loading llff and blender datasets
Summary: Copy code from NeRF for loading LLFF data and blender synthetic data, and create dataset objects for them Reviewed By: shapovalov Differential Revision: D35581039 fbshipit-source-id: af7a6f3e9a42499700693381b5b147c991f57e5d
This commit is contained in:
parent
7978ffd1e4
commit
65f667fd2e
|
@ -46,3 +46,26 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
NeRF https://github.com/bmild/nerf/
|
||||
|
||||
Copyright (c) 2020 bmild
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
|
|
@ -5,7 +5,7 @@ Implicitron is a PyTorch3D-based framework for new-view synthesis via modeling t
|
|||
# License
|
||||
|
||||
Implicitron is distributed as part of PyTorch3D under the [BSD license](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE).
|
||||
It includes code from [SRN](http://github.com/vsitzmann/scene-representation-networks) and [IDR](http://github.com/lioryariv/idr) repos.
|
||||
It includes code from the [NeRF](https://github.com/bmild/nerf), [SRN](http://github.com/vsitzmann/scene-representation-networks) and [IDR](http://github.com/lioryariv/idr) repos.
|
||||
See [LICENSE-3RD-PARTY](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE-3RD-PARTY) for their licenses.
|
||||
|
||||
|
||||
|
|
|
@ -315,7 +315,7 @@ def trainvalidate(
|
|||
epoch,
|
||||
loader,
|
||||
optimizer,
|
||||
validation,
|
||||
validation: bool,
|
||||
bp_var: str = "objective",
|
||||
metric_print_interval: int = 5,
|
||||
visualize_interval: int = 100,
|
||||
|
|
|
@ -95,13 +95,6 @@ generic_model_args:
|
|||
append_coarse_samples_to_fine: true
|
||||
density_noise_std_train: 0.0
|
||||
return_weights: false
|
||||
raymarcher_EmissionAbsorptionRaymarcher_args:
|
||||
surface_thickness: 1
|
||||
bg_color:
|
||||
- 0.0
|
||||
background_opacity: 10000000000.0
|
||||
density_relu: true
|
||||
blend_output: false
|
||||
raymarcher_CumsumRaymarcher_args:
|
||||
surface_thickness: 1
|
||||
bg_color:
|
||||
|
@ -109,6 +102,13 @@ generic_model_args:
|
|||
background_opacity: 0.0
|
||||
density_relu: true
|
||||
blend_output: false
|
||||
raymarcher_EmissionAbsorptionRaymarcher_args:
|
||||
surface_thickness: 1
|
||||
bg_color:
|
||||
- 0.0
|
||||
background_opacity: 10000000000.0
|
||||
density_relu: true
|
||||
blend_output: false
|
||||
renderer_SignedDistanceFunctionRenderer_args:
|
||||
render_features_dimensions: 3
|
||||
ray_tracer_args:
|
||||
|
@ -157,6 +157,21 @@ generic_model_args:
|
|||
view_sampler_args:
|
||||
masked_sampling: false
|
||||
sampling_mode: bilinear
|
||||
feature_aggregator_AngleWeightedIdentityFeatureAggregator_args:
|
||||
exclude_target_view: true
|
||||
exclude_target_view_mask_features: true
|
||||
concatenate_output: true
|
||||
weight_by_ray_angle_gamma: 1.0
|
||||
min_ray_angle_weight: 0.1
|
||||
feature_aggregator_AngleWeightedReductionFeatureAggregator_args:
|
||||
exclude_target_view: true
|
||||
exclude_target_view_mask_features: true
|
||||
concatenate_output: true
|
||||
reduction_functions:
|
||||
- AVG
|
||||
- STD
|
||||
weight_by_ray_angle_gamma: 1.0
|
||||
min_ray_angle_weight: 0.1
|
||||
feature_aggregator_IdentityFeatureAggregator_args:
|
||||
exclude_target_view: true
|
||||
exclude_target_view_mask_features: true
|
||||
|
@ -168,21 +183,6 @@ generic_model_args:
|
|||
reduction_functions:
|
||||
- AVG
|
||||
- STD
|
||||
feature_aggregator_AngleWeightedReductionFeatureAggregator_args:
|
||||
exclude_target_view: true
|
||||
exclude_target_view_mask_features: true
|
||||
concatenate_output: true
|
||||
reduction_functions:
|
||||
- AVG
|
||||
- STD
|
||||
weight_by_ray_angle_gamma: 1.0
|
||||
min_ray_angle_weight: 0.1
|
||||
feature_aggregator_AngleWeightedIdentityFeatureAggregator_args:
|
||||
exclude_target_view: true
|
||||
exclude_target_view_mask_features: true
|
||||
concatenate_output: true
|
||||
weight_by_ray_angle_gamma: 1.0
|
||||
min_ray_angle_weight: 0.1
|
||||
implicit_function_IdrFeatureField_args:
|
||||
feature_vector_size: 3
|
||||
d_in: 3
|
||||
|
@ -203,19 +203,6 @@ generic_model_args:
|
|||
n_harmonic_functions_xyz: 0
|
||||
pooled_feature_dim: 0
|
||||
encoding_dim: 0
|
||||
implicit_function_NeuralRadianceFieldImplicitFunction_args:
|
||||
n_harmonic_functions_xyz: 10
|
||||
n_harmonic_functions_dir: 4
|
||||
n_hidden_neurons_dir: 128
|
||||
latent_dim: 0
|
||||
input_xyz: true
|
||||
xyz_ray_dir_in_camera_coords: false
|
||||
color_dim: 3
|
||||
transformer_dim_down_factor: 1.0
|
||||
n_hidden_neurons_xyz: 256
|
||||
n_layers_xyz: 8
|
||||
append_xyz:
|
||||
- 5
|
||||
implicit_function_NeRFormerImplicitFunction_args:
|
||||
n_harmonic_functions_xyz: 10
|
||||
n_harmonic_functions_dir: 4
|
||||
|
@ -229,24 +216,19 @@ generic_model_args:
|
|||
n_layers_xyz: 2
|
||||
append_xyz:
|
||||
- 1
|
||||
implicit_function_SRNImplicitFunction_args:
|
||||
raymarch_function_args:
|
||||
n_harmonic_functions: 3
|
||||
n_hidden_units: 256
|
||||
n_layers: 2
|
||||
in_features: 3
|
||||
out_features: 256
|
||||
latent_dim: 0
|
||||
xyz_in_camera_coords: false
|
||||
raymarch_function: null
|
||||
pixel_generator_args:
|
||||
n_harmonic_functions: 4
|
||||
n_hidden_units: 256
|
||||
n_hidden_units_color: 128
|
||||
n_layers: 2
|
||||
in_features: 256
|
||||
out_features: 3
|
||||
ray_dir_in_camera_coords: false
|
||||
implicit_function_NeuralRadianceFieldImplicitFunction_args:
|
||||
n_harmonic_functions_xyz: 10
|
||||
n_harmonic_functions_dir: 4
|
||||
n_hidden_neurons_dir: 128
|
||||
latent_dim: 0
|
||||
input_xyz: true
|
||||
xyz_ray_dir_in_camera_coords: false
|
||||
color_dim: 3
|
||||
transformer_dim_down_factor: 1.0
|
||||
n_hidden_neurons_xyz: 256
|
||||
n_layers_xyz: 8
|
||||
append_xyz:
|
||||
- 5
|
||||
implicit_function_SRNHyperNetImplicitFunction_args:
|
||||
hypernet_args:
|
||||
n_harmonic_functions: 3
|
||||
|
@ -267,6 +249,24 @@ generic_model_args:
|
|||
in_features: 256
|
||||
out_features: 3
|
||||
ray_dir_in_camera_coords: false
|
||||
implicit_function_SRNImplicitFunction_args:
|
||||
raymarch_function_args:
|
||||
n_harmonic_functions: 3
|
||||
n_hidden_units: 256
|
||||
n_layers: 2
|
||||
in_features: 3
|
||||
out_features: 256
|
||||
latent_dim: 0
|
||||
xyz_in_camera_coords: false
|
||||
raymarch_function: null
|
||||
pixel_generator_args:
|
||||
n_harmonic_functions: 4
|
||||
n_hidden_units: 256
|
||||
n_hidden_units_color: 128
|
||||
n_layers: 2
|
||||
in_features: 256
|
||||
out_features: 3
|
||||
ray_dir_in_camera_coords: false
|
||||
solver_args:
|
||||
breed: adam
|
||||
weight_decay: 0.0
|
||||
|
@ -282,6 +282,13 @@ solver_args:
|
|||
data_source_args:
|
||||
dataset_map_provider_class_type: ???
|
||||
data_loader_map_provider_class_type: SequenceDataLoaderMapProvider
|
||||
dataset_map_provider_BlenderDatasetMapProvider_args:
|
||||
base_dir: ???
|
||||
object_name: ???
|
||||
path_manager_factory_class_type: PathManagerFactory
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
dataset_map_provider_JsonIndexDatasetMapProvider_args:
|
||||
category: ???
|
||||
task_str: singlesequence
|
||||
|
@ -317,6 +324,13 @@ data_source_args:
|
|||
sort_frames: false
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
dataset_map_provider_LlffDatasetMapProvider_args:
|
||||
base_dir: ???
|
||||
object_name: ???
|
||||
path_manager_factory_class_type: PathManagerFactory
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
|
||||
batch_size: 1
|
||||
num_workers: 0
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import torch
|
||||
from pytorch3d.implicitron.tools.config import registry
|
||||
|
||||
from .load_blender import load_blender_data
|
||||
from .single_sequence_dataset import (
|
||||
_interpret_blender_cameras,
|
||||
SingleSceneDatasetMapProviderBase,
|
||||
)
|
||||
|
||||
|
||||
@registry.register
|
||||
class BlenderDatasetMapProvider(SingleSceneDatasetMapProviderBase):
|
||||
"""
|
||||
Provides data for one scene from Blender synthetic dataset.
|
||||
Uses the code in load_blender.py
|
||||
|
||||
Members:
|
||||
base_dir: directory holding the data for the scene.
|
||||
object_name: The name of the scene (e.g. "lego"). This is just used as a label.
|
||||
It will typically be equal to the name of the directory self.base_dir.
|
||||
path_manager_factory: Creates path manager which may be used for
|
||||
interpreting paths.
|
||||
n_known_frames_for_test: If set, training frames are included in the val
|
||||
and test datasets, and this many random training frames are added to
|
||||
each test batch. If not set, test batches each contain just a single
|
||||
testing frame.
|
||||
"""
|
||||
|
||||
def _load_data(self) -> None:
|
||||
path_manager = self.path_manager_factory.get()
|
||||
images, poses, _, hwf, i_split = load_blender_data(
|
||||
self.base_dir,
|
||||
testskip=1,
|
||||
path_manager=path_manager,
|
||||
)
|
||||
H, W, focal = hwf
|
||||
H, W = int(H), int(W)
|
||||
images = torch.from_numpy(images)
|
||||
|
||||
# pyre-ignore[16]
|
||||
self.poses = _interpret_blender_cameras(poses, H, W, focal)
|
||||
# pyre-ignore[16]
|
||||
self.images = images
|
||||
# pyre-ignore[16]
|
||||
self.i_split = i_split
|
|
@ -8,9 +8,11 @@ from typing import Tuple
|
|||
|
||||
from pytorch3d.implicitron.tools.config import ReplaceableBase, run_auto_creation
|
||||
|
||||
from . import json_index_dataset_map_provider # noqa
|
||||
from .blender_dataset_map_provider import BlenderDatasetMapProvider # noqa
|
||||
from .data_loader_map_provider import DataLoaderMap, DataLoaderMapProviderBase
|
||||
from .dataset_map_provider import DatasetMap, DatasetMapProviderBase, Task
|
||||
from .json_index_dataset_map_provider import JsonIndexDatasetMapProvider # noqa
|
||||
from .llff_dataset_map_provider import LlffDatasetMapProvider # noqa
|
||||
|
||||
|
||||
class DataSourceBase(ReplaceableBase):
|
||||
|
|
|
@ -36,10 +36,11 @@ class FrameData(Mapping[str, Any]):
|
|||
Args:
|
||||
frame_number: The number of the frame within its sequence.
|
||||
0-based continuous integers.
|
||||
frame_timestamp: The time elapsed since the start of a sequence in sec.
|
||||
sequence_name: The unique name of the frame's sequence.
|
||||
sequence_category: The object category of the sequence.
