This patch is a simple piece of refactoring that now permits users
to create VPInstructions and specify the name of the value being
generated. This is useful for creating more readable/meaningful
names in IR.
Differential Revision: https://reviews.llvm.org/D128982
Now that removeDeadRecipes can remove most dead recipes across a whole
VPlan, there is no need to first collect some dead instructions.
Instead removeDeadRecipes can simply clean them up.
Depends D127580.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D128408
This patch replaces the tight hard cut-off for the number of runtime
checks with a more accurate cost-driven approach.
The new approach allows vectorization with a larger number of runtime
checks in general, but only executes the vector loop (and runtime checks) if
considered profitable at runtime. Profitable here means that the cost-model
indicates that the runtime check cost + vector loop cost < scalar loop cost.
To do that, LV computes the minimum trip count for which runtime check cost
+ vector-loop-cost < scalar loop cost.
Note that there is still a hard cut-off to avoid excessive compile-time/code-size
increases, but it is much larger than the original limit.
The performance impact on standard test-suites like SPEC2006/SPEC2006/MultiSource
is mostly neutral, but the new approach can give substantial gains in cases where
we failed to vectorize before due to the over-aggressive cut-offs.
On AArch64 with -O3, I didn't observe any regressions outside the noise level (<0.4%)
and there are the following execution time improvements. Both `IRSmk` and `srad` are relatively short running, but the changes are far above the noise level for them on my benchmark system.
```
CFP2006/447.dealII/447.dealII -1.9%
CINT2017rate/525.x264_r/525.x264_r -2.2%
ASC_Sequoia/IRSmk/IRSmk -9.2%
Rodinia/srad/srad -36.1%
```
`size` regressions on AArch64 with -O3 are
```
MultiSource/Applications/hbd/hbd 90256.00 106768.00 18.3%
MultiSourc...ks/ASCI_Purple/SMG2000/smg2000 240676.00 257268.00 6.9%
MultiSourc...enchmarks/mafft/pairlocalalign 472603.00 489131.00 3.5%
External/S...2017rate/525.x264_r/525.x264_r 613831.00 630343.00 2.7%
External/S...NT2006/464.h264ref/464.h264ref 818920.00 835448.00 2.0%
External/S...te/538.imagick_r/538.imagick_r 1994730.00 2027754.00 1.7%
MultiSourc...nchmarks/tramp3d-v4/tramp3d-v4 1236471.00 1253015.00 1.3%
MultiSource/Applications/oggenc/oggenc 2108147.00 2124675.00 0.8%
External/S.../CFP2006/447.dealII/447.dealII 4742999.00 4759559.00 0.3%
External/S...rate/510.parest_r/510.parest_r 14206377.00 14239433.00 0.2%
```
Reviewed By: lebedev.ri, ebrevnov, dmgreen
Differential Revision: https://reviews.llvm.org/D109368
At the moment, the same VPlan can be used code generation of both the
main vector and epilogue vector loop. This can lead to wrong results, if
the plan is optimized based on the VF of the main vector loop and then
re-used for the epilogue loop.
One example where this is problematic is if the scalar loops need to
execute at least one iteration, e.g. due to interleave groups.
To prevent mis-compiles in the short-term, disable optimizing exit
conditions for VPlans when using epilogue vectorization. The proper fix
is to avoid re-using the same plan for both loops, which will require
support for cloning plans first.
Fixes#56319.
This patch updates LV to generate runtime after the VF & IC are selected. It
allows deciding whether to vectorize with runtime checks or not based on
their cost compared to the vector loop.
It also updates VectorizationFactor to include the scalar cost.
Reviewed By: lebedev.ri, dmgreen
Differential Revision: https://reviews.llvm.org/D75981
The runtime check threshold should also restrict interleave count.
Otherwise, too many runtime checks will be generated for some cases.
Reviewed By: fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D122126
At the moment in LoopVectorizationCostModel::selectEpilogueVectorizationFactor
we bail out if the main vector loop uses a scalable VF. This patch adds
support for generating epilogue vector loops using a fixed-width VF when the
main vector loop uses a scalable VF.
