24 KiB
Qwen \color{black}{\bf\tiny{【昇腾贡献模型】}}
简体中文 | English
目录
Qwen-7B
训练
Qwen-7B 训练的硬件配置:
硬件 | 配置 |
---|---|
NPU | 8 x Ascend NPUs |
脚本
-
克隆仓库到本地服务器
git clone https://gitee.com/ascend/ModelLink.git git clone https://github.com/NVIDIA/Megatron-LM.git cd Megatron-LM git checkout -f bcce6f cp -r megatron ../ModelLink/ cd .. cd ModelLink git checkout 1.0 mkdir logs mkdir model_from_hf mkdir dataset mkdir ckpt
-
搭建环境
# python3.8 conda create -n test python=3.8 conda activate test # 安装 torch 和 torch_npu pip install torch-2.1.0-cp38-cp38m-manylinux2014_aarch64.whl pip install torch_npu-2.1.0*-cp38-cp38m-linux_aarch64.whl pip install apex-0.1_ascend*-cp38-cp38m-linux_aarch64.whl # 安装加速库 git clone https://gitee.com/ascend/MindSpeed.git cd MindSpeed git checkout 224ae35e8fc96778f957029d1371ddb623452a50 pip install -r requirements.txt pip install -e . cd .. # 安装其余依赖库 pip install -r requirements.txt
-
下载 Qwen-7B 的 预训练权重和词表
mkdir ./model_from_hf/Qwen-7B/ cd ./model_from_hf/Qwen-7B/ wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/cache_autogptq_cuda_256.cpp wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/cache_autogptq_cuda_kernel_256.cu wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/config.json wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/configuration_qwen.py wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/cpp_kernels.py wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/generation_config.json wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00001-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00002-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00003-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00004-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00005-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00006-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00007-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model-00008-of-00008.safetensors wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/model.safetensors.index.json wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/modeling_qwen.py wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/qwen.tiktoken wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/qwen_generation_utils.py wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/tokenization_qwen.py wget https://huggingface.co/Qwen/Qwen-7B/resolve/main/tokenizer_config.json cd ../../
修改modelling_qwen.py文件第39行,将:
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
修改为:
SUPPORT_FP16 = True
-
权重转换
将权重从 huggingface 格式转化为 megatron 格式 (该场景一般用于使能开源的HuggingFace模型在Megatron上进行训练)
# 修改 ascend-toolkit 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader qwen_hf \ --saver megatron \ --target-tensor-parallel-size 8 \ --load-dir ./model_from_hf/Qwen-7B/ \ --save-dir ./model_weights/Qwen-7B-v0.1-tp8-pp1/ \ --tokenizer-model ./model_from_hf/Qwen-7B/qwen.tiktoken \ --add-qkv-bias
任意并行切分策略的Megatron权重 格式转化为 HuggingFace权重 (该场景一般用于将训练好的megatron模型重新转回HuggingFace格式)
# 请按照您的真实环境修改 set_env.sh 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader megatron \ --saver megatron \ --save-model-type save_huggingface_qwen \ --load-dir ./model_weights/Qwen-7B-v0.1-tp8-pp1/ \ --target-tensor-parallel-size 1 \ --target-pipeline-parallel-size 1 \ --add-qkv-bias \ --save-dir ./model_from_hf/Qwen-7B/
-
准备数据集
下载 Qwen-7B 数据集
# 下载数据
cd ./dataset
wget https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet
cd ..