|
||||
image_size_hw: The size of the image in pixels; (height, width) tuple.
|
||||
frame_timestamp: The time elapsed since the start of a sequence in sec.
|
||||
image_size_hw: The size of the image in pixels; (height, width) tensor
|
||||
of shape (2,).
|
||||
image_path: The qualified path to the loaded image (with dataset_root).
|
||||
image_rgb: A Tensor of shape `(3, H, W)` holding the RGB image
|
||||
of the frame; elements are floats in [0, 1].
|
||||
|
@ -81,9 +82,9 @@ class FrameData(Mapping[str, Any]):
|
|||
"""
|
||||
|
||||
frame_number: Optional[torch.LongTensor]
|
||||
frame_timestamp: Optional[torch.Tensor]
|
||||
sequence_name: Union[str, List[str]]
|
||||
sequence_category: Union[str, List[str]]
|
||||
frame_timestamp: Optional[torch.Tensor] = None
|
||||
image_size_hw: Optional[torch.Tensor] = None
|
||||
image_path: Union[str, List[str], None] = None
|
||||
image_rgb: Optional[torch.Tensor] = None
|
||||
|
@ -101,7 +102,7 @@ class FrameData(Mapping[str, Any]):
|
|||
sequence_point_cloud_path: Union[str, List[str], None] = None
|
||||
sequence_point_cloud: Optional[Pointclouds] = None
|
||||
sequence_point_cloud_idx: Optional[torch.Tensor] = None
|
||||
frame_type: Union[str, List[str], None] = None # seen | unseen
|
||||
frame_type: Union[str, List[str], None] = None # known | unseen
|
||||
meta: dict = field(default_factory=lambda: {})
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from pytorch3d.implicitron.tools.config import registry
|
||||
|
||||
from .load_llff import load_llff_data
|
||||
|
||||
from .single_sequence_dataset import (
|
||||
_interpret_blender_cameras,
|
||||
SingleSceneDatasetMapProviderBase,
|
||||
)
|
||||
|
||||
|
||||
@registry.register
|
||||
class LlffDatasetMapProvider(SingleSceneDatasetMapProviderBase):
|
||||
"""
|
||||
Provides data for one scene from the LLFF dataset.
|
||||
|
||||
Members:
|
||||
base_dir: directory holding the data for the scene.
|
||||
object_name: The name of the scene (e.g. "fern"). This is just used as a label.
|
||||
It will typically be equal to the name of the directory self.base_dir.
|
||||
path_manager_factory: Creates path manager which may be used for
|
||||
interpreting paths.
|
||||
n_known_frames_for_test: If set, training frames are included in the val
|
||||
and test datasets, and this many random training frames are added to
|
||||
each test batch. If not set, test batches each contain just a single
|
||||
testing frame.
|
||||
"""
|
||||
|
||||
def _load_data(self) -> None:
|
||||
path_manager = self.path_manager_factory.get()
|
||||
images, poses, _ = load_llff_data(
|
||||
self.base_dir, factor=8, path_manager=path_manager
|
||||
)
|
||||
hwf = poses[0, :3, -1]
|
||||
poses = poses[:, :3, :4]
|
||||
|
||||
i_test = np.arange(images.shape[0])[::8]
|
||||
i_test_index = set(i_test.tolist())
|
||||
i_train = np.array(
|
||||
[i for i in np.arange(images.shape[0]) if i not in i_test_index]
|
||||
)
|
||||
i_split = (i_train, i_test, i_test)
|
||||
H, W, focal = hwf
|
||||
H, W = int(H), int(W)
|
||||
images = torch.from_numpy(images)
|
||||
poses = torch.from_numpy(poses)
|
||||
|
||||
# pyre-ignore[16]
|
||||
self.poses = _interpret_blender_cameras(poses, H, W, focal)
|
||||
# pyre-ignore[16]
|
||||
self.images = images
|
||||
# pyre-ignore[16]
|
||||
self.i_split = i_split
|
|
@ -0,0 +1,131 @@
|
|||
# @lint-ignore-every LICENSELINT
|
||||
# Adapted from https://github.com/bmild/nerf/blob/master/load_blender.py
|
||||
# Copyright (c) 2020 bmild
|
||||
import json
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def translate_by_t_along_z(t):
|
||||
tform = np.eye(4).astype(np.float32)
|
||||
tform[2][3] = t
|
||||
return tform
|
||||
|
||||
|
||||
def rotate_by_phi_along_x(phi):
|
||||
tform = np.eye(4).astype(np.float32)
|
||||
tform[1, 1] = tform[2, 2] = np.cos(phi)
|
||||
tform[1, 2] = -np.sin(phi)
|
||||
tform[2, 1] = -tform[1, 2]
|
||||
return tform
|
||||
|
||||
|
||||
def rotate_by_theta_along_y(theta):
|
||||
tform = np.eye(4).astype(np.float32)
|
||||
tform[0, 0] = tform[2, 2] = np.cos(theta)
|
||||
tform[0, 2] = -np.sin(theta)
|
||||
tform[2, 0] = -tform[0, 2]
|
||||
return tform
|
||||
|
||||
|
||||
def pose_spherical(theta, phi, radius):
|
||||
c2w = translate_by_t_along_z(radius)
|
||||
c2w = rotate_by_phi_along_x(phi / 180.0 * np.pi) @ c2w
|
||||
c2w = rotate_by_theta_along_y(theta / 180 * np.pi) @ c2w
|
||||
c2w = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
|
||||
return c2w
|
||||
|
||||
|
||||
def _local_path(path_manager, path):
|
||||
if path_manager is None:
|
||||
return path
|
||||
return path_manager.get_local_path(path)
