This moves debug info tests in `test/CodeGen/WebAssembly` into
`test/DebugInfo/WebAssembly`, to gather all wasm debug info related
tests there.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D138871
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Split dbg.assign intrinsics into fragments similarly to what SROA already does
for dbg.declares, except that there's many more intrinsics to split. The
function migrateDebugInfo generates new dbg.assigns intrinsic for each part of
a split store.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133296
This is a recommit of cf624b23bc,
which was reverted in 5cfc22cafe,
because the cut-off on the number of vector elements was not low enough,
and it triggered both SDAG SDNode operand number assertions,
and caused compile time explosions in some cases.
Let's try with something really *REALLY* conservative first,
just to get somewhere, and try to bump it (to 64/128) later.
FIXME: should this respect TTI reg width * num vec regs?
Original commit message:
Now, there's a big caveat here - these bytes
are abstract bytes, not the i8 we have in LLVM,
so strictly speaking this is not exactly legal,
see e.g. https://github.com/AliveToolkit/alive2/issues/860
^ the "bytes" "could" have been a pointer,
and loading it as an integer inserts an implicit ptrtoint.
But at the same time,
InstCombine's `InstCombinerImpl::SimplifyAnyMemTransfer()`
would expand a memtransfer of 1/2/4/8 bytes
into integer-typed load+store,
so this isn't exactly a new problem.
Note that in memory, poison is byte-wise,
so we really can't widen elements,
but SROA seems to be inconsistent here.
Fixes#59116.
Now, there's a big caveat here - these bytes
are abstract bytes, not the i8 we have in LLVM,
so strictly speaking this is not exactly legal,
see e.g. https://github.com/AliveToolkit/alive2/issues/860
^ the "bytes" "could" have been a pointer,
and loading it as an integer inserts an implicit ptrtoint.
But at the same time,
InstCombine's `InstCombinerImpl::SimplifyAnyMemTransfer()`
would expand a memtransfer of 1/2/4/8 bytes
into integer-typed load+store,
so this isn't exactly a new problem.
Note that in memory, poison is byte-wise,
so we really can't widen elements,
but SROA seems to be inconsistent here.
Fixes#59116.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Reviewed By: StephenTozer
Differential Revision: https://reviews.llvm.org/D136255
Previously, we used SHA-1 for hashing the CodeView type records.
SHA-1 in `GloballyHashedType::hashType()` is coming top in the profiles. By simply replacing with BLAKE3, the link time is reduced in our case from 15 sec to 13 sec. I am only using MSVC .OBJs in this case. As a reference, the resulting .PDB is approx 2.1GiB and .EXE is approx 250MiB.
Differential Revision: https://reviews.llvm.org/D137101
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
This reduces peak memory overhead by 15% when building CTMark's tramp3d-v4 with
-O2 -g with assignment tracking enabled.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133321
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The inliner requires two additions:
fixupAssignments - Update inlined instructions' DIAssignID metadata so that
inlined DIAssignID attachments are unique to the inlined instance.
trackInlinedStores - Treat inlined stores to caller-local variables
(i.e. callee stores to argument pointers that point to the caller's allocas) as
assignments. Track them using trackAssignments, which is the same method as is
used by the AssignmentTrackingPass. This means that we're able to detect stale
memory locations due to DSE after inlining. Because the stores are only tracked
_after_ inlining, any DSE or movement of stores _before_ inlining will not be
accounted for. This is an accepted limitation mentioned in the RFC.
One change is also required:
Update CloneBlock to preserve debug use-before-defs. Otherwise the assignments
will be dropped due to having the intrinsic operands replaced with empty
metadata (see use-before-def.ll in this patch and this related discourse post.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133318
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Update simplifycfg:
sinkLastInstruction - preserve debug use-before-defs.
SpeculativelyExecuteBB - replace the value component of dbg.assign intrinsics
when stores are hoisted and merged using a select, and don't delete them.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133310
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Most of the updates here are just to ensure DIAssignID attachments are
maintained and propagated correctly.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133307
All instructions that can raise fp exceptions also read FPCR, with the
only other instructions that interact with it being the MSR/MRS to
write/read FPCR.
Introducing an FPCR register also requires adjusting
invalidateWindowsRegisterPairing in AArch64FrameLowering.cpp to use
the encoded value of registers instead of their enum value, as the
enum value is based on the alphabetical order of register names and
now FPCR is placed between FP and LR.
This change unfortunately means a large number of mir tests need to
be adjusted due to instructions now requiring an implicit fpcr operand
to be present.
Differential Revision: https://reviews.llvm.org/D121929
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Update the RemoveRedundantDbgInstrs utility to avoid sometimes losing
information when deleting dbg.assign intrinsics.
removeRedundantDbgInstrsUsingBackwardScan - treat dbg.assign intrinsics that
are not linked to any instruction just like dbg.values. That is, in a block of
contiguous debug intrinsics, delete all other than the last definition for a
fragment. Leave linked dbg.assign intrinsics in place.
removeRedundantDbgInstrsUsingForwardScan - Don't delete linked dbg.assign
intrinsics and don't delete the next intrinsic found even if it would otherwise
be eligible for deletion.