# 处理数据
mkdir ./dataset/Qwen-7B/
python ./tools/preprocess_data.py \
--input ./dataset/train-00000-of-00001-a09b74b3ef9c3b56.parquet \
--tokenizer-name-or-path ./model_from_hf/Qwen-7B/ \
--output-prefix ./dataset/Qwen-7B/alpaca \
--tokenizer-type PretrainedFromHF \
--seq-length 8192 \
--workers 4 \
--log-interval 1000
- 预训练
配置Qwen-7B 预训练脚本: examples/qwen/pretrain_qwen_7b_ptd.sh
# 设置 ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 根据实际情况配置词表、数据集、模型参数保存路径
CKPT_SAVE_DIR="./ckpt/Qwen-7B/"
TOKENIZER_MODEL="./model_from_hf/Qwen-7B/" #词表路径
DATA_PATH="./dataset/Qwen-7B/alpaca_text_document" #数据集路径
CKPT_LOAD_DIR="./model_weights/Qwen-7B-v0.1-tp8-pp1/"
启动 Qwen-7B 预训练脚本: examples/qwen/pretrain_qwen_7b_ptd.sh
bash examples/qwen/pretrain_qwen_7b_ptd.sh
注意:如果使用多机训练,且没有设置数据共享,需要在训练启动脚本中增加--no-shared-storage
参数,设置此参数之后将会根据分布式参数判断非主节点是否需要load数据,并检查相应缓存和生成数据。
性能
吞吐
Qwen-7B 在 昇腾芯片 和 参考芯片 上的性能对比:
设备 | 模型 | tokens吞吐 (tokens/s/p) |
---|---|---|
NPUs | Qwen-7B | 2499 |
参考 | Qwen-7B | 2867 |
推理
配置 qwen-7b 推理脚本:tasks/inference/generate_qwen_7b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型权重路径和词表路径
CHECKPOINT="./model_weights/Qwen-7B-v0.1-tp8-pp1/"
TOKENIZER_PATH="./model_from_hf/Qwen-7B/"
启动qwen-7b推理脚本
bash tasks/inference/generate_qwen_7b_ptd.sh
评估
配置qwen-7b评估脚本: tasks/evaluation/evaluate_qwen_7b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型参数路径和词表路径
TOKENIZER_PATH="./model_from_hf/Qwen-7B/" #词表路径
CHECKPOINT="./model_weights/Qwen-7B-v0.1-tp8-pp1/" #模型路径
# 配置任务和数据集路径
DATA_PATH="./mmlu/data/test/" # ceval任务配置为 "./ceval/val/"
TASK="mmlu" # ceval任务配置为 "ceval"
启动评估
bash tasks/evaluation/evaluate_qwen_7b_ptd.sh
数据集 | 总学科数 | 总问题数 | 参考准确率 | NPU准确率 |
---|---|---|---|---|
CEval | 52 | 1346 | 63.5 | 62.5 |
MMLU | 57 | 14042 | 58.2 | 58.1 |
Qwen-14B
训练
Qwen-14B 训练的硬件配置:
硬件 | 配置 |
---|---|
NPU | 8 x Ascend NPUs |
脚本
-
克隆仓库到本地服务器
git clone https://gitee.com/ascend/ModelLink.git git clone https://github.com/NVIDIA/Megatron-LM.git cd Megatron-LM git checkout -f bcce6f cp -r megatron ../ModelLink/ cd .. cd ModelLink git checkout 1.0 mkdir logs mkdir model_from_hf mkdir dataset mkdir ckpt
-
搭建环境
# python3.8 conda create -n test python=3.8 conda activate test # 安装 torch 和 torch_npu pip install torch-2.1.0-cp38-cp38m-manylinux2014_aarch64.whl pip install torch_npu-2.1.0*-cp38-cp38m-linux_aarch64.whl pip install apex-0.1_ascend*-cp38-cp38m-linux_aarch64.whl # 安装加速库 git clone https://gitee.com/ascend/MindSpeed.git cd MindSpeed git checkout 224ae35e8fc96778f957029d1371ddb623452a50 pip install -r requirements.txt pip install -e . cd .. # 安装其余依赖库 pip install -r requirements.txt
-
下载 Qwen-14B 的 预训练权重和词表
