实现BertConfig类
This commit is contained in:
commit
f1877873c3
|
@ -0,0 +1,20 @@
|
|||
{
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"directionality": "bidi",
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"max_position_embeddings": 512,
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"pooler_fc_size": 768,
|
||||
"pooler_num_attention_heads": 12,
|
||||
"pooler_num_fc_layers": 3,
|
||||
"pooler_size_per_head": 128,
|
||||
"pooler_type": "first_token_transform",
|
||||
"type_vocab_size": 2,
|
||||
"vocab_size": 21128
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,18 @@
|
|||
{
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"gradient_checkpointing": false,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 0,
|
||||
"type_vocab_size": 2,
|
||||
"pooler_type": "first_token_transform",
|
||||
"vocab_size": 30522
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,102 @@
|
|||
import json
|
||||
import copy
|
||||
|
||||
# import six
|
||||
import logging
|
||||
|
||||
|
||||
class BertConfig(object):
|
||||
"""BertModel的配置类"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=21128,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
pad_token_id=0,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
|
||||
hidden_size: Size of the encoder layers and the pooler layer.
|
||||
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads: Number of attention heads for each attention\
|
||||
layer in the Transformer encoder.
|
||||
intermediate_size: The size of the `intermediate` (i.e., feed-forward)\
|
||||
layer in the Transformer encoder.
|
||||
hidden_act: The non-linear activation function (function or string)\
|
||||
in the encoder and pooler.
|
||||
hidden_dropout_prob: The dropout probability for all fully connected\
|
||||
layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob: The dropout ratio for the attention\
|
||||
probabilities.
|
||||
max_position_embeddings: The maximum sequence length that this model might\
|
||||
ever be used with. Typically set this to something large just in case\
|
||||
(e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size: The vocabulary size of the `token_type_ids` passed into\
|
||||
`BertModel`.
|
||||
initializer_range: The stdev of the `truncated_normal_initializer` for\
|
||||
initializing all weight matrices.
|
||||
"""
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.pad_token_id = pad_token_id
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
@classmethod
|
||||
def from_json_file(cls, json_file):
|
||||
"""从json格式配置文件读取配置信息"""
|
||||
with open(json_file, "r") as reader:
|
||||
json_obj = reader.read()
|
||||
|
||||
logging.info(f"成功导入BERT配置文件 {json_file}")
|
||||
return cls.from_dict(json.loads(json_obj))
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_obj):
|
||||
"""从Python字典中读取配置信息"""
|
||||
config = BertConfig(vocab_size=None) # 创建Config对象
|
||||
for key, value in dict_obj.items(): # 从字典中读取配置信息
|
||||
config.__dict__[key] = value
|
||||
|
||||
return config
|
||||
|
||||
def to_json_str(self):
|
||||
"""把对象转换为json格式字符串"""
|
||||
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
||||
|
||||
def to_dict(self):
|
||||
"""把对象转换为字典"""
|
||||
out = copy.deepcopy(self.__dict__)
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys, os
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
json_file = "./archive/bert_base_chinese/config.json"
|
||||
config = BertConfig.from_json_file(json_file)
|
||||
|
||||
for key, value in config.__dict__.items():
|
||||
print(f"{key} = {value}")
|
||||
|
||||
print("=" * 20)
|
||||
print(config.to_json_str())
|
Loading…
Reference in New Issue