|
||||
|
||||
|
||||
def load_blender_data(
|
||||
basedir, half_res=False, testskip=1, debug=False, path_manager=None
|
||||
):
|
||||
splits = ["train", "val", "test"]
|
||||
metas = {}
|
||||
for s in splits:
|
||||
path = os.path.join(basedir, f"transforms_{s}.json")
|
||||
with open(_local_path(path_manager, path)) as fp:
|
||||
metas[s] = json.load(fp)
|
||||
|
||||
all_imgs = []
|
||||
all_poses = []
|
||||
counts = [0]
|
||||
for s in splits:
|
||||
meta = metas[s]
|
||||
imgs = []
|
||||
poses = []
|
||||
if s == "train" or testskip == 0:
|
||||
skip = 1
|
||||
else:
|
||||
skip = testskip
|
||||
|
||||
for frame in meta["frames"][::skip]:
|
||||
fname = os.path.join(basedir, frame["file_path"] + ".png")
|
||||
imgs.append(np.array(Image.open(_local_path(path_manager, fname))))
|
||||
poses.append(np.array(frame["transform_matrix"]))
|
||||
imgs = (np.array(imgs) / 255.0).astype(np.float32)
|
||||
poses = np.array(poses).astype(np.float32)
|
||||
counts.append(counts[-1] + imgs.shape[0])
|
||||
all_imgs.append(imgs)
|
||||
all_poses.append(poses)
|
||||
|
||||
i_split = [np.arange(counts[i], counts[i + 1]) for i in range(3)]
|
||||
|
||||
imgs = np.concatenate(all_imgs, 0)
|
||||
poses = np.concatenate(all_poses, 0)
|
||||
|
||||
H, W = imgs[0].shape[:2]
|
||||
camera_angle_x = float(meta["camera_angle_x"])
|
||||
focal = 0.5 * W / np.tan(0.5 * camera_angle_x)
|
||||
|
||||
render_poses = torch.stack(
|
||||
[
|
||||
torch.from_numpy(pose_spherical(angle, -30.0, 4.0))
|
||||
for angle in np.linspace(-180, 180, 40 + 1)[:-1]
|
||||
],
|
||||
0,
|
||||
)
|
||||
|
||||
# In debug mode, return extremely tiny images
|
||||
if debug:
|
||||
import cv2
|
||||
|
||||
H = H // 32
|
||||
W = W // 32
|
||||
focal = focal / 32.0
|
||||
imgs = [
|
||||
torch.from_numpy(
|
||||
cv2.resize(imgs[i], dsize=(25, 25), interpolation=cv2.INTER_AREA)
|
||||
)
|
||||
for i in range(imgs.shape[0])
|
||||
]
|
||||
imgs = torch.stack(imgs, 0)
|
||||
poses = torch.from_numpy(poses)
|
||||
return imgs, poses, render_poses, [H, W, focal], i_split
|
||||
|
||||
if half_res:
|
||||
import cv2
|
||||
|
||||
# TODO: resize images using INTER_AREA (cv2)
|
||||
H = H // 2
|
||||
W = W // 2
|
||||
focal = focal / 2.0
|
||||
imgs = [
|
||||
torch.from_numpy(
|
||||
cv2.resize(imgs[i], dsize=(400, 400), interpolation=cv2.INTER_AREA)
|
||||
)
|
||||
for i in range(imgs.shape[0])
|
||||
]
|
||||
imgs = torch.stack(imgs, 0)
|
||||
|
||||
poses = torch.from_numpy(poses)
|
||||
|
||||
return imgs, poses, render_poses, [H, W, focal], i_split
|
|
@ -0,0 +1,343 @@
|
|||
# @lint-ignore-every LICENSELINT
|
||||
# Adapted from https://github.com/bmild/nerf/blob/master/load_llff.py
|
||||
# Copyright (c) 2020 bmild
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
|
||||
|
||||
# Slightly modified version of LLFF data loading code
|
||||
# see https://github.com/Fyusion/LLFF for original
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _minify(basedir, path_manager, factors=(), resolutions=()):
|
||||
needtoload = False
|
||||
for r in factors:
|
||||
imgdir = os.path.join(basedir, "images_{}".format(r))
|
||||
if not _exists(path_manager, imgdir):
|
||||
needtoload = True
|
||||
for r in resolutions:
|
||||
imgdir = os.path.join(basedir, "images_{}x{}".format(r[1], r[0]))
|
||||
if not _exists(path_manager, imgdir):
|
||||
needtoload = True
|
||||
if not needtoload:
|
||||
return
|
||||
assert path_manager is None
|
||||
|
||||
from subprocess import check_output
|
||||
|
||||
imgdir = os.path.join(basedir, "images")
|
||||
imgs = [os.path.join(imgdir, f) for f in sorted(_ls(path_manager, imgdir))]
|
||||
imgs = [
|
||||
f
|
||||
for f in imgs
|
||||
if any([f.endswith(ex) for ex in ["JPG", "jpg", "png", "jpeg", "PNG"]])
|
||||
]
|
||||
imgdir_orig = imgdir
|
||||
|
||||
wd = os.getcwd()
|
||||
|
||||
for r in factors + resolutions:
|
||||
if isinstance(r, int):
|
||||
name = "images_{}".format(r)
|
||||
resizearg = "{}%".format(100.0 / r)
|
||||
else:
|
||||
name = "images_{}x{}".format(r[1], r[0])
|
||||
resizearg = "{}x{}".format(r[1], r[0])
|
||||
imgdir = os.path.join(basedir, name)
|
||||
if os.path.exists(imgdir):
|
||||
continue
|
||||
|
||||
logger.info(f"Minifying {r}, {basedir}")
|
||||
|
||||
os.makedirs(imgdir)
|
||||
check_output("cp {}/* {}".format(imgdir_orig, imgdir), shell=True)
|
||||
|
||||
ext = imgs[0].split(".")[-1]
|
||||
args = " ".join(
|
||||
["mogrify", "-resize", resizearg, "-format", "png", "*.{}".format(ext)]
|
||||
)
|
||||
logger.info(args)
|
||||
os.chdir(imgdir)
|
||||
check_output(args, shell=True)
|
||||