mkdir ./model_from_hf/Qwen-14B/ cd ./model_from_hf/Qwen-14B/ wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/cache_autogptq_cuda_256.cpp wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/cache_autogptq_cuda_kernel_256.cu wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/config.json wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/configuration_qwen.py wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/cpp_kernels.py wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/generation_config.json wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00001-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00002-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00003-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00004-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00005-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00006-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00007-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00008-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00009-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00010-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00011-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00012-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00013-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00014-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model-00015-of-00015.safetensors wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/model.safetensors.index.json wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/modeling_qwen.py wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/qwen.tiktoken wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/qwen_generation_utils.py wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/tokenization_qwen.py wget https://huggingface.co/Qwen/Qwen-14B/resolve/main/tokenizer_config.json cd../../
修改modelling_qwen.py文件第39行,将:
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
修改为:
SUPPORT_FP16 = True
-
权重转换
将权重从 huggingface 格式转化为 megatron 格式 (该场景一般用于使能开源的HuggingFace模型在Megatron上进行训练)
# 修改 ascend-toolkit 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader qwen_hf \ --saver megatron \ --target-tensor-parallel-size 8 \ --load-dir ./model_from_hf/Qwen-14B/ \ --save-dir ./model_weights/Qwen-14B-v0.1-tp8-pp1/ \ --tokenizer-model ./model_from_hf/Qwen-14B/qwen.tiktoken \ --add-qkv-bias
任意并行切分策略的Megatron权重 格式转化为 HuggingFace权重 (该场景一般用于将训练好的megatron模型重新转回HuggingFace格式)
# 请按照您的真实环境修改 set_env.sh 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader megatron \ --saver megatron \ --save-model-type save_huggingface_qwen \ --load-dir ./model_weights/Qwen-14B-v0.1-tp8-pp1/ \ --target-tensor-parallel-size 1 \ --target-pipeline-parallel-size 1 \ --add-qkv-bias \ --save-dir ./model_from_hf/Qwen-14B/ # 需要填入原始HF模型路径,新权重会存于./model_from_hf/Qwen-14B/mg2hg
-
准备数据集
下载 Qwen-14B 数据集
# 下载数据 cd ./dataset wget https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet cd .. # 处理数据 mkdir ./dataset/Qwen-14B/ python ./tools/preprocess_data.py \ --input ./dataset/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path ./model_from_hf/Qwen-14B/ \ --output-prefix ./dataset/Qwen-14B/alpaca \ --tokenizer-type PretrainedFromHF \ --seq-length 2048 \ --workers 4 \ --log-interval 1000
-
预训练
配置Qwen-14B 预训练脚本: examples/qwen/pretrain_qwen_14b_ptd.sh
