sequential string "$_<n>" in lambda's
mangled name. Here, "n" is the AnonStructIds field in MangleContext.
Different mangled names for a unchanged function is undesirable:
it makes perf comparison harder, and can cause some unnecessary
profile mismatch in SampleFDO.
This patch makes mangled name for lambda functions more stable
by changing AnonStructIds to a per-function based seq number if the
DeclContext is a function.
Differential Revision: https://reviews.llvm.org/D136397
The time profiler in `Expr::isIntegerConstantExpr` used to
call `Loc->printToString`, it was inconsistent with other time
profiles in the file and caused segfaults if `Loc` was `nullptr`.
Fixes https://github.com/llvm/llvm-project/issues/58551
Reviewed By: dyung, jloser
Differential Revision: https://reviews.llvm.org/D136549
This patch fixes:
clang/lib/AST/Interp/ByteCodeExprGen.cpp:978:24: warning: variable
‘T’ set but not used [-Wunused-but-set-variable]
T and ReturnType were introduced on August 19, 2022 in commit
8e41e6a4ea.
Their last uses were removed on October 13, 2022 in commit
0e754cfadc.
Remove the double Call() implementation to reduce code duplication. Then
fix Function::getSource() so we can diagnose instance pointers being
null.
Differential Revision: https://reviews.llvm.org/D135513
Add time profiler for various constexpr evaluation events
so that slow event could be visible on the visualized flame chart.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D136022
The `__has_constexpr_builtin` macro can be used to check
whether the builtin in constant-evaluated by Clang frontend.
Reviewed By: aaron.ballman, shafik
Differential Revision: https://reviews.llvm.org/D136036
Clang doesn't have the same behavior as GCC does with union flexible
array members. (Technically, union FAMs are probably not acceptable in
C99 and are an extension of GCC and Clang.)
Both Clang and GCC treat *all* arrays at the end of a structure as FAMs.
GCC does the same with unions. Clang does it for some arrays in unions
(incomplete, '0', and '1'), but not for all. Instead of having this
half-supported feature, sync Clang's behavior with GCC's.
Reviewed By: kees
Differential Revision: https://reviews.llvm.org/D135727
short will be promoted to int in UsualUnaryConversions.
Disable it for HLSL to keep int16_t as 16bit.
Reviewed By: aaron.ballman, rjmccall
Differential Revision: https://reviews.llvm.org/D133668
Added keyword, LangAS and TypeAttrbute for groupshared.
Tanslate it to LangAS with asHLSLLangAS.
Make sure it translated into address space 3 for DirectX target.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D135060
In OpenMP target offloading an in other offloading languages, we
maintain a difference between device functions and kernel functions.
Kernel functions must be visible to the host and act as the entry point
to the target device. Device functions however cannot be called directly
by the host and must be called by a kernel function. Currently, we make
all definitions on the device protected by default. Because device
functions cannot be called or used by the host they should have hidden
visibility. This allows for the definitions to be better optimized via
LTO or other passes.
This patch marks every device function in the AST as having `hidden`
visibility. The kernel function is generated later at code-gen and we
set its visibility explicitly so it should not be affected. This
prevents the user from overriding the visibility, but since the user
can't do anything with these symbols anyway there is no point exporting
them right now.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D136111
This is a change to how we represent type subsitution in the AST.
Instead of only storing the replaced type, we track the templated
entity we are substituting, plus an index.
We modify MLTAL to track the templated entity at each level.
Otherwise, it's much more expensive to go from the template parameter back
to the templated entity, and not possible to do in some cases, as when
we instantiate outer templates, parameters might still reference the
original entity.
This also allows us to very cheaply lookup the templated entity we saw in
the naming context and find the corresponding argument it was replaced
from, such as for implementing template specialization resugaring.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D131858
Seems there's a narrow case - where a packed type doesn't pack its base
subobjects (only fields), but when packing a field of the derived type,
GCC does pack the resulting total object - effectively packing the base
subobject.
So ensure that this non-pod type (owing to it having a base class) that
is packed, gets packed when placed in /another/ type that is also
packed.