os.chdir(wd)
|
||||
|
||||
if ext != "png":
|
||||
check_output("rm {}/*.{}".format(imgdir, ext), shell=True)
|
||||
logger.info("Removed duplicates")
|
||||
logger.info("Done")
|
||||
|
||||
|
||||
def _load_data(
|
||||
basedir, factor=None, width=None, height=None, load_imgs=True, path_manager=None
|
||||
):
|
||||
|
||||
poses_arr = np.load(
|
||||
_local_path(path_manager, os.path.join(basedir, "poses_bounds.npy"))
|
||||
)
|
||||
poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1, 2, 0])
|
||||
bds = poses_arr[:, -2:].transpose([1, 0])
|
||||
|
||||
img0 = [
|
||||
os.path.join(basedir, "images", f)
|
||||
for f in sorted(_ls(path_manager, os.path.join(basedir, "images")))
|
||||
if f.endswith("JPG") or f.endswith("jpg") or f.endswith("png")
|
||||
][0]
|
||||
|
||||
def imread(f):
|
||||
return np.array(Image.open(f))
|
||||
|
||||
sh = imread(_local_path(path_manager, img0)).shape
|
||||
|
||||
sfx = ""
|
||||
|
||||
if factor is not None:
|
||||
sfx = "_{}".format(factor)
|
||||
_minify(basedir, path_manager, factors=[factor])
|
||||
factor = factor
|
||||
elif height is not None:
|
||||
factor = sh[0] / float(height)
|
||||
width = int(sh[1] / factor)
|
||||
_minify(basedir, path_manager, resolutions=[[height, width]])
|
||||
sfx = "_{}x{}".format(width, height)
|
||||
elif width is not None:
|
||||
factor = sh[1] / float(width)
|
||||
height = int(sh[0] / factor)
|
||||
_minify(basedir, path_manager, resolutions=[[height, width]])
|
||||
sfx = "_{}x{}".format(width, height)
|
||||
else:
|
||||
factor = 1
|
||||
|
||||
imgdir = os.path.join(basedir, "images" + sfx)
|
||||
if not _exists(path_manager, imgdir):
|
||||
raise ValueError(f"{imgdir} does not exist, returning")
|
||||
|
||||
imgfiles = [
|
||||
_local_path(path_manager, os.path.join(imgdir, f))
|
||||
for f in sorted(_ls(path_manager, imgdir))
|
||||
if f.endswith("JPG") or f.endswith("jpg") or f.endswith("png")
|
||||
]
|
||||
if poses.shape[-1] != len(imgfiles):
|
||||
raise ValueError(
|
||||
"Mismatch between imgs {} and poses {} !!!!".format(
|
||||
len(imgfiles), poses.shape[-1]
|
||||
)
|
||||
)
|
||||
|
||||
sh = imread(imgfiles[0]).shape
|
||||
poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1])
|
||||
poses[2, 4, :] = poses[2, 4, :] * 1.0 / factor
|
||||
|
||||
if not load_imgs:
|
||||
return poses, bds
|
||||
|
||||
imgs = imgs = [imread(f)[..., :3] / 255.0 for f in imgfiles]
|
||||
imgs = np.stack(imgs, -1)
|
||||
|
||||
logger.info(f"Loaded image data, shape {imgs.shape}")
|
||||
return poses, bds, imgs
|
||||
|
||||
|
||||
def normalize(x):
|
||||
denom = np.linalg.norm(x)
|
||||
if denom < 0.001:
|
||||
warnings.warn("unsafe normalize()")
|
||||
return x / denom
|
||||
|
||||
|
||||
def viewmatrix(z, up, pos):
|
||||
vec2 = normalize(z)
|
||||
vec1_avg = up
|
||||
vec0 = normalize(np.cross(vec1_avg, vec2))
|
||||
vec1 = normalize(np.cross(vec2, vec0))
|
||||
m = np.stack([vec0, vec1, vec2, pos], 1)
|
||||
return m
|
||||
|
||||
|
||||
def ptstocam(pts, c2w):
|
||||
tt = np.matmul(c2w[:3, :3].T, (pts - c2w[:3, 3])[..., np.newaxis])[..., 0]
|
||||
return tt
|
||||
|
||||
|
||||
def poses_avg(poses):
|
||||
|
||||
hwf = poses[0, :3, -1:]
|
||||
|
||||
center = poses[:, :3, 3].mean(0)
|
||||
vec2 = normalize(poses[:, :3, 2].sum(0))
|
||||
up = poses[:, :3, 1].sum(0)
|
||||
c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)
|
||||
|
||||
return c2w
|
||||
|
||||
|
||||
def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):
|
||||
render_poses = []
|
||||
rads = np.array(list(rads) + [1.0])
|
||||
hwf = c2w[:, 4:5]
|
||||
|
||||
for theta in np.linspace(0.0, 2.0 * np.pi * rots, N + 1)[:-1]:
|
||||
c = np.dot(
|
||||
c2w[:3, :4],
|
||||
np.array([np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0])
|
||||
* rads,
|
||||
)
|
||||
z = normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.0])))
|
||||
render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))
|
||||
return render_poses
|
||||
|
||||
|
||||
def recenter_poses(poses):
|
||||
|
||||
poses_ = poses + 0
|
||||
bottom = np.reshape([0, 0, 0, 1.0], [1, 4])
|
||||
c2w = poses_avg(poses)
|
||||
c2w = np.concatenate([c2w[:3, :4], bottom], -2)
|
||||
bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1])
|
||||
poses = np.concatenate([poses[:, :3, :4], bottom], -2)
|
||||
|
||||
poses = np.linalg.inv(c2w) @ poses
|
||||
poses_[:, :3, :4] = poses[:, :3, :4]
|
||||
poses = poses_
|
||||
return poses
|
||||
|
||||
|
||||
def spherify_poses(poses, bds):
|
||||
def add_row_to_homogenize_transform(p):
|
||||
r"""Add the last row to homogenize 3 x 4 transformation matrices."""
