Currently, for vectorised loops that use the get.active.lane.mask
intrinsic we only use the mask for predicated vector operations,
such as masked loads and stores, etc. The loop itself is still
controlled by comparing the canonical induction variable with the
trip count. However, for some targets this is inefficient when it's
cheap to use the mask itself to control the loop.
This patch adds support for using the active lane mask for control
flow by:
1. Generating the active lane mask for the next iteration of the
vector loop, rather than the current one. If there are still any
remaining iterations then at least the first bit of the mask will
be set.
2. Extract the first bit of this mask and use this bit for the
conditional branch.
I did this by creating a new VPActiveLaneMaskPHIRecipe that sets
up the initial PHI values in the vector loop pre-header. I've also
made use of the new BranchOnCond VPInstruction for the final
instruction in the loop region.
Differential Revision: https://reviews.llvm.org/D125301
This patch removes CondBit and Predicate from VPBasicBlock. To do so,
the patch introduces a new branch-on-cond VPInstruction opcode to model
a branch on a condition explicitly.
This addresses a long-standing TODO/FIXME that blocks shouldn't be users
of VPValues. Those extra users can cause issues for VPValue-based
analyses that don't expect blocks. Addressing this fixme should allow us
to re-introduce 266ea446ab.
The generic branch opcode can also be used in follow-up patches.
Depends on D123005.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126618
This patch introduces a new VPLiveOut subclass of VPUser to model
exit values explicitly. The initial version handles exit values that
are neither part of induction or reduction chains nor first order
recurrence phis.
Fixes#51366, #54867, #55167, #55459
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123537
Those helpers model properties of a user and they should also be
available to non-recipe users. This will be used in D123537 for a new
exit value user.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D124936
This patch moves pointer induction handling from VPWidenPHIRecipe to its
own recipe. In the process, it adds all information required to generate
code for pointer inductions without relying on Legal to access the list
of induction phis.
Alternatively VPWidenPHIRecipe could also take an optional pointer to InductionDescriptor.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121615
This reverts the revert commit ff93260bf6.
The underlying issue causing the PPC bot failures has been fixed in
cbaac14734 and a corresponding test case has been added in
ad2cad1c52.
Original message:
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This can be used to explicitly model VPValues that depend on SCEV
expansion, like the step for inductions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116288
This patch adds VPWidenIntOrFpInductionRecipe::isCanonical to check if
an induction recipe is canonical. The code is also updated to use it
instead of isCanonicalID.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117551
At the moment, the primary induction variable for the vector loop is
created as part of the skeleton creation. This is tied to creating the
vector loop latch outside of VPlan. This prevents from modeling the
*whole* vector loop in VPlan, which in turn is required to model
preheader and exit blocks in VPlan as well.
This patch introduces a new recipe VPCanonicalIVPHIRecipe to represent the
primary IV in VPlan and CanonicalIVIncrement{NUW} opcodes for
VPInstruction to model the increment.
This allows us to partly retire createInductionVariable. At the moment,
a bit of patching up is done after executing all blocks in the plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113223
VPWidenCanonicalIVRecipe does not create PHI instructions, so it does
not need to be placed in the phi section of a VPBasicBlock.
Also tidies the code so the WidenCanonicalIV recipe and the
compare/lane-masks are created in the header.
Discussed D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116473
This reverts the revert commit b1777b04dc.
The patch originally got reverted due to a crash:
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2
The underlying issue was that we were not using the stored values from
the modified memory recipes, but the out-of-date values directly from
the IR (accessed via the VPlan). This should be fixed in d995d6376. A
reduced version of the reproducer has been added in 93664503be.
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.
This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D105008
The const version of VPValue::getVPValue still had a default value for
the value index. Remove the default value and use getVPSingleValue
instead, which is the proper function.
This reverts commit 706bbfb35b.
The committed version moves the definition of VPReductionPHIRecipe out
of an ifdef only intended for ::print helpers. This should resolve the
build failures that caused the revert
This reverts commit 3fed6d443f,
bbcbf21ae6 and
6c3451cd76.
The changes causing build failures with certain configurations, e.g.
https://lab.llvm.org/buildbot/#/builders/67/builds/3365/steps/6/logs/stdio
lib/libLLVMVectorize.a(LoopVectorize.cpp.o): In function `llvm::VPRecipeBuilder::tryToCreateWidenRecipe(llvm::Instruction*, llvm::ArrayRef<llvm::VPValue*>, llvm::VFRange&, std::unique_ptr<llvm::VPlan, std::default_delete<llvm::VPlan> >&) [clone .localalias.8]':
LoopVectorize.cpp:(.text._ZN4llvm15VPRecipeBuilder22tryToCreateWidenRecipeEPNS_11InstructionENS_8ArrayRefIPNS_7VPValueEEERNS_7VFRangeERSt10unique_ptrINS_5VPlanESt14default_deleteISA_EE+0x63b): undefined reference to `vtable for llvm::VPReductionPHIRecipe'
collect2: error: ld returned 1 exit status
This patch is a first step towards splitting up VPWidenPHIRecipe into
separate recipes for the 3 distinct cases they model:
1. reduction phis,
2. first-order recurrence phis,
3. pointer induction phis.