I've changed LoopVectorizationCostModel::selectEpilogueVectorizationFactor
so that we convert the scalable VF into a fixed-width VF and do profitability
checks on that instead. In addition, since the scalable and fixed-width VFs
live in different VPlans that means I had to change the calls to
LVP.hasPlanWithVFs so that we only pass in the fixed-width VF.
New tests added here:
Transforms/LoopVectorize/AArch64/sve-epilog-vect.ll
Differential Revision: https://reviews.llvm.org/D109432
I have removed LoopVectorizationPlanner::setBestPlan, since this
function is quite aggressive because it deletes all other plans
except the one containing the <VF,UF> pair required. The code is
currently written to assume that all <VF,UF> pairs will live in the
same vplan. This is overly restrictive, since scalable VFs live in
different plans to fixed-width VFS. When we add support for
vectorising epilogue loops when the main loop uses scalable vectors
then we will the vplan for the main loop will be different to the
epilogue.
Instead I have added a new function called
LoopVectorizationPlanner::getBestPlanFor
that returns the best vplan for the <VF,UF> pair requested and leaves
all the vplans untouched. We then pass this best vplan to
LoopVectorizationPlanner::executePlan
which now takes an additional VPlanPtr argument.
Differential revision: https://reviews.llvm.org/D111125
After refactoring the phi recipes, we can now iterate over all header
phis in a VPlan to detect reductions when it comes to fixing them up
when tail folding.
This reduces the coupling with the cost model & legal by using the
information directly available in VPlan. It also removes a call to
getOrAddVPValue, which references the original IR value which may
become outdated after VPlan transformations.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100102
Currently we will allow loops with a fixed width VF of 1 to vectorize
if the -enable-strict-reductions flag is set. However, the loop vectorizer
will not use ordered reductions if `VF.isScalar()` and the resulting
vectorized loop will be out of order.
This patch removes `VF.isVector()` when checking if ordered reductions
should be used. Also, instead of converting the FAdds to reductions if the
VF = 1, operands of the FAdds are changed such that the order is preserved.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D104533
Update isFirstOrderRecurrence to explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.
Fixes PR44286 (and another PR or two).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D84951
This patch introduces a new class, MaxVFCandidates, that holds the
maximum vectorization factors that have been computed for both scalable
and fixed-width vectors.
This patch is intended to be NFC for fixed-width vectors, although
considering a scalable max VF (which is disabled by default) pessimises
tail-loop elimination, since it can no longer determine if any chosen VF
(less than fixed/scalable MaxVFs) is guaranteed to handle all vector
iterations if the trip-count is known. This issue will be addressed in
a future patch.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D98721
Rather than maintaining two separate values, a `float` for the per-lane
cost and a Width for the VF, maintain a single VectorizationFactor which
comprises the two and also removes the need for converting an integer value
to float.
This simplifies the query when asking if one VF is more profitable than
another when we want to extend this for scalable vectors (which may
require additional options to determine if e.g. a scalable VF of the
some cost, is more profitable than a fixed VF of the same cost).
The patch isn't entirely NFC because it also fixes an issue in
selectEpilogueVectorizationFactor, where the cost passed to ProfitableVFs
no longer truncates the floating-point cost from `float` to `unsigned` to
then perform the calculation on the truncated cost. It now does
a cost comparison with the correct precision.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D100121
Re-apply 25fbe803d4, with a small update to emit the right remark
class.
Original message:
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98634
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
This reverts commit 6b053c9867.
The build is broken:
ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>> LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
Now that all state for generated instructions is managed directly in
VPTransformState, VPCallBack is no longer needed. This patch updates the
last use of `getOrCreateScalarValue` to instead manage the value
directly in VPTransformState and removes VPCallback.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95383
This patch fixes pr48832 by correctly generating the mask when a poison value is involved.
Consider this CFG (which is a part of the input):
```
for.body: ; preds = %for.cond
br i1 true, label %cond.false, label %land.rhs
land.rhs: ; preds = %for.body
br i1 poison, label %cond.end, label %cond.false
cond.false: ; preds = %for.body, %land.rhs
br label %cond.end
cond.end: ; preds = %land.rhs, %cond.false
%cond = phi i32 [ 0, %cond.false ], [ 1, %land.rhs ]
```
The path for.body -> land.rhs -> cond.end should be taken when 'select i1 false, i1 poison, i1 false' holds (which means it's never taken); but VPRecipeBuilder::createEdgeMask was emitting 'and i1 false, poison' instead.