remomveUndefDbgAssignsFromEntryBlock - Delete undef and unlinked dbg.assign
intrinsics encountered in the entry block that come before non-undef
non-unlinked intrinsics for the same variable.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133294
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The SLP-Vectorizer can merge a set of scalar stores into a single vectorized
store. Merge DIAssignID intrinsics from the scalar stores onto the new
vectorized store.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133320
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
This test covers the NFC-for-normal-debug-info change D133303.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133319
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
DeadStoreElimmination shortens stores that are shadowed by later stores such
that the overlapping part of the earlier store is omitted. Insert an unlinked
dbg.assign intrinsic with a variable fragment that describes the omitted part
to signal that that fragment of the variable has a stale value in memory.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133315
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
In an attempt to preserve more info, don't delete dbg.assign intrinsics that
are considered "out of scope" if they're linked to instructions.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133314
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Merge DIAssignID attachments on stores that are merged and sunk out of
loops. The store may be sunk into multiple exit blocks, and in this case all
the copies of the store get the same DIAssignID.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133313
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Maintain and propagate DIAssignID attachments in memcpyopt.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133312
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
mldst-motion will merge and sink the stores in if-diamond branches into the
common successor. Attach a merged DIAssignID to the merged store.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133311
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The changes for assignment tracking in mem2reg don't require much of a
deviation from existing behaviour. dbg.assign intrinsics linked to an alloca
are treated much in the same way as dbg.declare users of an alloca, except that
we don't insert dbg.value intrinsics to describe assignments when there is
already a dbg.assign intrinsic present, e.g. one linked to a store that is
going to be removed.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133295
mflr is kind of expensive on Power version smaller than 10, so we should
schedule the store for the mflr's def away from mflr.
In epilogue, the expensive mtlr has no user for its def, so it doesn't
matter that the load and the mtlr are back-to-back.
Reviewed By: RolandF
Differential Revision: https://reviews.llvm.org/D137423
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Plumb in salvaging for the address part of dbg.assign intrinsics.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133293
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add trackAssignments which adds assignment tracking metadata to a function for
a specified set of variables. The intended callers are the inliner and the
front end - those calls will be added in separate patches.
I've added a pass called declare-to-assign (AssignmentTrackingPass) that
converts dbg.declare intrinsics to dbg.assigns using trackAssignments so that
the function can be easily tested (see
llvm/test/DebugInfo/Generic/track-assignments.ll). The pass could also be used
by front ends to easily test out enabling assignment tracking.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132225
Previously reverted in 41f5a0004e. Fold in
D133576 previously reverted in d29d5ffb63.
---
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
deleteAssignmentMarkers(const Instruction *Inst)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
This reverts commit 171f7024cc.
Reverting this patch because it causes a cyclic dependency in the module build
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/48197/consoleFull#-69937453049ba4694-19c4-4d7e-bec5-911270d8a58c
In file included from <module-includes>:1:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/Argument.h:18:10: fatal error: cyclic dependency in module 'LLVM_IR': LLVM_IR -> LLVM_intrinsic_gen -> LLVM_IR
^
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
While building module 'LLVM_IR' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:
In file included from <module-includes>:12:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/DebugInfo.h:24:10: fatal error: could not build module 'LLVM_intrinsic_gen'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
In file included from <module-includes>:15:
In file included from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCContext.h:23:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:10: fatal error: could not build module 'LLVM_IR'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:10: fatal error: could not build module 'LLVM_MC'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
4 errors generated.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the llvm.dbg.assign intrinsic boilerplate. This updates the textual-bitcode
roundtrip test to also check that round-tripping with the intrinsic works.
The intrinsic marks the position of a source level assignment.
The llvm.dbg.assign interface looks like this (each parameter is wrapped in
MetadataAsValue, and Value * type parameters are first wrapped in
ValueAsMetadata):
void @llvm.dbg.assign(Value *Value,
DIExpression *ValueExpression,
DILocalVariable *Variable,
DIAssignID *ID,
Value *Address,
DIExpression *AddressExpression)
The first three parameters look and behave like an llvm.dbg.value. ID is a
reference to a store. The intrinsic is "linked to" instructions in the same
function that use the same ID as an attachment. That is mostly conceptual at
this point; the two-way link infrastructure will come in another patch. Address
is the destination address of the store and it is modified by
AddressExpression. LLVM currently encodes variable fragment information in
DIExpressions, so as an implementation quirk the FragmentInfo for Variable is
contained within ValueExpression only.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132223
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This test is XFAIL'd on most arches, and seems too fragile to be run on non-X86.
Reviewed By: jmorse, probinson
Differential Revision: https://reviews.llvm.org/D109806
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
Using a DebugVariable as the set key rather than std::pair<DIVariable *,
DIExpression *> ensures we don't accidently confuse multiple instances of
inlined variables.
Reviewed By: jryans
Differential Revision: https://reviews.llvm.org/D133303
When the host's target triple ends in `-windows-msvc`, `%llc_dwarf`
contains an explicit `-windows-gnu` triple which ensures that dwarf will
be used. This is useful in target-independent tests, where no triple is
specified, and no target-specific features are used. However, this is
not compatible with target-dependent tests (such as those in
llvm/test/DebugInfo/ARM), as the command-line triple will override the
triple in the LLVM IR program, causing test issues on windows.
This change switches these tests to use an explicit triple, so the tests
test what was expected, and there is no flakiness on windows.
Fixes#58053
Differential Revision: https://reviews.llvm.org/D136066
memcpy has clamped dst stack alignment to NaturalStackAlignment if
hasStackRealignment is false. We should also clamp stack alignment
for memset and memmove. If we don't clamp, SelectionDAG may first
do tail call optimization which requires no stack realignment. Then
memmove, memset in same function may be lowered to load/store with
larger alignment leading to PEI emit stack realignment code which
is absolutely not correct.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D136456