729 lines
24 KiB
Python
Executable File
729 lines
24 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
""""
|
|
This file is the entry point for launching experiments with Implicitron.
|
|
|
|
Main functions
|
|
---------------
|
|
- `run_training` is the wrapper for the train, val, test loops
|
|
and checkpointing
|
|
- `trainvalidate` is the inner loop which runs the model forward/backward
|
|
pass, visualizations and metric printing
|
|
|
|
Launch Training
|
|
---------------
|
|
Experiment config .yaml files are located in the
|
|
`projects/implicitron_trainer/configs` folder. To launch
|
|
an experiment, specify the name of the file. Specific config values can
|
|
also be overridden from the command line, for example:
|
|
|
|
```
|
|
./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84
|
|
```
|
|
|
|
To run an experiment on a specific GPU, specify the `gpu_idx` key
|
|
in the config file / CLI. To run on a different device, specify the
|
|
device in `run_training`.
|
|
|
|
Outputs
|
|
--------
|
|
The outputs of the experiment are saved and logged in multiple ways:
|
|
- Checkpoints:
|
|
Model, optimizer and stats are stored in the directory
|
|
named by the `exp_dir` key from the config file / CLI parameters.
|
|
- Stats
|
|
Stats are logged and plotted to the file "train_stats.pdf" in the
|
|
same directory. The stats are also saved as part of the checkpoint file.
|
|
- Visualizations
|
|
Prredictions are plotted to a visdom server running at the
|
|
port specified by the `visdom_server` and `visdom_port` keys in the
|
|
config file.
|
|
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
import logging
|
|
import os
|
|
import random
|
|
import time
|
|
import warnings
|
|
from dataclasses import field
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import hydra
|
|
import lpips
|
|
import numpy as np
|
|
import torch
|
|
import tqdm
|
|
from omegaconf import DictConfig, OmegaConf
|
|
from packaging import version
|
|
from pytorch3d.implicitron.dataset import utils as ds_utils
|
|
from pytorch3d.implicitron.dataset.data_loader_map_provider import DataLoaderMap
|
|
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource, Task
|
|
from pytorch3d.implicitron.dataset.dataset_base import FrameData
|
|
from pytorch3d.implicitron.dataset.dataset_map_provider import DatasetMap
|
|
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
|
|
from pytorch3d.implicitron.evaluation import evaluate_new_view_synthesis as evaluate
|
|
from pytorch3d.implicitron.models.generic_model import EvaluationMode, GenericModel
|
|
from pytorch3d.implicitron.tools import model_io, vis_utils
|
|
from pytorch3d.implicitron.tools.config import (
|
|
Configurable,
|
|
enable_get_default_args,
|
|
expand_args_fields,
|
|
get_default_args_field,
|
|
remove_unused_components,
|
|
)
|
|
from pytorch3d.implicitron.tools.stats import Stats
|
|
from pytorch3d.renderer.cameras import CamerasBase
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if version.parse(hydra.__version__) < version.Version("1.1"):
|
|
raise ValueError(
|
|
f"Hydra version {hydra.__version__} is too old."
|
|
" (Implicitron requires version 1.1 or later.)"
|
|
)
|
|
|
|
try:
|
|
# only makes sense in FAIR cluster
|
|
import pytorch3d.implicitron.fair_cluster.slurm # noqa: F401
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
|
|
def init_model(
|
|
cfg: DictConfig,
|
|
force_load: bool = False,
|
|
clear_stats: bool = False,
|
|
load_model_only: bool = False,
|
|
) -> Tuple[GenericModel, Stats, Optional[Dict[str, Any]]]:
|
|
"""
|
|
Returns an instance of `GenericModel`.
|
|
|
|
If `cfg.resume` is set or `force_load` is true,
|
|
attempts to load the last checkpoint from `cfg.exp_dir`. Failure to do so
|
|
will return the model with initial weights, unless `force_load` is passed,
|
|
in which case a FileNotFoundError is raised.
