375 lines
14 KiB
C++
375 lines
14 KiB
C++
//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file provides a LoopVectorizationPlanner class.
|
|
/// InnerLoopVectorizer vectorizes loops which contain only one basic
|
|
/// LoopVectorizationPlanner - drives the vectorization process after having
|
|
/// passed Legality checks.
|
|
/// The planner builds and optimizes the Vectorization Plans which record the
|
|
/// decisions how to vectorize the given loop. In particular, represent the
|
|
/// control-flow of the vectorized version, the replication of instructions that
|
|
/// are to be scalarized, and interleave access groups.
|
|
///
|
|
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
|
|
/// It provides an instruction-level API for generating VPInstructions while
|
|
/// abstracting away the Recipe manipulation details.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
|
|
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
|
|
|
|
#include "VPlan.h"
|
|
#include "llvm/Support/InstructionCost.h"
|
|
|
|
namespace llvm {
|
|
|
|
class LoopInfo;
|
|
class LoopVectorizationLegality;
|
|
class LoopVectorizationCostModel;
|
|
class PredicatedScalarEvolution;
|
|
class LoopVectorizeHints;
|
|
class OptimizationRemarkEmitter;
|
|
class TargetTransformInfo;
|
|
class TargetLibraryInfo;
|
|
class VPRecipeBuilder;
|
|
|
|
/// VPlan-based builder utility analogous to IRBuilder.
|
|
class VPBuilder {
|
|
VPBasicBlock *BB = nullptr;
|
|
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
|
|
|
|
VPInstruction *createInstruction(unsigned Opcode,
|
|
ArrayRef<VPValue *> Operands, DebugLoc DL,
|
|
const Twine &Name = "") {
|
|
VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL, Name);
|
|
if (BB)
|
|
BB->insert(Instr, InsertPt);
|
|
return Instr;
|
|
}
|
|
|
|
VPInstruction *createInstruction(unsigned Opcode,
|
|
std::initializer_list<VPValue *> Operands,
|
|
DebugLoc DL, const Twine &Name = "") {
|
|
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
|
|
}
|
|
|
|
public:
|
|
VPBuilder() = default;
|
|
|
|
/// Clear the insertion point: created instructions will not be inserted into
|
|
/// a block.
|
|
void clearInsertionPoint() {
|
|
BB = nullptr;
|
|
InsertPt = VPBasicBlock::iterator();
|
|
}
|
|
|
|
VPBasicBlock *getInsertBlock() const { return BB; }
|
|
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
|
|
|
|
/// InsertPoint - A saved insertion point.
|
|
class VPInsertPoint {
|
|
VPBasicBlock *Block = nullptr;
|
|
VPBasicBlock::iterator Point;
|
|
|
|
public:
|
|
/// Creates a new insertion point which doesn't point to anything.
|
|
VPInsertPoint() = default;
|
|
|
|
/// Creates a new insertion point at the given location.
|
|
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
|
|
: Block(InsertBlock), Point(InsertPoint) {}
|
|
|
|
/// Returns true if this insert point is set.
|
|
bool isSet() const { return Block != nullptr; }
|
|
|
|
VPBasicBlock *getBlock() const { return Block; }
|
|
VPBasicBlock::iterator getPoint() const { return Point; }
|
|
};
|
|
|
|
/// Sets the current insert point to a previously-saved location.
|
|
void restoreIP(VPInsertPoint IP) {
|
|
if (IP.isSet())
|
|
setInsertPoint(IP.getBlock(), IP.getPoint());
|
|
else
|
|
clearInsertionPoint();
|
|
}
|
|
|
|
/// This specifies that created VPInstructions should be appended to the end
|
|
/// of the specified block.
|
|
void setInsertPoint(VPBasicBlock *TheBB) {
|
|
assert(TheBB && "Attempting to set a null insert point");
|
|
BB = TheBB;
|
|
InsertPt = BB->end();
|
|
}
|
|
|
|
/// This specifies that created instructions should be inserted at the
|
|
/// specified point.
|
|
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
|
|
BB = TheBB;
|
|
InsertPt = IP;
|
|
}
|
|
|
|
/// Insert and return the specified instruction.
|
|
VPInstruction *insert(VPInstruction *I) const {
|
|
BB->insert(I, InsertPt);
|
|
return I;
|
|
}
|
|
|
|
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
|
|
/// its underlying Instruction.