This is a (smallish?) ABI fix to a regression introduced by D117616 -
but that regression/ABI break hasn't been released in LLVM as-yet (it's
been reverted on the release branch from the last two LLVM releases - I
probably should've just reverted the whole patch while we hashed out
this and other issues) so this change isn't itself an ABI break, as far
as LLVM releases are concerned (for folks releasing their own copies of
LLVM from ToT/without the LLVM release branch, and didn't opt into the
clang-abi-compat 14 or below (soon to be 15 or below, I guess I should
say) then this would be an ABI break against clang from the last 9
months or so)
Differential Revision: https://reviews.llvm.org/D135916
This introduces support for nullptr and nullptr_t in C2x mode. The
proposal accepted by WG14 is:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm
Note, there are quite a few incompatibilities with the C++ feature in
some of the edge cases of this feature. Therefore, there are some FIXME
comments in tests for testing behavior that might change after WG14 has
resolved national body comments (a process we've not yet started). So
this implementation might change slightly depending on the resolution
of comments. This is called out explicitly in the release notes as
well.
Differential Revision: https://reviews.llvm.org/D135099
The diagnostics engine is very smart about being passed a NamedDecl to
print as part of a diagnostic; it gets the "right" form of the name,
quotes it properly, etc. However, the result of using an unnamed tag
declaration was to print '' instead of anything useful.
This patch causes us to print the same information we'd have gotten if
we had printed the type of the declaration rather than the name of it,
as that's the most relevant information we can display.
Differential Revision: https://reviews.llvm.org/D134813
Just keep one version of the function and differentiate between
std::is_signed() and unsigned using a constexpr if, instead of having
two different versions for the signed and unsigned cases.
Implement ArrayInitLoopExprs, which are used in copy constructors to
copy arrays. Also fix problems encountered while doing that.
Differential Revision: https://reviews.llvm.org/D134361
Implement passing the this pointer to member functions and constructors.
The this pointer is passed via the stack. This changes the functions to
explicitly track whether they have a RVO pointer and a this pointer.
Differential Revision: https://reviews.llvm.org/D134699
This doesn't make much sense with functions that expect valid parameters
and/or a certain call stack on the caller side like This/RVO pointers.
Differential Revision: https://reviews.llvm.org/D135569
We can ignore casts where FromT and ToT are the same type. But that's a
performance optimization that I'd like to do later. For now, this code
is doing the right thing.
- store NestedNameSpecifier & Loc for the qualifiers
This information was entirely missing from the AST.
- expose the location information for qualifier/identifier/typedefs as typeloc
This allows many traversals/astmatchers etc to handle these generically along
with other references. The decl vs type split can help preserve typedef
sugar when https://github.com/llvm/llvm-project/issues/57659 is resolved.
- fix the SourceRange of UsingEnumDecl to include 'using'.
Fixes https://github.com/clangd/clangd/issues/1283
Differential Revision: https://reviews.llvm.org/D134303
Without this patch `VarDecl::hasDependent()` checks only undeduced auto types, so can give false negatives result for other undeduced types.
This lead to crashes in sequence `!VarDecl::hasDepentent()` => `getDeclAlign()`.
It seems this problem appeared since D105380
Reviewed By: mizvekov
Differential Revision: https://reviews.llvm.org/D135362
As with static bool for whatever reason printing them on their own
worked fine but wasn't handled when you printed the whole type.
I don't see a good way to test this from clang's side so our existing
tests will have to do.
We can now print all of the struct "A", so there's no need for a separate
one for static bool testing. I've not checked the output, just that it
succeeds. This saves us having to handle different min/max between systems.
Depends on D135169
Reviewed By: aeubanks, shafik
Differential Revision: https://reviews.llvm.org/D135170
In the context of caching clang invocations it is important to emit diagnostics in deterministic order;
the same clang invocation should result in the same diagnostic output.
rdar://100336989
Differential Revision: https://reviews.llvm.org/D135118
(Re-Apply with fixes to clang MicrosoftMangle.cpp)
This is a first step towards high level representation for fp8 types
that have been built in to hardware with near term roadmaps. Like the
BFLOAT16 type, the family of fp8 types are inspired by IEEE-754 binary
floating point formats but, due to the size limits, have been tweaked in
various ways in order to maximally use the range/precision in various
scenarios. The list of variants is small/finite and bounded by real
hardware.
This patch introduces the E5M2 FP8 format as proposed by Nvidia, ARM,
and Intel in the paper: https://arxiv.org/pdf/2209.05433.pdf
As the more conformant of the two implemented datatypes, we are plumbing
it through LLVM's APFloat type and MLIR's type system first as a
template. It will be followed by the range optimized E4M3 FP8 format
described in the paper. Since that format deviates further from the
IEEE-754 norms, it may require more debate and implementation
complexity.