|
|
|
|
Args:
|
|
force_load: If true, force load model from checkpoint even if
|
|
cfg.resume is false.
|
|
clear_stats: If true, clear the stats object loaded from checkpoint
|
|
load_model_only: If true, load only the model weights from checkpoint
|
|
and do not load the state of the optimizer and stats.
|
|
|
|
Returns:
|
|
model: The model with optionally loaded weights from checkpoint
|
|
stats: The stats structure (optionally loaded from checkpoint)
|
|
optimizer_state: The optimizer state dict containing
|
|
`state` and `param_groups` keys (optionally loaded from checkpoint)
|
|
|
|
Raise:
|
|
FileNotFoundError if `force_load` is passed but checkpoint is not found.
|
|
"""
|
|
|
|
# Initialize the model
|
|
if cfg.architecture == "generic":
|
|
model = GenericModel(**cfg.generic_model_args)
|
|
else:
|
|
raise ValueError(f"No such arch {cfg.architecture}.")
|
|
|
|
# Determine the network outputs that should be logged
|
|
if hasattr(model, "log_vars"):
|
|
log_vars = copy.deepcopy(list(model.log_vars))
|
|
else:
|
|
log_vars = ["objective"]
|
|
|
|
visdom_env_charts = vis_utils.get_visdom_env(cfg) + "_charts"
|
|
|
|
# Init the stats struct
|
|
stats = Stats(
|
|
log_vars,
|
|
visdom_env=visdom_env_charts,
|
|
verbose=False,
|
|
visdom_server=cfg.visdom_server,
|
|
visdom_port=cfg.visdom_port,
|
|
)
|
|
|
|
# Retrieve the last checkpoint
|
|
if cfg.resume_epoch > 0:
|
|
model_path = model_io.get_checkpoint(cfg.exp_dir, cfg.resume_epoch)
|
|
else:
|
|
model_path = model_io.find_last_checkpoint(cfg.exp_dir)
|
|
|
|
optimizer_state = None
|
|
if model_path is not None:
|
|
logger.info("found previous model %s" % model_path)
|
|
if force_load or cfg.resume:
|
|
logger.info(" -> resuming")
|
|
if load_model_only:
|
|
model_state_dict = torch.load(model_io.get_model_path(model_path))
|
|
stats_load, optimizer_state = None, None
|
|
else:
|
|
model_state_dict, stats_load, optimizer_state = model_io.load_model(
|
|
model_path
|
|
)
|
|
|
|
# Determine if stats should be reset
|
|
if not clear_stats:
|
|
if stats_load is None:
|
|
logger.info("\n\n\n\nCORRUPT STATS -> clearing stats\n\n\n\n")
|
|
last_epoch = model_io.parse_epoch_from_model_path(model_path)
|
|
logger.info(f"Estimated resume epoch = {last_epoch}")
|
|
|
|
# Reset the stats struct
|
|
for _ in range(last_epoch + 1):
|
|
stats.new_epoch()
|
|
assert last_epoch == stats.epoch
|
|
else:
|
|
stats = stats_load
|
|
|
|
# Update stats properties incase it was reset on load
|
|
stats.visdom_env = visdom_env_charts
|
|
stats.visdom_server = cfg.visdom_server
|
|
stats.visdom_port = cfg.visdom_port
|
|
stats.plot_file = os.path.join(cfg.exp_dir, "train_stats.pdf")
|
|
stats.synchronize_logged_vars(log_vars)
|
|
else:
|
|
logger.info(" -> clearing stats")
|
|
|
|
try:
|
|
# TODO: fix on creation of the buffers
|
|
# after the hack above, this will not pass in most cases
|
|
# ... but this is fine for now
|
|
model.load_state_dict(model_state_dict, strict=True)
|
|
except RuntimeError as e:
|
|
logger.error(e)
|
|
logger.info("Cant load state dict in strict mode! -> trying non-strict")
|
|
model.load_state_dict(model_state_dict, strict=False)
|
|
model.log_vars = log_vars
|
|
else:
|
|
logger.info(" -> but not resuming -> starting from scratch")
|
|
elif force_load:
|
|
raise FileNotFoundError(f"Cannot find a checkpoint in {cfg.exp_dir}!")