This allows untangling the code generation and allows us to reduce the
reliance on LoopVectorizationCostModel during VPlan code generation.
Discussed/suggested in D100102, D100113, D104197.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104989
This allows cast/dyn_cast'ing from VPUser to recipes. This is needed
because there are VPUsers that are not recipes.
Reviewed By: gilr, a.elovikov
Differential Revision: https://reviews.llvm.org/D100257
As suggested in D99294, this adds a getVPSingleValue helper to use for
recipes that are guaranteed to define a single value. This replaces uses
of getVPValue() which used to default to I = 0.
This patch simplifies VPSlotTracker by using the recursive traversal
iterator to traverse all blocks in a VPlan in reverse post-order when
numbering VPValues in a plan.
This depends on a fix to RPOT (D100169). It also extends the traversal
unit tests to check RPOT.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100176
This patch updates codegen to use VPValues to manage the generated
scalarized instructions.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D92285
VP blocks keep track of a condition, which is a VPValue. This patch
updates VPBlockBase to manage the value using VPUser, so
replaceAllUsesWith properly updates the condition bit as well.
This is required to enable VP2VP transformations and it helps with
simplifying some of the code required to manage condition bits.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95382
This patch unifies the way recipes and VPValues are printed after the
transition to VPDef.
VPSlotTracker has been updated to iterate over all recipes and all
their defined values to number those. There is no need to number
values in Value2VPValue.
It also updates a few places that only used slot numbers for
VPInstruction. All recipes now can produce numbered VPValues.
This patch adds a new getLiveInIRValue accessor to VPValue, which
returns the underlying value, if the VPValue is defined outside of
VPlan. This is required to handle scalars in VPTransformState, which
requires dealing with scalars defined outside of VPlan.
We can simply check VPValue::Def to determine if the value is defined
inside a VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D92281
This patch turns updates VPInstruction to manage the value it defines
using VPDef. The VPValue is used during VPlan construction and
codegeneration instead of the plain IR reference where possible.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90565
This patch makes VPRecipeBase a direct subclass of VPDef, moving the
SubclassID to VPDef.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90564
This patch updates VPWidenMemoryInstructionRecipe to use VPDef
to manage the value it produces instead of inheriting from VPValue.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90563
VPPredInstPHIRecipe is one of the recipes that was missed during the
initial conversion. This patch adjusts the recipe to also manage its
operand using VPUser.
Update VPReplicateRecipe to inherit from VPValue. This still does not
update scalarizeInstruction to set the result for the VPValue of
VPReplicateRecipe, because this first requires tracking scalar values in
VPTransformState.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D91500
This is a follow-up to 00a6601136 to make
isa<VPReductionRecipe> work and unifies the VPValue ID names, by making
sure they all consistently start with VPV*.
Similar to other patches, this makes VPWidenRecipe a VPValue. Because of
the way it interacts with the reduction code it also slightly alters the
way that VPValues are registered, removing the up front NeedDef and
using getOrAddVPValue to create them on-demand if needed instead.
Differential Revision: https://reviews.llvm.org/D88447
This converts the VPReductionRecipe into a VPValue, like other
VPRecipe's in preparation for traversing def-use chains. It also makes
it a VPUser, now storing the used VPValues as operands.
It doesn't yet change how the VPReductionRecipes are created. It will
need to call replaceAllUsesWith from the original recipe they replace,
but that is not done yet as VPWidenRecipe need to be created first.
Differential Revision: https://reviews.llvm.org/D88382
This patch introduces a new VPDef class, which can be used to
manage VPValues defined by recipes/VPInstructions.
The idea here is to mirror VPUser for values defined by a recipe. A
VPDef can produce either zero (e.g. a store recipe), one (most recipes)
or multiple (VPInterleaveRecipe) result VPValues.
To traverse the def-use chain from a VPDef to its users, one has to
traverse the users of all values defined by a VPDef.
VPValues now contain a pointer to their corresponding VPDef, if one
exists. To traverse the def-use chain upwards from a VPValue, we first
need to check if the VPValue is defined by a VPDef. If it does not have
a VPDef, this means we have a VPValue that is not directly defined
iniside the plan and we are done.
If we have a VPDef, it is defined inside the region by a recipe, which
is a VPUser, and the upwards def-use chain traversal continues by
traversing all its operands.
Note that we need to add an additional field to to VPVAlue to link them
to their defs. The space increase is going to be offset by being able to
remove the SubclassID field in future patches.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D90558
This patch turns VPWidenGEPRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D84683
This patch turns VPWidenSelectRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D84682
This patch turns VPWidenCall into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D84681
This reverts the revert commit 710aceb645
and includes a fix for a memsan failure.
Original message:
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D84680
Update the code responsible for deleting VPBBs and recipes to properly
update users and release operands.
This is another preparation for D84680 & following patches towards
enabling modeling def-use chains in VPlan.