Given that we see two parts of the FP8 implementation space represented
by these cases, we are recommending naming of:
* `F8M<N>` : For FP8 types that can be conceived of as following the
same rules as FP16 but with a smaller number of mantissa/exponent
bits. Including the number of mantissa bits in the type name is enough
to fully specify the type. This naming scheme is used to represent
the E5M2 type described in the paper.
* `F8M<N>F` : For FP8 types such as E4M3 which only support finite
values.
The first of these (this patch) seems fairly non-controversial. The
second is previewed here to illustrate options for extending to the
other known variant (but can be discussed in detail in the patch
which implements it).
Many conversations about these types focus on the Machine-Learning
ecosystem where they are used to represent mixed-datatype computations
at a high level. At that level (which is why we also expose them in
MLIR), it is important to retain the actual type definition so that when
lowering to actual kernels or target specific code, the correct
promotions, casts and rescalings can be done as needed. We expect that
most LLVM backends will only experience these types as opaque `I8`
values that are applicable to some instructions.
MLIR does not make it particularly easy to add new floating point types
(i.e. the FloatType hierarchy is not open). Given the need to fully
model FloatTypes and make them interop with tooling, such types will
always be "heavy-weight" and it is not expected that a highly open type
system will be particularly helpful. There are also a bounded number of
floating point types in use for current and upcoming hardware, and we
can just implement them like this (perhaps looking for some cosmetic
ways to reduce the number of places that need to change). Creating a
more generic mechanism for extending floating point types seems like it
wouldn't be worth it and we should just deal with defining them one by
one on an as-needed basis when real hardware implements a new scheme.
Hopefully, with some additional production use and complete software
stacks, hardware makers will converge on a set of such types that is not
terribly divergent at the level that the compiler cares about.
(I cleaned up some old formatting and sorted some items for this case:
If we converge on landing this in some form, I will NFC commit format
only changes as a separate commit)
Differential Revision: https://reviews.llvm.org/D133823
As @mizvekov suggested in D134772. This works great for D128750 when
dealing with AutoType's.
Reviewed By: mizvekov, erichkeane
Differential Revision: https://reviews.llvm.org/D135088
Turn it into a single Expr::isFlexibleArrayMemberLike method, as discussed in
https://discourse.llvm.org/t/rfc-harmonize-flexible-array-members-handling
Keep different behavior with respect to macro / template substitution, and
harmonize sharp edges: ObjC interface now behave as C struct wrt. FAM and
-fstrict-flex-arrays.
This does not impact __builtin_object_size interactions with FAM.
Differential Revision: https://reviews.llvm.org/D134791
Adds a fix to the diagnostic of replacing the `= default` to `= delete`
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134549
Previously, a lambda expression in a dependent context with a default argument
containing an immediately invoked lambda expression would produce a closure
class object that, if invoked such that the default argument was used, resulted
in a compiler crash or one of the following assertion failures during code
generation. The failures occurred regardless of whether the lambda expressions
were dependent.
clang/lib/CodeGen/CGCall.cpp:
Assertion `(isGenericMethod || Ty->isVariablyModifiedType() || Ty.getNonReferenceType()->isObjCRetainableType() || getContext() .getCanonicalType(Ty.getNonReferenceType()) .getTypePtr() == getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && "type mismatch in call argument!"' failed.
clang/lib/AST/Decl.cpp:
Assertion `!Init->isValueDependent()' failed.
Default arguments in declarations in local context are instantiated along with
their enclosing function or variable template (since such declarations can't
be explicitly specialized). Previously, such instantiations were performed at
the same time that their associated parameters were instantiated. However, that
approach fails in cases like the following in which the context for the inner
lambda is the outer lambda, but construction of the outer lambda is dependent
on the parameters of the inner lambda. This change resolves this dependency by
delyaing instantiation of default arguments in local contexts until after
construction of the enclosing context.
template <typename T>
auto f() {
return [](T = []{ return T{}; }()) { return 0; };
}
Refactoring included with this change results in the same code now being used
to instantiate default arguments that appear in local context and those that
are only instantiated when used at a call site; previously, such code was
duplicated and out of sync.