|
||||
return np.concatenate(
|
||||
[p, np.tile(np.reshape(np.eye(4)[-1, :], [1, 1, 4]), [p.shape[0], 1, 1])], 1
|
||||
)
|
||||
|
||||
# p34_to_44 = lambda p: np.concatenate(
|
||||
# [p, np.tile(np.reshape(np.eye(4)[-1, :], [1, 1, 4]), [p.shape[0], 1, 1])], 1
|
||||
# )
|
||||
|
||||
p34_to_44 = add_row_to_homogenize_transform
|
||||
|
||||
rays_d = poses[:, :3, 2:3]
|
||||
rays_o = poses[:, :3, 3:4]
|
||||
|
||||
def min_line_dist(rays_o, rays_d):
|
||||
A_i = np.eye(3) - rays_d * np.transpose(rays_d, [0, 2, 1])
|
||||
b_i = -A_i @ rays_o
|
||||
pt_mindist = np.squeeze(
|
||||
-np.linalg.inv((np.transpose(A_i, [0, 2, 1]) @ A_i).mean(0)) @ (b_i).mean(0)
|
||||
)
|
||||
return pt_mindist
|
||||
|
||||
pt_mindist = min_line_dist(rays_o, rays_d)
|
||||
|
||||
center = pt_mindist
|
||||
up = (poses[:, :3, 3] - center).mean(0)
|
||||
|
||||
vec0 = normalize(up)
|
||||
vec1 = normalize(np.cross([0.1, 0.2, 0.3], vec0))
|
||||
vec2 = normalize(np.cross(vec0, vec1))
|
||||
pos = center
|
||||
c2w = np.stack([vec1, vec2, vec0, pos], 1)
|
||||
|
||||
poses_reset = np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:, :3, :4])
|
||||
|
||||
rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:, :3, 3]), -1)))
|
||||
|
||||
sc = 1.0 / rad
|
||||
poses_reset[:, :3, 3] *= sc
|
||||
bds *= sc
|
||||
rad *= sc
|
||||
|
||||
centroid = np.mean(poses_reset[:, :3, 3], 0)
|
||||
zh = centroid[2]
|
||||
radcircle = np.sqrt(rad**2 - zh**2)
|
||||
new_poses = []
|
||||
|
||||
for th in np.linspace(0.0, 2.0 * np.pi, 120):
|
||||
|
||||
camorigin = np.array([radcircle * np.cos(th), radcircle * np.sin(th), zh])
|
||||
up = np.array([0, 0, -1.0])
|
||||
|
||||
vec2 = normalize(camorigin)
|
||||
vec0 = normalize(np.cross(vec2, up))
|
||||
vec1 = normalize(np.cross(vec2, vec0))
|
||||
pos = camorigin
|
||||
p = np.stack([vec0, vec1, vec2, pos], 1)
|
||||
|
||||
new_poses.append(p)
|
||||
|
||||
new_poses = np.stack(new_poses, 0)
|
||||
|
||||
new_poses = np.concatenate(
|
||||
[new_poses, np.broadcast_to(poses[0, :3, -1:], new_poses[:, :3, -1:].shape)], -1
|
||||
)
|
||||
poses_reset = np.concatenate(
|
||||
[
|
||||
poses_reset[:, :3, :4],
|
||||
np.broadcast_to(poses[0, :3, -1:], poses_reset[:, :3, -1:].shape),
|
||||
],
|
||||
-1,
|
||||
)
|
||||
|
||||
return poses_reset, new_poses, bds
|
||||
|
||||
|
||||
def _local_path(path_manager, path):
|
||||
if path_manager is None:
|
||||
return path
|
||||
return path_manager.get_local_path(path)
|
||||
|
||||
|
||||
def _ls(path_manager, path):
|
||||
if path_manager is None:
|
||||
return os.path.listdir(path)
|
||||
return path_manager.ls(path)
|
||||
|
||||
|
||||
def _exists(path_manager, path):
|
||||
if path_manager is None:
|
||||
return os.path.exists(path)
|
||||
return path_manager.exists(path)
|
||||
|
||||
|
||||
def load_llff_data(
|
||||
basedir,
|
||||
factor=8,
|
||||
recenter=True,
|
||||
bd_factor=0.75,
|
||||
spherify=False,
|
||||
path_zflat=False,
|
||||
path_manager=None,
|
||||
):
|
||||
|
||||
poses, bds, imgs = _load_data(
|
||||
basedir, factor=factor, path_manager=path_manager
|
||||
) # factor=8 downsamples original imgs by 8x
|
||||
logger.info(f"Loaded {basedir}, {bds.min()}, {bds.max()}")
|
||||
|
||||
# Correct rotation matrix ordering and move variable dim to axis 0
|
||||
poses = np.concatenate([poses[:, 1:2, :], -poses[:, 0:1, :], poses[:, 2:, :]], 1)
|
||||
poses = np.moveaxis(poses, -1, 0).astype(np.float32)
|
||||
imgs = np.moveaxis(imgs, -1, 0).astype(np.float32)
|
||||
images = imgs
|
||||
bds = np.moveaxis(bds, -1, 0).astype(np.float32)
|
||||
|
||||
# Rescale if bd_factor is provided
|
||||
sc = 1.0 if bd_factor is None else 1.0 / (bds.min() * bd_factor)
|
||||
poses[:, :3, 3] *= sc
|
||||
bds *= sc
|
||||
|
||||
if recenter:
|
||||
poses = recenter_poses(poses)
|
||||
|
||||
if spherify:
|
||||
poses, render_poses, bds = spherify_poses(poses, bds)
|
||||
|
||||
images = images.astype(np.float32)
|
||||
poses = poses.astype(np.float32)
|
||||
|
||||
return images, poses, bds
|
|
@ -0,0 +1,181 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
# This file defines a base class for dataset map providers which
|
||||
# provide data for a single scene.
|
||||
|
||||
from dataclasses import field
|
||||
from typing import Iterable, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from pytorch3d.implicitron.tools.config import (
|
||||
Configurable,
|
||||
expand_args_fields,
|
||||
run_auto_creation,
|
||||
)
|
||||
from pytorch3d.renderer import PerspectiveCameras
|
||||
|
||||
from .dataset_base import DatasetBase, FrameData
|
||||
from .dataset_map_provider import (
|
||||
DatasetMap,
|
||||
DatasetMapProviderBase,
|
||||
PathManagerFactory,
|
||||
Task,
|
||||
)
|
||||
from .utils import DATASET_TYPE_KNOWN, DATASET_TYPE_UNKNOWN
|
||||
|
||||
_SINGLE_SEQUENCE_NAME: str = "one_sequence"
|
||||
|
||||
|
||||
class SingleSceneDataset(DatasetBase, Configurable):
|
||||
"""
|
||||
A dataset from images from a single scene.