|
|
|
|
return model, stats, optimizer_state
|
|
|
|
|
|
def init_optimizer(
|
|
model: GenericModel,
|
|
optimizer_state: Optional[Dict[str, Any]],
|
|
last_epoch: int,
|
|
breed: str = "adam",
|
|
weight_decay: float = 0.0,
|
|
lr_policy: str = "multistep",
|
|
lr: float = 0.0005,
|
|
gamma: float = 0.1,
|
|
momentum: float = 0.9,
|
|
betas: Tuple[float] = (0.9, 0.999),
|
|
milestones: tuple = (),
|
|
max_epochs: int = 1000,
|
|
):
|
|
"""
|
|
Initialize the optimizer (optionally from checkpoint state)
|
|
and the learning rate scheduler.
|
|
|
|
Args:
|
|
model: The model with optionally loaded weights
|
|
optimizer_state: The state dict for the optimizer. If None
|
|
it has not been loaded from checkpoint
|
|
last_epoch: If the model was loaded from checkpoint this will be the
|
|
number of the last epoch that was saved
|
|
breed: The type of optimizer to use e.g. adam
|
|
weight_decay: The optimizer weight_decay (L2 penalty on model weights)
|
|
lr_policy: The policy to use for learning rate. Currently, only "multistep:
|
|
is supported.
|
|
lr: The value for the initial learning rate
|
|
gamma: Multiplicative factor of learning rate decay
|
|
momentum: Momentum factor for SGD optimizer
|
|
betas: Coefficients used for computing running averages of gradient and its square
|
|
in the Adam optimizer
|
|
milestones: List of increasing epoch indices at which the learning rate is
|
|
modified
|
|
max_epochs: The maximum number of epochs to run the optimizer for
|
|
|
|
Returns:
|
|
optimizer: Optimizer module, optionally loaded from checkpoint
|
|
scheduler: Learning rate scheduler module
|
|
|
|
Raise:
|
|
ValueError if `breed` or `lr_policy` are not supported.
|
|
"""
|
|
|
|
# Get the parameters to optimize
|
|
if hasattr(model, "_get_param_groups"): # use the model function
|
|
p_groups = model._get_param_groups(lr, wd=weight_decay)
|
|
else:
|
|
allprm = [prm for prm in model.parameters() if prm.requires_grad]
|
|
p_groups = [{"params": allprm, "lr": lr}]
|
|
|
|
# Intialize the optimizer
|
|
if breed == "sgd":
|
|
optimizer = torch.optim.SGD(
|
|
p_groups, lr=lr, momentum=momentum, weight_decay=weight_decay
|
|
)
|
|
elif breed == "adagrad":
|
|
optimizer = torch.optim.Adagrad(p_groups, lr=lr, weight_decay=weight_decay)
|
|
elif breed == "adam":
|
|
optimizer = torch.optim.Adam(
|
|
p_groups, lr=lr, betas=betas, weight_decay=weight_decay
|
|
)
|
|
else:
|
|
raise ValueError("no such solver type %s" % breed)
|
|
logger.info(" -> solver type = %s" % breed)
|
|
|
|
# Load state from checkpoint
|
|
if optimizer_state is not None:
|
|
logger.info(" -> setting loaded optimizer state")
|
|
optimizer.load_state_dict(optimizer_state)
|
|
|
|
# Initialize the learning rate scheduler
|
|
if lr_policy == "multistep":
|
|
scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
optimizer,
|
|
milestones=milestones,
|
|
gamma=gamma,
|
|
)
|
|
else:
|
|
raise ValueError("no such lr policy %s" % lr_policy)
|
|
|
|
# When loading from checkpoint, this will make sure that the
|
|
# lr is correctly set even after returning
|
|
for _ in range(last_epoch):
|
|
scheduler.step()
|
|
|
|
# Add the max epochs here
|
|
scheduler.max_epochs = max_epochs
|
|
|
|
optimizer.zero_grad()
|
|
return optimizer, scheduler
|
|
|
|
|
|
enable_get_default_args(init_optimizer)
|
|
|
|
|
|
def trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
loader,
|
|
optimizer,
|
|
validation: bool,
|
|
bp_var: str = "objective",
|
|
metric_print_interval: int = 5,
|
|
visualize_interval: int = 100,
|
|
visdom_env_root: str = "trainvalidate",
|
|
clip_grad: float = 0.0,
|
|
device: str = "cuda:0",
|
|
**kwargs,
|
|
) -> None:
|
|
"""
|
|
This is the main loop for training and evaluation including:
|
|
model forward pass, loss computation, backward pass and visualization.