|
|
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
|
|
Instruction *Inst = nullptr, const Twine &Name = "") {
|
|
DebugLoc DL;
|
|
if (Inst)
|
|
DL = Inst->getDebugLoc();
|
|
VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
|
|
NewVPInst->setUnderlyingValue(Inst);
|
|
return NewVPInst;
|
|
}
|
|
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
|
|
DebugLoc DL, const Twine &Name = "") {
|
|
return createInstruction(Opcode, Operands, DL, Name);
|
|
}
|
|
|
|
VPValue *createNot(VPValue *Operand, DebugLoc DL, const Twine &Name = "") {
|
|
return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
|
|
}
|
|
|
|
VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL,
|
|
const Twine &Name = "") {
|
|
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
|
|
}
|
|
|
|
VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL,
|
|
const Twine &Name = "") {
|
|
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name);
|
|
}
|
|
|
|
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
|
|
DebugLoc DL, const Twine &Name = "") {
|
|
return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL,
|
|
Name);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// RAII helpers.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// RAII object that stores the current insertion point and restores it when
|
|
/// the object is destroyed.
|
|
class InsertPointGuard {
|
|
VPBuilder &Builder;
|
|
VPBasicBlock *Block;
|
|
VPBasicBlock::iterator Point;
|
|
|
|
public:
|
|
InsertPointGuard(VPBuilder &B)
|
|
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
|
|
|
|
InsertPointGuard(const InsertPointGuard &) = delete;
|
|
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
|
|
|
|
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
|
|
};
|
|
};
|
|
|
|
/// TODO: The following VectorizationFactor was pulled out of
|
|
/// LoopVectorizationCostModel class. LV also deals with
|
|
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
|
|
/// We need to streamline them.
|
|
|
|
/// Information about vectorization costs.
|
|
struct VectorizationFactor {
|
|
/// Vector width with best cost.
|
|
ElementCount Width;
|
|
|
|
/// Cost of the loop with that width.
|
|
InstructionCost Cost;
|
|
|
|
/// Cost of the scalar loop.
|
|
InstructionCost ScalarCost;
|
|
|
|
/// The minimum trip count required to make vectorization profitable, e.g. due
|
|
/// to runtime checks.
|
|
ElementCount MinProfitableTripCount;
|
|
|
|
VectorizationFactor(ElementCount Width, InstructionCost Cost,
|
|
InstructionCost ScalarCost)
|
|
: Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
|
|
|
|
/// Width 1 means no vectorization, cost 0 means uncomputed cost.
|
|
static VectorizationFactor Disabled() {
|
|
return {ElementCount::getFixed(1), 0, 0};
|
|
}
|
|
|
|
bool operator==(const VectorizationFactor &rhs) const {
|
|
return Width == rhs.Width && Cost == rhs.Cost;
|
|
}
|
|
|
|
bool operator!=(const VectorizationFactor &rhs) const {
|
|
return !(*this == rhs);
|
|
}
|
|
};
|
|
|
|
/// A class that represents two vectorization factors (initialized with 0 by
|
|
/// default). One for fixed-width vectorization and one for scalable
|
|
/// vectorization. This can be used by the vectorizer to choose from a range of
|
|
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
|
|
/// vectorize with.
|
|
struct FixedScalableVFPair {
|
|
ElementCount FixedVF;
|
|
ElementCount ScalableVF;
|
|
|
|
FixedScalableVFPair()
|
|
: FixedVF(ElementCount::getFixed(0)),
|
|
ScalableVF(ElementCount::getScalable(0)) {}
|
|
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
|
|
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
|
|
}
|
|
FixedScalableVFPair(const ElementCount &FixedVF,
|
|
const ElementCount &ScalableVF)
|
|
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
|
|
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
|
|
"Invalid scalable properties");
|
|
}
|
|
|
|
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
|
|
|
|
/// \return true if either fixed- or scalable VF is non-zero.
|
|
explicit operator bool() const { return FixedVF || ScalableVF; }
|
|
|
|
/// \return true if either fixed- or scalable VF is a valid vector VF.
|
|
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
|
|
};
|
|
|
|
/// Planner drives the vectorization process after having passed
|
|
/// Legality checks.
