MyBERT/model/BERT/bert_config.py

103 lines
3.6 KiB
Python

import json
import copy
# import six
import logging
class BertConfig(object):
"""BertModel的配置类"""
def __init__(
self,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
pad_token_id=0,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
):
"""
Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention\
layer in the Transformer encoder.
intermediate_size: The size of the `intermediate` (i.e., feed-forward)\
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string)\
in the encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected\
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention\
probabilities.
max_position_embeddings: The maximum sequence length that this model might\
ever be used with. Typically set this to something large just in case\
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into\
`BertModel`.
initializer_range: The stdev of the `truncated_normal_initializer` for\
initializing all weight matrices.
"""
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.pad_token_id = pad_token_id
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
@classmethod
def from_json_file(cls, json_file):
"""从json格式配置文件读取配置信息"""
with open(json_file, "r") as reader:
json_obj = reader.read()
logging.info(f"成功导入BERT配置文件 {json_file}")
return cls.from_dict(json.loads(json_obj))
@classmethod
def from_dict(cls, dict_obj):
"""从Python字典中读取配置信息"""
config = BertConfig(vocab_size=None) # 创建Config对象
for key, value in dict_obj.items(): # 从字典中读取配置信息
config.__dict__[key] = value
return config
def to_json_str(self):
"""把对象转换为json格式字符串"""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_dict(self):
"""把对象转换为字典"""
out = copy.deepcopy(self.__dict__)
return out
if __name__ == "__main__":
import sys, os
sys.path.append(os.getcwd())
json_file = "./archive/bert_base_chinese/config.json"
config = BertConfig.from_json_file(json_file)
for key, value in config.__dict__.items():
print(f"{key} = {value}")
print("=" * 20)
print(config.to_json_str())