|
|
|
|
Args:
|
|
model: The model module optionally loaded from checkpoint
|
|
stats: The stats struct, also optionally loaded from checkpoint
|
|
epoch: The index of the current epoch
|
|
loader: The dataloader to use for the loop
|
|
optimizer: The optimizer module optionally loaded from checkpoint
|
|
validation: If true, run the loop with the model in eval mode
|
|
and skip the backward pass
|
|
bp_var: The name of the key in the model output `preds` dict which
|
|
should be used as the loss for the backward pass.
|
|
metric_print_interval: The batch interval at which the stats should be
|
|
logged.
|
|
visualize_interval: The batch interval at which the visualizations
|
|
should be plotted
|
|
visdom_env_root: The name of the visdom environment to use for plotting
|
|
clip_grad: Optionally clip the gradient norms.
|
|
If set to a value <=0.0, no clipping
|
|
device: The device on which to run the model.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
if validation:
|
|
model.eval()
|
|
trainmode = "val"
|
|
else:
|
|
model.train()
|
|
trainmode = "train"
|
|
|
|
t_start = time.time()
|
|
|
|
# get the visdom env name
|
|
visdom_env_imgs = visdom_env_root + "_images_" + trainmode
|
|
viz = vis_utils.get_visdom_connection(
|
|
server=stats.visdom_server,
|
|
port=stats.visdom_port,
|
|
)
|
|
|
|
# Iterate through the batches
|
|
n_batches = len(loader)
|
|
for it, batch in enumerate(loader):
|
|
last_iter = it == n_batches - 1
|
|
|
|
# move to gpu where possible (in place)
|
|
net_input = batch.to(device)
|
|
|
|
# run the forward pass
|
|
if not validation:
|
|
optimizer.zero_grad()
|
|
preds = model(**{**net_input, "evaluation_mode": EvaluationMode.TRAINING})
|
|
else:
|
|
with torch.no_grad():
|
|
preds = model(
|
|
**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION}
|
|
)
|
|
|
|
# make sure we dont overwrite something
|
|
assert all(k not in preds for k in net_input.keys())
|
|
# merge everything into one big dict
|
|
preds.update(net_input)
|
|
|
|
# update the stats logger
|
|
stats.update(preds, time_start=t_start, stat_set=trainmode)
|
|
assert stats.it[trainmode] == it, "inconsistent stat iteration number!"
|
|
|
|
# print textual status update
|
|
if it % metric_print_interval == 0 or last_iter:
|
|
stats.print(stat_set=trainmode, max_it=n_batches)
|
|
|
|
# visualize results
|
|
if visualize_interval > 0 and it % visualize_interval == 0:
|
|
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
|
|
|
|
model.visualize(
|
|
viz,
|
|
visdom_env_imgs,
|
|
preds,
|
|
prefix,
|
|
)
|
|
|
|
# optimizer step
|
|
if not validation:
|
|
loss = preds[bp_var]
|
|
assert torch.isfinite(loss).all(), "Non-finite loss!"