|
||||
"""
|
||||
|
||||
images: List[torch.Tensor] = field()
|
||||
poses: List[PerspectiveCameras] = field()
|
||||
object_name: str = field()
|
||||
frame_types: List[str] = field()
|
||||
eval_batches: Optional[List[List[int]]] = field()
|
||||
|
||||
def sequence_names(self) -> Iterable[str]:
|
||||
return [_SINGLE_SEQUENCE_NAME]
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.poses)
|
||||
|
||||
def __getitem__(self, index) -> FrameData:
|
||||
if index >= len(self):
|
||||
raise IndexError(f"index {index} out of range {len(self)}")
|
||||
image = self.images[index]
|
||||
pose = self.poses[index]
|
||||
frame_type = self.frame_types[index]
|
||||
|
||||
frame_data = FrameData(
|
||||
frame_number=index,
|
||||
sequence_name=_SINGLE_SEQUENCE_NAME,
|
||||
sequence_category=self.object_name,
|
||||
camera=pose,
|
||||
image_size_hw=torch.tensor(image.shape[1:]),
|
||||
image_rgb=image,
|
||||
frame_type=frame_type,
|
||||
)
|
||||
return frame_data
|
||||
|
||||
def get_eval_batches(self) -> Optional[List[List[int]]]:
|
||||
return self.eval_batches
|
||||
|
||||
|
||||
# pyre-fixme[13]: Uninitialized attribute
|
||||
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
"""
|
||||
Base for provider of data for one scene from LLFF or blender datasets.
|
||||
|
||||
Members:
|
||||
base_dir: directory holding the data for the scene.
|
||||
object_name: The name of the scene (e.g. "lego"). This is just used as a label.
|
||||
It will typically be equal to the name of the directory self.base_dir.
|
||||
path_manager_factory: Creates path manager which may be used for
|
||||
interpreting paths.
|
||||
n_known_frames_for_test: If set, training frames are included in the val
|
||||
and test datasets, and this many random training frames are added to
|
||||
each test batch. If not set, test batches each contain just a single
|
||||
testing frame.
|
||||
"""
|
||||
|
||||
base_dir: str
|
||||
object_name: str
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
n_known_frames_for_test: Optional[int] = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
run_auto_creation(self)
|
||||
self._load_data()
|
||||
|
||||
def _load_data(self) -> None:
|
||||
# This must be defined by each subclass,
|
||||
# and should set poses, images and i_split on self.
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_dataset(
|
||||
self, split_idx: int, frame_type: str, set_eval_batches: bool = False
|
||||
) -> SingleSceneDataset:
|
||||
expand_args_fields(SingleSceneDataset)
|
||||
# pyre-ignore[16]
|
||||
split = self.i_split[split_idx]
|
||||
frame_types = [frame_type] * len(split)
|
||||
eval_batches = [[i] for i in range(len(split))]
|
||||
if split_idx != 0 and self.n_known_frames_for_test is not None:
|
||||
train_split = self.i_split[0]
|
||||
if set_eval_batches:
|
||||
generator = np.random.default_rng(seed=0)
|
||||
for batch in eval_batches:
|
||||
to_add = generator.choice(
|
||||
len(train_split), self.n_known_frames_for_test
|
||||
)
|
||||
batch.extend((to_add + len(split)).tolist())
|
||||
split = np.concatenate([split, train_split])
|
||||
frame_types.extend([DATASET_TYPE_KNOWN] * len(train_split))
|
||||
|
||||
# pyre-ignore[28]
|
||||
return SingleSceneDataset(
|
||||
object_name=self.object_name,
|
||||
# pyre-ignore[16]
|
||||
images=self.images[split],
|
||||
# pyre-ignore[16]
|
||||
poses=[self.poses[i] for i in split],
|
||||
frame_types=frame_types,
|
||||
eval_batches=eval_batches if set_eval_batches else None,
|
||||
)
|
||||
|
||||
def get_dataset_map(self) -> DatasetMap:
|
||||
return DatasetMap(
|
||||
train=self._get_dataset(0, DATASET_TYPE_KNOWN),
|
||||
val=self._get_dataset(1, DATASET_TYPE_UNKNOWN),
|
||||
test=self._get_dataset(2, DATASET_TYPE_UNKNOWN, True),
|
||||
)
|
||||
|
||||
def get_task(self) -> Task:
|
||||
return Task.SINGLE_SEQUENCE
|
||||
|
||||
|
||||
def _interpret_blender_cameras(
|
||||
poses: torch.Tensor, H: int, W: int, focal: float
|
||||
) -> List[PerspectiveCameras]:
|
||||
"""
|
||||
Convert 4x4 matrices representing cameras in blender format
|
||||
to PyTorch3D format.
|
||||
|
||||
Args:
|
||||
poses: N x 3 x 4 camera matrices
|
||||
"""
|
||||
pose_target_cameras = []
|
||||
for pose_target in poses:
|
||||
pose_target = pose_target[:3, :4]
|
||||
mtx = torch.eye(4, dtype=pose_target.dtype)
|
||||
mtx[:3, :3] = pose_target[:3, :3].t()
|
||||
mtx[3, :3] = pose_target[:, 3]
|
||||
mtx = mtx.inverse()
|
||||
|
||||
# flip the XZ coordinates.
|
||||
mtx[:, [0, 2]] *= -1.0
|
||||
|
||||
Rpt3, Tpt3 = mtx[:, :3].split([3, 1], dim=0)
|
||||
|
||||
focal_length_pt3 = torch.FloatTensor([[-focal, focal]])
|
||||
principal_point_pt3 = torch.FloatTensor([[W / 2, H / 2]])
|
||||
|
||||
cameras = PerspectiveCameras(
|
||||
focal_length=focal_length_pt3,
|
||||
principal_point=principal_point_pt3,
|
||||
R=Rpt3[None],
|
||||
T=Tpt3,
|
||||
)
|
||||
pose_target_cameras.append(cameras)
|
||||
return pose_target_cameras
|
|
@ -220,6 +220,7 @@ class Configurable:
|
|||
|
||||
|
||||
_X = TypeVar("X", bound=ReplaceableBase)
|
||||
_Y = TypeVar("Y", bound=Union[ReplaceableBase, Configurable])
|
||||
|
||||
|
||||
class _Registry:
|
||||
|
@ -307,20 +308,23 @@ class _Registry:
|
|||
It determines the namespace.
|
||||
This will typically be a direct subclass of ReplaceableBase.
|
||||
Returns:
|
||||
list of class types
|
||||
list of class types in alphabetical order of registered name.
|
||||
"""
|
||||
if self._is_base_class(base_class_wanted):
|
||||
return list(self._mapping[base_class_wanted].values())
|
||||
source = self._mapping[base_class_wanted]
|
||||
return [source[key] for key in sorted(source)]
|
||||
|
||||
base_class = self._base_class_from_class(base_class_wanted)
|
||||
if base_class is None:
|
||||
raise ValueError(
|
||||
f"Cannot look up {base_class_wanted}. Cannot tell what it is."