Fixes https://github.com/llvm/llvm-project/issues/49178
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D133500
This change enables a declaration to be conveniently displayed within
a debugger when only a pointer to its DeclContext is available. For example,
in gdb:
(gdb) p Ctx
$1 = (const clang::DeclContext *) 0x14c1a580
(gdb) p Ctx->dumpAsDecl()
ClassTemplateSpecializationDecl 0x14c1a540 <t.cpp:1:1, line:7:1> line:2:8 struct ct
`-TemplateArgument type 'int'
`-BuiltinType 0x14bac420 'int'
$2 = void
In the event that the pointed to DeclContext is invalid (that it has an
invalid DeclKind as a result of a dangling pointer, memory corruption, etc...)
it is not possible to dump its associated declaration. In this case, the
DeclContext will be reported as invalid. For example, in gdb:
(gdb) p Ctx->dumpAsDecl()
DeclContext 0x14c1a580 <unrecognized Decl kind 127>
$3 = void
With this patch, TypedefTypes and UsingTypes can have an
underlying type which diverges from their corresponding
declarations.
For the TypedefType case, this can be seen when getting
the common sugared type between two redeclarations with
different sugar.
For both cases, this will become important as resugaring
is implemented, as this will allow us to resugar these
when they were dependent before instantiation.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133468
As fallout of the Deferred Concept Instantiation patch (babdef27c5), we
got a number of reports of a regression, where we asserted when
instantiating a constraint on a generic lambda inside of a variable
template. See: https://github.com/llvm/llvm-project/issues/57958
The problem was that getTemplateInstantiationArgs function only walked
up declaration contexts, and missed that this is not necessarily the
case with a lambda (which can ALSO be in a separate context).
This patch refactors the getTemplateInstantiationArgs function in a way
that is hopefully more readable, and fixes the problem with the concepts
on a generic lambda.
Differential Revision: https://reviews.llvm.org/D134874
This adds support under AArch64 for the target("..") attributes. The
current parsing is very X86-shaped, this patch attempts to bring it line
with the GCC implementation from
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-Attributes.html#AArch64-Function-Attributes.
The supported formats are:
- "arch=<arch>" strings, that specify the architecture features for a
function as per the -march=arch+feature option.
- "cpu=<cpu>" strings, that specify the target-cpu and any implied
atributes as per the -mcpu=cpu+feature option.
- "tune=<cpu>" strings, that specify the tune-cpu cpu for a function as
per -mtune.
- "+<feature>", "+no<feature>" enables/disables the specific feature, for
compatibility with GCC target attributes.
- "<feature>", "no-<feature>" enabled/disables the specific feature, for
backward compatibility with previous releases.
To do this, the parsing of target attributes has been moved into
TargetInfo to give the target the opportunity to override the existing
parsing. The only non-aarch64 change should be a minor alteration to the
error message, specifying using "CPU" to describe the cpu, not
"architecture", and the DuplicateArch/Tune from ParsedTargetAttr have
been combined into a single option.
Differential Revision: https://reviews.llvm.org/D133848
The type information is lost when pushing things on the stack. When
later pop()ing items of the wrong type, we can instead simply get
garbage values and those problems are hard to find. Add another stack to
record the type of item we pushed and use that for debugging.
Differential Revision: https://reviews.llvm.org/D133941
This is dead code right now but will be used for implementing array
fillers, where we need some information from the initializer when
allocaing the Descriptors.
Differential Revision: https://reviews.llvm.org/D133856
This implements WG14 N2927 and WG14 N2930, which together define the
feature for typeof and typeof_unqual, which get the type of their
argument as either fully qualified or fully unqualified. The argument
to either operator is either a type name or an expression. If given a
type name, the type information is pulled directly from the given name.
If given an expression, the type information is pulled from the
expression. Recursive use of these operators is allowed and has the
expected behavior (the innermost operator is resolved to a type, and
that's used to resolve the next layer of typeof specifier, until a
fully resolved type is determined.
Note, we already supported typeof in GNU mode as a non-conforming
extension and we are *not* exposing typeof_unqual as a non-conforming
extension in that mode, nor are we exposing typeof or typeof_unqual as
a nonconforming extension in other language modes. The GNU variant of
typeof supports a form where the parentheses are elided from the
operator when given an expression (e.g., typeof 0 i = 12;). When in C2x
mode, we do not support this extension.
Differential Revision: https://reviews.llvm.org/D134286
This reverts commit 192d69f7e6.
This fixes the condition to check whether this is a situation where we
are in a recovery-expr'ed concept a little better, so we don't access an
inactive member of a union, which should make the bots happy.
Differential Revision: https://reviews.llvm.org/D134542
This reverts commit e3d14bee23.
There are apparently a large number of crashes in libcxx and some JSON
Parser thing, so clearly this has some sort of serious issue. Reverting
so I can take some time to figure out what is going on.