|
|
# backprop
|
|
loss.backward()
|
|
if clip_grad > 0.0:
|
|
# Optionally clip the gradient norms.
|
|
total_norm = torch.nn.utils.clip_grad_norm(
|
|
model.parameters(), clip_grad
|
|
)
|
|
if total_norm > clip_grad:
|
|
logger.info(
|
|
f"Clipping gradient: {total_norm}"
|
|
+ f" with coef {clip_grad / total_norm}."
|
|
)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
def run_training(cfg: DictConfig, device: str = "cpu") -> None:
|
|
"""
|
|
Entry point to run the training and validation loops
|
|
based on the specified config file.
|
|
"""
|
|
|
|
# set the debug mode
|
|
if cfg.detect_anomaly:
|
|
logger.info("Anomaly detection!")
|
|
torch.autograd.set_detect_anomaly(cfg.detect_anomaly)
|
|
|
|
# create the output folder
|
|
os.makedirs(cfg.exp_dir, exist_ok=True)
|
|
_seed_all_random_engines(cfg.seed)
|
|
remove_unused_components(cfg)
|
|
|
|
# dump the exp config to the exp dir
|
|
try:
|
|
cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml")
|
|
OmegaConf.save(config=cfg, f=cfg_filename)
|
|
except PermissionError:
|
|
warnings.warn("Cant dump config due to insufficient permissions!")
|
|
|
|
# setup datasets
|
|
datasource = ImplicitronDataSource(**cfg.data_source_args)
|
|
datasets, dataloaders = datasource.get_datasets_and_dataloaders()
|
|
task = datasource.get_task()
|
|
|
|
# init the model
|
|
model, stats, optimizer_state = init_model(cfg)
|
|
start_epoch = stats.epoch + 1
|
|
|
|
# move model to gpu
|
|
model.to(device)
|
|
|
|
# only run evaluation on the test dataloader
|
|
if cfg.eval_only:
|
|
_eval_and_dump(cfg, task, datasets, dataloaders, model, stats, device=device)
|
|
return
|
|
|
|
# init the optimizer
|
|
optimizer, scheduler = init_optimizer(
|
|
model,
|
|
optimizer_state=optimizer_state,
|
|
last_epoch=start_epoch,
|
|
**cfg.solver_args,
|
|
)
|
|
|
|
# check the scheduler and stats have been initialized correctly
|
|
assert scheduler.last_epoch == stats.epoch + 1
|
|
assert scheduler.last_epoch == start_epoch
|
|
|
|
past_scheduler_lrs = []
|
|
# loop through epochs
|
|
for epoch in range(start_epoch, cfg.solver_args.max_epochs):
|
|
# automatic new_epoch and plotting of stats at every epoch start
|
|
with stats:
|
|
|
|
# Make sure to re-seed random generators to ensure reproducibility
|
|
# even after restart.
|
|
_seed_all_random_engines(cfg.seed + epoch)
|
|
|
|
cur_lr = float(scheduler.get_last_lr()[-1])
|
|
logger.info(f"scheduler lr = {cur_lr:1.2e}")
|
|
past_scheduler_lrs.append(cur_lr)
|
|
|
|
# train loop
|
|
trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
dataloaders.train,
|
|
optimizer,
|
|
False,
|
|
visdom_env_root=vis_utils.get_visdom_env(cfg),
|
|
device=device,
|
|
**cfg,
|
|
)
|
|
|
|
# val loop (optional)
|
|
if dataloaders.val is not None and epoch % cfg.validation_interval == 0:
|
|
trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
dataloaders.val,
|
|
optimizer,
|
|
True,
|
|
visdom_env_root=vis_utils.get_visdom_env(cfg),
|
|
device=device,
|
|
**cfg,
|
|
)
|
|
|
|
# eval loop (optional)
|
|
if (
|
|
dataloaders.test is not None
|
|
and cfg.test_interval > 0
|
|
and epoch % cfg.test_interval == 0
|
|
):
|
|
_run_eval(model, stats, dataloaders.test, task, device=device)
|
|
|
|
assert stats.epoch == epoch, "inconsistent stats!"