# 设置 ascend-toolkit 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh # 根据实际情况配置词表、数据集、模型参数保存路径 CKPT_SAVE_DIR="./ckpt/Qwen-14B/" TOKENIZER_MODEL="./model_from_hf/Qwen-14B/" #词表路径 DATA_PATH="./dataset/Qwen-14B/alpaca_text_document" #数据集路径 CKPT_LOAD_DIR="./model_weights/Qwen-14B-v0.1-tp8-pp1/"
启动 Qwen-14B 预训练脚本: examples/qwen/pretrain_qwen_14b_ptd.sh
bash examples/qwen/pretrain_qwen_14b_ptd.sh
注意:如果使用多机训练,且没有设置数据共享,需要在训练启动脚本中增加
--no-shared-storage
参数,设置此参数之后将会根据分布式参数判断非主节点是否需要load数据,并检查相应缓存和生成数据。
性能
吞吐
Qwen-14B 在 昇腾芯片 和 参考芯片 上的性能对比:
设备 | 模型 | tokens吞吐 (tokens/s/p) |
---|---|---|
NPUs | Qwen-14B | 1560 |
参考 | Qwen-14B | 1578 |
推理
配置 qwen-14b 推理脚本:tasks/inference/generate_qwen_14b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型权重路径和词表路径
CHECKPOINT="./model_weights/Qwen-14B-v0.1-tp8-pp1/"
TOKENIZER_PATH="./model_from_hf/Qwen-14B/"
启动qwen-14b推理脚本
bash tasks/inference/generate_qwen_14b_ptd.sh
评估
配置qwen-14b评估脚本: tasks/evaluation/evaluate_qwen_14b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型参数路径和词表路径
TOKENIZER_PATH="./model_from_hf/Qwen-14B/" #词表路径
CHECKPOINT="./model_weights/Qwen-14B-v0.1-tp8-pp1/" #模型路径
# 配置任务和数据集路径
DATA_PATH="./mmlu/data/test/" # ceval任务配置为 "./ceval/val/"
TASK="mmlu" # ceval任务配置为 "ceval"
启动评估
bash tasks/evaluation/evaluate_qwen_14b_ptd.sh
数据集 | 总学科数 | 总问题数 | 参考准确率 | NPU准确率 |
---|---|---|---|---|
CEval | 52 | 1346 | 72.1 | 71.1 |
MMLU | 57 | 14042 | 66.3 | 65.3 |
Qwen-72B
训练
Qwen-72B 训练的硬件配置:
硬件 | 序列长度 | 配置 |
---|---|---|
NPU | 8k | 64 x Ascend NPUs |
NPU | 32k | 320 x Ascend NPUs |
脚本
-
克隆仓库到本地服务器
git clone https://gitee.com/ascend/ModelLink.git git clone https://github.com/NVIDIA/Megatron-LM.git cd Megatron-LM git checkout -f bcce6f cp -r megatron ../ModelLink/ cd .. cd ModelLink git checkout 1.0 mkdir logs mkdir model_from_hf mkdir dataset mkdir ckpt
-
搭建环境
# python3.8 conda create -n test python=3.8 conda activate test # 安装 torch 和 torch_npu pip install torch-2.1.0-cp38-cp38m-manylinux2014_aarch64.whl pip install torch_npu-2.1.0*-cp38-cp38m-linux_aarch64.whl pip install apex-0.1_ascend*-cp38-cp38m-linux_aarch64.whl # 安装加速库 git clone https://gitee.com/ascend/MindSpeed.git cd MindSpeed git checkout 224ae35e8fc96778f957029d1371ddb623452a50 pip install -r requirements.txt pip install -e . cd .. # 安装其余依赖库 pip install -r requirements.txt
-
下载 Qwen-72B 的 预训练权重和词表
mkdir ./model_from_hf/Qwen-72B/ cd ./model_from_hf/Qwen-72B/ wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/cache_autogptq_cuda_256.cpp wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/cache_autogptq_cuda_kernel_256.cu wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/config.json wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/configuration_qwen.py wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/cpp_kernels.py wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/generation_config.json wget https://huggingface.co/Qwen/Qwen-72B/resolve/main/model-00001-of-000082.safetensors ... cd ../../
修改modelling_qwen.py文件第39行,将:
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
修改为:
SUPPORT_FP16 = True
-
权重转换