Discovered by reducing a different problem, we currently assert because
we failed to make the constraint expressions not dependent, since a
RecoveryExpr cannot be transformed.
This patch fixes that, and gets reasonably nice diagnostics by
introducing a concept (hah!) of "ContainsErrors" to the Satisfaction
types, which causes us to treat the candidate as non-viable.
However, just making THAT candidate non-viable would result in choosing
the 'next best' canddiate, which can result in awkward errors, where we
start evaluating a candidate that is not intended to be selected.
Because of this, and to make diagnostics more relevant, we now just
cause the entire lookup to result in a 'no-viable-candidates'.
This means we will only emit the list of candidates, rather than any
cascading failures.
This reverts commit 95d94a6775.
This implements the deferred concepts instantiation, which should allow
the libstdc++ ranges to properly compile, and for the CRTP to work for
constrained functions.
Since the last attempt, this has fixed the issues from @wlei and
@mordante.
Differential Revision: https://reviews.llvm.org/D126907
This is first part for support cbuffer/tbuffer.
The format for cbuffer/tbuffer is
BufferType [Name] [: register(b#)] { VariableDeclaration [: packoffset(c#.xyzw)]; ... };
More details at https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-constants
New keyword 'cbuffer' and 'tbuffer' are added.
New AST node HLSLBufferDecl is added.
Build AST for simple cbuffer/tbuffer without attribute support.
The special thing is variables declared inside cbuffer is exposed into global scope.
So isTransparentContext should return true for HLSLBuffer.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129883
This change allows us to represent in the AST some specific
circumstances where we substitute a template parameter type
which is part of the underlying type of a previous substitution.
This presently happens in some circumstances dealing with
substitution of defaulted parameters of template template
parameters, and in some other cases during concepts substitution.
The main motivation for this change is for the future use in the
implementation of template specialization resugaring, as this will
allow us to represent a substitution with sugared types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D132816
Add vector version of abs as
```
__attribute__((clang_builtin_alias(__builtin_elementwise_abs)))
int2 abs (int2 );
__attribute__((clang_builtin_alias(__builtin_elementwise_abs)))
int3 abs (int3 );
```
To make this work.
Allowed custom type checking builtins to be recelareable.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D133737
The uncached lookup is mainly used in the ASTImporter/LLDB code-path
where we're not allowed to load from external storage. When importing
a FieldDecl with a DeclContext that had no external visible storage
(but came from a Clang module or PCH) the above call to `lookup(Name)`
the regular `DeclContext::lookup` fails because:
1. `DeclContext::buildLookup` doesn't set `LookupPtr` for decls
that came from a module
2. LLDB doesn't use the `SharedImporterState`
In such a case we would never continue with the "slow" path of iterating
through the decl chain on the DeclContext. In some cases this means that
ASTNodeImporter::VisitFieldDecl ends up importing a decl into the
DeclContext a second time.
The patch removes the short-circuit in the case where we don't find
any decls via the regular lookup.
**Tests**
* Un-skip the failing LLDB API tests
Differential Revision: https://reviews.llvm.org/D133945
We change the template specialization of builtin templates to
behave like aliases.
Though unlike real alias templates, these might still produce a canonical
TemplateSpecializationType when some important argument is dependent.
For example, we can't do anything about make_integer_seq when the
count is dependent, or a type_pack_element when the index is dependent.
We change type deduction to not try to deduce canonical TSTs of
builtin templates.
We also change those buitin templates to produce substitution sugar,
just like a real instantiation would, making the resulting type correctly
represent the template arguments used to specialize the underlying template.
And make_integer_seq will now produce a TST for the specialization
of it's first argument, which we use as the underlying type of
the builtin alias.
When performing member access on the resulting type, it's now
possible to map from a Subst* node to the template argument
as-written used in a regular fashion, without special casing.
And this fixes a bunch of bugs with relation to these builtin
templates factoring into deduction.
Fixes GH42102 and GH51928.
Depends on D133261
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133262
This continues D111283 by extending the getCommonSugaredType
implementation to also merge non-canonical type nodes.
We merge these nodes by going up starting from the canonical
node, calculating their merged properties on the way.