|
|
class LoopVectorizationPlanner {
|
|
/// The loop that we evaluate.
|
|
Loop *OrigLoop;
|
|
|
|
/// Loop Info analysis.
|
|
LoopInfo *LI;
|
|
|
|
/// Target Library Info.
|
|
const TargetLibraryInfo *TLI;
|
|
|
|
/// Target Transform Info.
|
|
const TargetTransformInfo *TTI;
|
|
|
|
/// The legality analysis.
|
|
LoopVectorizationLegality *Legal;
|
|
|
|
/// The profitability analysis.
|
|
LoopVectorizationCostModel &CM;
|
|
|
|
/// The interleaved access analysis.
|
|
InterleavedAccessInfo &IAI;
|
|
|
|
PredicatedScalarEvolution &PSE;
|
|
|
|
const LoopVectorizeHints &Hints;
|
|
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
SmallVector<VPlanPtr, 4> VPlans;
|
|
|
|
/// A builder used to construct the current plan.
|
|
VPBuilder Builder;
|
|
|
|
public:
|
|
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI,
|
|
LoopVectorizationLegality *Legal,
|
|
LoopVectorizationCostModel &CM,
|
|
InterleavedAccessInfo &IAI,
|
|
PredicatedScalarEvolution &PSE,
|
|
const LoopVectorizeHints &Hints,
|
|
OptimizationRemarkEmitter *ORE)
|
|
: OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
|
|
PSE(PSE), Hints(Hints), ORE(ORE) {}
|
|
|
|
/// Plan how to best vectorize, return the best VF and its cost, or
|
|
/// std::nullopt if vectorization and interleaving should be avoided up front.
|
|
Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
|
|
|
|
/// Use the VPlan-native path to plan how to best vectorize, return the best
|
|
/// VF and its cost.
|
|
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
|
|
|
|
/// Return the best VPlan for \p VF.
|
|
VPlan &getBestPlanFor(ElementCount VF) const;
|
|
|
|
/// Generate the IR code for the body of the vectorized loop according to the
|
|
/// best selected \p VF, \p UF and VPlan \p BestPlan.
|
|
/// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
|
|
/// vectorization re-using plans for both the main and epilogue vector loops.
|
|
/// It should be removed once the re-use issue has been fixed.
|
|
void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
|
|
InnerLoopVectorizer &LB, DominatorTree *DT,
|
|
bool IsEpilogueVectorization);
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printPlans(raw_ostream &O);
|
|
#endif
|
|
|
|
/// Look through the existing plans and return true if we have one with all
|
|
/// the vectorization factors in question.
|
|
bool hasPlanWithVF(ElementCount VF) const {
|
|
return any_of(VPlans,
|
|
[&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
|
|
}
|
|
|
|
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
|
|
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
|
|
/// returned value holds for the entire \p Range.
|
|
static bool
|
|
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
|
|
VFRange &Range);
|
|
|
|
/// Check if the number of runtime checks exceeds the threshold.
|
|
bool requiresTooManyRuntimeChecks() const;
|
|
|
|
protected:
|
|
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
|
|
/// according to the information gathered by Legal when it checked if it is
|
|
/// legal to vectorize the loop.
|
|
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
|
|
|
|
private:
|
|
/// Build a VPlan according to the information gathered by Legal. \return a
|
|
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
|
|
/// exclusive, possibly decreasing \p Range.End.
|
|
VPlanPtr buildVPlan(VFRange &Range);
|
|
|
|
/// Build a VPlan using VPRecipes according to the information gather by
|
|
/// Legal. This method is only used for the legacy inner loop vectorizer.
|
|
VPlanPtr buildVPlanWithVPRecipes(
|
|
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
|
|
const MapVector<Instruction *, Instruction *> &SinkAfter);
|
|
|
|
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
|
|
/// according to the information gathered by Legal when it checked if it is
|
|
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
|
|
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
|
|
|
|
// Adjust the recipes for reductions. For in-loop reductions the chain of
|
|
// instructions leading from the loop exit instr to the phi need to be
|
|
// converted to reductions, with one operand being vector and the other being
|
|
// the scalar reduction chain. For other reductions, a select is introduced
|
|
// between the phi and live-out recipes when folding the tail.
|
|
void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
|
|
VPRecipeBuilder &RecipeBuilder,
|
|
ElementCount MinVF);
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
|