|
|
|
|
# delete previous models if required
|
|
# save model
|
|
if cfg.store_checkpoints:
|
|
if cfg.store_checkpoints_purge > 0:
|
|
for prev_epoch in range(epoch - cfg.store_checkpoints_purge):
|
|
model_io.purge_epoch(cfg.exp_dir, prev_epoch)
|
|
outfile = model_io.get_checkpoint(cfg.exp_dir, epoch)
|
|
model_io.safe_save_model(model, stats, outfile, optimizer=optimizer)
|
|
|
|
scheduler.step()
|
|
|
|
new_lr = float(scheduler.get_last_lr()[-1])
|
|
if new_lr != cur_lr:
|
|
logger.info(f"LR change! {cur_lr} -> {new_lr}")
|
|
|
|
if cfg.test_when_finished:
|
|
_eval_and_dump(cfg, task, datasets, dataloaders, model, stats, device=device)
|
|
|
|
|
|
def _eval_and_dump(
|
|
cfg,
|
|
task: Task,
|
|
datasets: DatasetMap,
|
|
dataloaders: DataLoaderMap,
|
|
model,
|
|
stats,
|
|
device,
|
|
) -> None:
|
|
"""
|
|
Run the evaluation loop with the test data loader and
|
|
save the predictions to the `exp_dir`.
|
|
"""
|
|
|
|
dataloader = dataloaders.test
|
|
|
|
if dataloader is None:
|
|
raise ValueError('DataLoaderMap have to contain the "test" entry for eval!')
|
|
|
|
if task == Task.SINGLE_SEQUENCE:
|
|
if datasets.train is None:
|
|
raise ValueError("train dataset must be provided")
|
|
all_source_cameras = _get_all_source_cameras(datasets.train)
|
|
else:
|
|
all_source_cameras = None
|
|
results = _run_eval(model, all_source_cameras, dataloader, task, device=device)
|
|
|
|
# add the evaluation epoch to the results
|
|
for r in results:
|
|
r["eval_epoch"] = int(stats.epoch)
|
|
|
|
logger.info("Evaluation results")
|
|
evaluate.pretty_print_nvs_metrics(results)
|
|
|
|
with open(os.path.join(cfg.exp_dir, "results_test.json"), "w") as f:
|
|
json.dump(results, f)
|
|
|
|
|
|
def _get_eval_frame_data(frame_data):
|
|
"""
|
|
Masks the unknown image data to make sure we cannot use it at model evaluation time.
|
|
"""
|
|
frame_data_for_eval = copy.deepcopy(frame_data)
|
|
is_known = ds_utils.is_known_frame(frame_data.frame_type).type_as(
|
|
frame_data.image_rgb
|
|
)[:, None, None, None]
|
|
for k in ("image_rgb", "depth_map", "fg_probability", "mask_crop"):
|
|
value_masked = getattr(frame_data_for_eval, k).clone() * is_known
|
|
setattr(frame_data_for_eval, k, value_masked)
|
|
return frame_data_for_eval
|
|
|
|
|
|
def _run_eval(model, all_source_cameras, loader, task: Task, device):
|
|
"""
|
|
Run the evaluation loop on the test dataloader
|
|
"""
|
|
lpips_model = lpips.LPIPS(net="vgg")
|
|
lpips_model = lpips_model.to(device)
|
|
|
|
model.eval()
|
|
|
|
per_batch_eval_results = []
|
|
logger.info("Evaluating model ...")