If we reach a pair that is too different, or which we could not
otherwise unify, we bail out and don't try to keep going on to
the next pair, in effect striping out all the remaining top-level
sugar nodes. This avoids mismatching 'companion' nodes, such as
ElaboratedType, so that they don't end up elaborating some other
unrelated thing.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D130308
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
This reverts commit d200db3863, which causes a
clang crash. See https://reviews.llvm.org/D111283#3785755
Test case for convenience:
```
template <typename T>
using P = int T::*;
template <typename T, typename... A>
void j(P<T>, T, A...);
template <typename T>
void j(P<T>, T);
struct S {
int b;
};
void g(P<S> k, S s) { j(k, s); }
```
References are implemented through pointers, so we need a second deref
when encountering a DeclRefExpr of a reference type.
Differential Revision: https://reviews.llvm.org/D132997
The diagnostics here are correct, but the note is really silly. It
talks about reinterpret_cast in C code. So rewording it for c mode by
using another %select{}.
```
int array[(long)(char *)0];
```
previous note:
```
cast that performs the conversions of a reinterpret_cast is not allowed in a constant expression
```
reworded note:
```
this conversion is not allowed in a constant expression
```
Differential Revision: https://reviews.llvm.org/D133194
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead. Leave the few call sites that
use a locally defined `array_lengthof` that are meant to test previous bugs
with NTTPs in clang analyzer and SemaTemplate.
Differential Revision: https://reviews.llvm.org/D133520
This reverts commit 16e5d6d7f9.
There are multiple complaints on the review.
In addition, it may cause spurious
```
error: invalid operands to binary expression ('SinkPrinter' and 'char[cluster_name_length]')
note: candidate template ignored: substitution failure: variably modified type 'char *' cannot be used as a template argument SinkPrinter operator<<(const SinkPrinter &s, T) {
```
for some C++ code
This continues D111283 by extending the getCommonSugaredType
implementation to also merge non-canonical type nodes.
We merge these nodes by going up starting from the canonical
node, calculating their merged properties on the way.
If we reach a pair that is too different, or which we could not
otherwise unify, we bail out and don't try to keep going on to
the next pair, in effect striping out all the remaining top-level
sugar nodes. This avoids mismatching 'companion' nodes, such as
ElaboratedType, so that they don't end up elaborating some other
unrelated thing.
Depends on D111509
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D130308
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
This is illegal in a constexpr context. We can already figure that out,
but we'd still run into an assertion later on when trying to visit the
missing initializer or run the invalid function.
Differential Revision: https://reviews.llvm.org/D132832
Redo how we do IntegralCasts and implement IntegralToBoolean casts using
the already existing cast op.
Differential Revision: https://reviews.llvm.org/D132739
Add Call() and CallVoid() ops and use them to call functions. Only
FunctionDecls are supported for now.
Differential Revision: https://reviews.llvm.org/D132286
The EvaluateAsRValue() documentation mentions that an implicit
lvalue-to-rvalue cast is being performed if the result is an lvalue.
However, that was not being done if the new constant interpreter was in
use.
Just always do it.
Differential Revision: https://reviews.llvm.org/D132136
Intend to use `ODRDiagsEmitter` during parsing to diagnose a parsed
definition differing from a definition with the same name from a hidden
[sub]module.
Differential Revision: https://reviews.llvm.org/D128695
Template arguments of template and declaration kind were being profiled
only by their canonical properties, which would cause incorrect
uniquing of constrained AutoTypes, leading to a crash in some cases.
This exposed some places in CheckTemplateArgumentList where non-canonical
arguments where being pushed into the resulting converted list.
We also throw in some asserts to catch early and explain the crashes.
Note that the fix for the 'declaration' kind is untestable at this point,
because there should be no cases right now in the AST where we try
to unique a non-canonical converted template argument.
This fixes GH55567.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133072
This is a valid HTML5 tag. Previously it triggered a Clang error (`HTML start tag prematurely ended, expected attribute name or '>'`) since Clang was treating `/>` as a text token. This was happening because after lexing the closing quote (`"`) the lexer state was reset to "Normal" while the tag was not actually closed yet: `>` was not yet parsed at that point.
rdar://91464292
Differential Revision: https://reviews.llvm.org/D132932
The main focus of this patch is to make ArgType::matchesType check for
possible default parameter promotions when the argType is not a pointer.
If so, no warning will be given for `int`, `unsigned int` types as
corresponding arguments to %hhd and %hd. However, the usage of %hhd
corresponding to short is relatively rare, and it is more likely to be a
misuse. This patch keeps the original behavior of clang like this as
much as possible, while making it more convenient to consider the
default arguments promotion.
Fixes https://github.com/llvm/llvm-project/issues/57102
Reviewed By: aaron.ballman, nickdesaulniers, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D132568