将权重从 huggingface 格式转化为 megatron 格式 (该场景一般用于使能开源的HuggingFace模型在Megatron上进行训练)
# 修改 ascend-toolkit 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader qwen_hf \ --saver megatron \ --target-tensor-parallel-size 8 \ --load-dir ./model_from_hf/Qwen-72B/ \ --save-dir ./model_weights/Qwen-72B-v0.1-tp8-pp1/ \ --tokenizer-model ./model_from_hf/Qwen-72B/qwen.tiktoken \ --add-qkv-bias
任意并行切分策略的Megatron权重 格式转化为 HuggingFace权重 (该场景一般用于将训练好的megatron模型重新转回HuggingFace格式)
# 请按照您的真实环境修改 set_env.sh 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh python tools/checkpoint/util.py \ --model-type GPT \ --loader megatron \ --saver megatron \ --save-model-type save_huggingface_qwen \ --load-dir ./model_weights/Qwen-72B-v0.1-tp8-pp1/ \ --target-tensor-parallel-size 1 \ --target-pipeline-parallel-size 1 \ --add-qkv-bias \ --save-dir ./model_from_hf/Qwen-72B/ # 需要填入原始HF模型路径,新权重会存于./model_from_hf/Qwen-72B/mg2hg
-
准备数据集
下载 Qwen-72B 数据集
# 下载数据 cd ./dataset wget https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet cd .. # 处理数据 mkdir ./dataset/Qwen-72B/ python ./tools/preprocess_data.py \ --input ./dataset/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path ./model_from_hf/Qwen-72B/ \ --output-prefix ./dataset/Qwen-72B/alpaca \ --tokenizer-type PretrainedFromHF \ --seq-length 8192 \ --workers 4 \ --log-interval 1000
-
预训练
配置Qwen-72B 预训练脚本: examples/qwen/pretrain_qwen_72b_ptd.sh
# 设置 ascend-toolkit 路径 source /usr/local/Ascend/ascend-toolkit/set_env.sh # 根据实际情况配置词表、数据集、模型参数保存路径 CKPT_SAVE_DIR="./ckpt/Qwen-72B/" TOKENIZER_MODEL="./model_from_hf/Qwen-72B/" #词表路径 DATA_PATH="./dataset/Qwen-72B/alpaca_text_document" #数据集路径 CKPT_LOAD_DIR="./model_weights/Qwen-72B-v0.1-tp8-pp1/"
若使用32k长序列,需要开启重计算特性并修改seq-length参数值为32768,参数配置如下:
--seq-length 32768 \ --recompute-granularity full \ --recompute-method block \ --recompute-num-layers 80 \
启动 Qwen-72B 预训练脚本: examples/qwen/pretrain_qwen_72b_ptd.sh
bash examples/qwen/pretrain_qwen_72b_ptd.sh
注意:如果使用多机训练,且没有设置数据共享,需要在训练启动脚本中增加
--no-shared-storage
参数,设置此参数之后将会根据分布式参数判断非主节点是否需要load数据,并检查相应缓存和生成数据。
性能
吞吐
Qwen-72B 在 昇腾芯片 和 参考芯片 上的性能对比:
设备 | 模型 | tokens吞吐 (tokens/s/p)(8k序列) | tokens吞吐 (tokens/s/p)(32k序列) |
---|---|---|---|
NPUs | Qwen-72B | 285 | -- |
参考 | Qwen-72B | 345 | -- |
推理
配置 qwen-72b 推理脚本:tasks/inference/generate_qwen_72b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型权重路径和词表路径
CHECKPOINT="./model_weights/Qwen-72B-v0.1-tp8-pp1/"
TOKENIZER_PATH="./model_from_hf/Qwen-72B/"
启动qwen-72b推理脚本
bash tasks/inference/generate_qwen_72b_ptd.sh
评估
配置qwen-72b评估脚本: tasks/evaluation/evaluate_qwen_72b_ptd.sh
# ascend-toolkit 路径
source /usr/local/Ascend/ascend-toolkit/set_env.sh
# 修改模型参数路径和词表路径
TOKENIZER_PATH="./model_from_hf/Qwen-72B/" #词表路径
CHECKPOINT="./model_weights/Qwen-72B-v0.1-tp8-pp1/" #模型路径
# 配置任务和数据集路径
DATA_PATH="./mmlu/data/test/" # ceval任务配置为 "./ceval/val/"
TASK="mmlu" # ceval任务配置为 "ceval"
启动评估
bash tasks/evaluation/evaluate_qwen_72b_ptd.sh
数据集 | 总学科数 | 总问题数 | 参考准确率 | NPU准确率 |
---|---|---|---|---|
CEval | 52 | 1346 | 83.3 | 81.8 |
MMLU | 57 | 14042 | 77.4 | 74.6 |