The former one successfully blocks poison propagation whereas the latter one doesn't, making the condition poison and thus causing the miscompilation.
SimplifyCFG has a similar bug (which didn't expose a real-world bug yet), and a patch for this is also ongoing (see https://reviews.llvm.org/D95026).
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D95217
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.
Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D89566
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.
Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D89566
Similar to other patches, this makes VPWidenRecipe a VPValue. Because of
the way it interacts with the reduction code it also slightly alters the
way that VPValues are registered, removing the up front NeedDef and
using getOrAddVPValue to create them on-demand if needed instead.
Differential Revision: https://reviews.llvm.org/D88447
Interfaces changed to take `ElementCount` as parameters:
* LoopVectorizationPlanner::buildVPlans
* LoopVectorizationPlanner::buildVPlansWithVPRecipes
* LoopVectorizationCostModel::selectVectorizationFactor
This patch is NFC for fixed-width vectors.
Reviewed By: dmgreen, ctetreau
Differential Revision: https://reviews.llvm.org/D90879
Changes:
* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Replaced the uses of `llvm::SmallSet<ElementCount, ...>` with
`llvm::SmallSetVector<ElementCount, ...>`. This avoids the need of an
ordering function for the `ElementCount` class.
* Bits and pieces around printing the `ElementCount` to string streams.
To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:
1. When it doesn't make sense to deal with the scalable property, for
example:
a. When computing unrolling factors.
b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.
Note that in some places the idiom
```
unsigned VF = ...
auto VTy = FixedVectorType::get(ScalarTy, VF)
```
has been replaced with
```
ElementCount VF = ...
assert(!VF.Scalable && ...);
auto VTy = VectorType::get(ScalarTy, VF)
```
The assertion guarantees that the new code is (at least in debug mode)
functionally equivalent to the old version. Notice that this change had been
possible because none of the methods that are specific to `FixedVectorType`
were used after the instantiation of `VTy`.
Reviewed By: rengolin, ctetreau
Differential Revision: https://reviews.llvm.org/D85794
Changes:
* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Add `<` operator to `ElementCount` to be able to use
`llvm::SmallSetVector<ElementCount, ...>`.
* Bits and pieces around printing the ElementCount to string streams.
* Added a static method to `ElementCount` to represent a scalar.
To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:
1. When it doesn't make sense to deal with the scalable property, for
example:
a. When computing unrolling factors.
b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.
Differential Revision: https://reviews.llvm.org/D85794
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
This reverts commit e9761688e4. It breaks the build:
```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
return ReductionOperations;
```
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
LV considers an internally computed MaxVF to decide if a constant trip-count is
a multiple of any subsequently chosen VF, and conclude that no scalar remainder
iterations (tail) will be left for Fold Tail to handle. If an external VF is
provided via -force-vector-width, it must be considered instead of the internal
MaxVF.
If an external UF is provided via -force-vector-interleave, it too must be
considered in addition to MaxVF or user VF.
Fixes PR45679.
Differential Revision: https://reviews.llvm.org/D80085
Widening a selects depends on whether the condition is loop invariant or
not. Rather than checking during codegen-time, the information can be
recorded at the VPlan construction time.
This was suggested as part of D76992, to reduce the reliance on
accessing the original underlying IR values.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D77869
Default visibility for classes is private, so the private: at the top of
various class definitions is redundant.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D77810
Dead instructions do not need to be sunk. Currently we try and record
the recipies for them, but there are no recipes emitted for them and
there's nothing to sink. They can be removed from SinkAfter while
marking them for recording.
Fixes PR44634.
Reviewers: rengolin, hsaito, fhahn, Ayal, gilr
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D73423
Memory instruction widening recipes use the pointer operand of their load/store
ingredient for generating the needed GEPs, making it difficult to feed these
recipes with pointers based on other ingredients or none at all.
This patch modifies these recipes to use a VPValue for the pointer instead, in
order to reduce ingredient def-use usage by ILV as a step towards full
VPlan-based def-use relations. The recipes are constructed with VPValues bound
to these ingredients, maintaining current behavior.
Differential revision: https://reviews.llvm.org/D70865
This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.