|
||||
)
|
||||
source = self._mapping[base_class]
|
||||
return [
|
||||
class_
|
||||
for class_ in self._mapping[base_class].values()
|
||||
if issubclass(class_, base_class_wanted) and class_ is not base_class_wanted
|
||||
source[key]
|
||||
for key in sorted(source)
|
||||
if issubclass(source[key], base_class_wanted)
|
||||
and source[key] is not base_class_wanted
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
|
@ -647,8 +651,8 @@ def _is_actually_dataclass(some_class) -> bool:
|
|||
|
||||
|
||||
def expand_args_fields(
|
||||
some_class: Type[_X], *, _do_not_process: Tuple[type, ...] = ()
|
||||
) -> Type[_X]:
|
||||
some_class: Type[_Y], *, _do_not_process: Tuple[type, ...] = ()
|
||||
) -> Type[_Y]:
|
||||
"""
|
||||
This expands a class which inherits Configurable or ReplaceableBase classes,
|
||||
including dataclass processing. some_class is modified in place by this function.
|
||||
|
|
|
@ -13,6 +13,7 @@ from .blending import (
|
|||
from .camera_utils import join_cameras_as_batch, rotate_on_spot
|
||||
from .cameras import ( # deprecated # deprecated # deprecated # deprecated
|
||||
camera_position_from_spherical_angles,
|
||||
CamerasBase,
|
||||
FoVOrthographicCameras,
|
||||
FoVPerspectiveCameras,
|
||||
get_world_to_view_transform,
|
||||
|
|
|
@ -1,5 +1,12 @@
|
|||
dataset_map_provider_class_type: ???
|
||||
data_loader_map_provider_class_type: SequenceDataLoaderMapProvider
|
||||
dataset_map_provider_BlenderDatasetMapProvider_args:
|
||||
base_dir: ???
|
||||
object_name: ???
|
||||
path_manager_factory_class_type: PathManagerFactory
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
dataset_map_provider_JsonIndexDatasetMapProvider_args:
|
||||
category: ???
|
||||
task_str: singlesequence
|
||||
|
@ -35,6 +42,13 @@ dataset_map_provider_JsonIndexDatasetMapProvider_args:
|
|||
sort_frames: false
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
dataset_map_provider_LlffDatasetMapProvider_args:
|
||||
base_dir: ???
|
||||
object_name: ???
|
||||
path_manager_factory_class_type: PathManagerFactory
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
|
||||
batch_size: 1
|
||||
num_workers: 0
|
||||
|
|
|
@ -0,0 +1,97 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
from pytorch3d.implicitron.dataset.blender_dataset_map_provider import (
|
||||
BlenderDatasetMapProvider,
|
||||
)
|
||||
from pytorch3d.implicitron.dataset.dataset_base import FrameData
|
||||
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import (
|
||||
LlffDatasetMapProvider,
|
||||
)
|
||||
from pytorch3d.implicitron.tools.config import expand_args_fields
|
||||
from tests.common_testing import TestCaseMixin
|
||||
|
||||
|
||||
# These tests are only run internally, where the data is available.
|
||||
internal = os.environ.get("FB_TEST", False)
|
||||
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)
|
||||
skip_tests = not internal or inside_re_worker
|
||||
|
||||
|
||||
@unittest.skipIf(skip_tests, "no data")
|
||||
class TestDataLlff(TestCaseMixin, unittest.TestCase):
|
||||
def test_synthetic(self):
|
||||
expand_args_fields(BlenderDatasetMapProvider)
|
||||
|
||||
provider = BlenderDatasetMapProvider(
|
||||
base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego",
|
||||
object_name="lego",
|
||||
)
|
||||
dataset_map = provider.get_dataset_map()
|
||||
|
||||
for name, length in [("train", 100), ("val", 100), ("test", 200)]:
|
||||
dataset = getattr(dataset_map, name)
|
||||
self.assertEqual(len(dataset), length)
|
||||
# try getting a value
|
||||
value = dataset[0]
|
||||
self.assertIsInstance(value, FrameData)
|
||||
|
||||
def test_llff(self):
|
||||
expand_args_fields(LlffDatasetMapProvider)
|
||||
|
||||
provider = LlffDatasetMapProvider(
|
||||
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
|
||||
object_name="fern",
|
||||
)
|
||||
dataset_map = provider.get_dataset_map()
|
||||
|
||||
for name, length, frame_type in [
|
||||
("train", 17, "known"),
|
||||
("test", 3, "unseen"),
|
||||
("val", 3, "unseen"),
|
||||
]:
|
||||
dataset = getattr(dataset_map, name)
|
||||
self.assertEqual(len(dataset), length)
|
||||
# try getting a value
|
||||
value = dataset[0]
|
||||
self.assertIsInstance(value, FrameData)
|
||||
self.assertEqual(value.frame_type, frame_type)
|
||||
|
||||
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
|
||||
for batch in dataset_map.test.get_eval_batches():
|
||||
self.assertEqual(len(batch), 1)
|
||||
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
|
||||
|
||||
def test_include_known_frames(self):
|
||||
expand_args_fields(LlffDatasetMapProvider)
|
||||
|
||||
provider = LlffDatasetMapProvider(
|
||||
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
|
||||
object_name="fern",
|
||||
n_known_frames_for_test=2,
|
||||
)
|
||||
dataset_map = provider.get_dataset_map()
|
||||
|
||||
for name, types in [
|
||||
("train", ["known"] * 17),
|
||||
("val", ["unseen"] * 3 + ["known"] * 17),
|
||||
("test", ["unseen"] * 3 + ["known"] * 17),
|
||||
]:
|
||||
dataset = getattr(dataset_map, name)
|
||||
self.assertEqual(len(dataset), len(types))
|
||||
for i, frame_type in enumerate(types):
|
||||
value = dataset[i]
|
||||
self.assertEqual(value.frame_type, frame_type)
|
||||
|
||||
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
|
||||
for batch in dataset_map.test.get_eval_batches():
|
||||
self.assertEqual(len(batch), 3)
|
||||
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
|
||||
for i in batch[1:]:
|
||||
self.assertEqual(dataset_map.test[i].frame_type, "known")
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import os
|
||||
import unittest
|
||||
import unittest.mock
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
|
||||
|
|
Loading…
Reference in New Issue