|
|
for frame_data in tqdm.tqdm(loader):
|
|
frame_data = frame_data.to(device)
|
|
|
|
# mask out the unknown images so that the model does not see them
|
|
frame_data_for_eval = _get_eval_frame_data(frame_data)
|
|
|
|
with torch.no_grad():
|
|
preds = model(
|
|
**{**frame_data_for_eval, "evaluation_mode": EvaluationMode.EVALUATION}
|
|
)
|
|
implicitron_render = copy.deepcopy(preds["implicitron_render"])
|
|
per_batch_eval_results.append(
|
|
evaluate.eval_batch(
|
|
frame_data,
|
|
implicitron_render,
|
|
bg_color="black",
|
|
lpips_model=lpips_model,
|
|
source_cameras=all_source_cameras,
|
|
)
|
|
)
|
|
|
|
_, category_result = evaluate.summarize_nvs_eval_results(
|
|
per_batch_eval_results, task
|
|
)
|
|
|
|
return category_result["results"]
|
|
|
|
|
|
def _get_all_source_cameras(
|
|
dataset: JsonIndexDataset,
|
|
num_workers: int = 8,
|
|
) -> CamerasBase:
|
|
"""
|
|
Load and return all the source cameras in the training dataset
|
|
"""
|
|
|
|
all_frame_data = next(
|
|
iter(
|
|
torch.utils.data.DataLoader(
|
|
dataset,
|
|
shuffle=False,
|
|
batch_size=len(dataset),
|
|
num_workers=num_workers,
|
|
collate_fn=FrameData.collate,
|
|
)
|
|
)
|
|
)
|
|
|
|
is_source = ds_utils.is_known_frame(all_frame_data.frame_type)
|
|
source_cameras = all_frame_data.camera[torch.where(is_source)[0]]
|
|
return source_cameras
|
|
|
|
|
|
def _seed_all_random_engines(seed: int):
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
class ExperimentConfig(Configurable):
|
|
generic_model_args: DictConfig = get_default_args_field(GenericModel)
|
|
solver_args: DictConfig = get_default_args_field(init_optimizer)
|
|
data_source_args: DictConfig = get_default_args_field(ImplicitronDataSource)
|
|
architecture: str = "generic"
|
|
detect_anomaly: bool = False
|
|
eval_only: bool = False
|
|
exp_dir: str = "./data/default_experiment/"
|
|
exp_idx: int = 0
|
|
gpu_idx: int = 0
|
|
metric_print_interval: int = 5
|
|
resume: bool = True
|
|
resume_epoch: int = -1
|
|
seed: int = 0
|
|
store_checkpoints: bool = True
|
|
store_checkpoints_purge: int = 1
|
|
test_interval: int = -1
|
|
test_when_finished: bool = False
|
|
validation_interval: int = 1
|
|
visdom_env: str = ""
|
|
visdom_port: int = 8097
|
|
visdom_server: str = "http://127.0.0.1"
|
|
visualize_interval: int = 1000
|
|
clip_grad: float = 0.0
|
|
|
|
hydra: dict = field(
|
|
default_factory=lambda: {
|
|
"run": {"dir": "."}, # Make hydra not change the working dir.
|
|
"output_subdir": None, # disable storing the .hydra logs
|
|
}
|
|
)
|
|
|
|
|
|
expand_args_fields(ExperimentConfig)
|
|
|
|
cs = hydra.core.config_store.ConfigStore.instance()
|
|
cs.store(name="default_config", node=ExperimentConfig)
|
|
|
|
|
|
@hydra.main(config_path="./configs/", config_name="default_config")
|
|
def experiment(cfg: DictConfig) -> None:
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.gpu_idx)
|
|
# Set the device
|
|
device = "cpu"
|
|
if torch.cuda.is_available() and cfg.gpu_idx < torch.cuda.device_count():
|
|
device = f"cuda:{cfg.gpu_idx}"
|
|
logger.info(f"Running experiment on device: {device}")
|
|
run_training(cfg, device)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
experiment()
|