Seems this complicated lldb sufficiently for some cases that it hasn't
been worth supporting/fixing there - and it so far hasn't provided any
new use cases/value for debug info consumers, so let's remove it until
someone has a use case for it.
(side note: the original implementation of this still had a bug (I
should've caught it in review) that we still didn't produce
auto-returning function declarations in types where the function wasn't
instantiatied (that requires a fix to remove the `if
getContainedAutoType` condition in
`CGDebugInfo::CollectCXXMemberFunctions` - without that, auto returning
functions were still being handled the same as member function templates
and special member functions - never added to the member list, only
attached to the type via the declaration chain from the definition)
Further discussion about this in D123319
This reverts commit 5ff992bca208a0e37ca6338fc735aec6aa848b72: [DEBUG-INFO] Change how we handle auto return types for lambda operator() to be consistent with gcc
This reverts commit c83602fdf51b2692e3bacb06bf861f20f74e987f: [DWARF5][clang]: Added support for DebugInfo generation for auto return type for C++ member functions.
Differential Revision: https://reviews.llvm.org/D131933
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
clang to emit DWARF information for global alias variable as
DW_TAG_imported_declaration. This change also handles nested
(recursive) imported declarations.
Reviewed by: dblaikie, aprantl
Differential Revision: https://reviews.llvm.org/D120989
Current ASTContext.getAttributedType() takes attribute kind,
ModifiedType and EquivType as the hash to decide whether an AST node
has been generated or note. But this is not enough for btf_type_tag
as the attribute might have the same ModifiedType and EquivType, but
still have different string associated with attribute.
For example, for a data structure like below,
struct map_value {
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *a;
int __attribute__((btf_type_tag("tag2"))) __attribute__((btf_type_tag("tag4"))) *b;
};
The current ASTContext.getAttributedType() will produce
an AST similar to below:
struct map_value {
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *a;
int __attribute__((btf_type_tag("tag1"))) __attribute__((btf_type_tag("tag3"))) *b;
};
and this is incorrect.
It is very difficult to use the current AttributedType as it is hard to
get the tag information. To fix the problem, this patch introduced
BTFTagAttributedType which is similar to AttributedType
in many ways but with an additional BTFTypeTagAttr. The tag itself can
be retrieved with BTFTypeTagAttr.
With the new BTFTagAttributed type, the debuginfo code can be greatly
simplified compared to previous TypeLoc based approach.
Differential Revision: https://reviews.llvm.org/D120296
Currently we are not emitting debug-info for all cases of structured bindings a
C++17 feature which allows us to bind names to subobjects in an initializer.
A structured binding is represented by a DecompositionDecl AST node and the
binding are represented by a BindingDecl. It looks the original implementation
only covered the tuple like case which be represented by a DeclRefExpr which
contains a VarDecl.
If the binding is to a subobject of the struct the binding will contain a
MemberExpr and in the case of arrays it will contain an ArraySubscriptExpr.
This PR adds support emitting debug-info for the MemberExpr and ArraySubscriptExpr
cases as well as llvm and lldb tests for these cases as well as the tuple case.
Differential Revision: https://reviews.llvm.org/D119178
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
This is to revert commit f95bd18b5f (Revert "[Attr] support
btf_type_tag attribute") plus a bug fix.
Previous change failed to handle cases like below:
$ cat reduced.c
void a(*);
void a() {}
$ clang -c reduced.c -O2 -g
In such cases, during clang IR generation, for function a(),
CGCodeGen has numParams = 1 for FunctionType. But for
FunctionTypeLoc we have FuncTypeLoc.NumParams = 0. By using
FunctionType.numParams as the bound to access FuncTypeLoc
params, a random crash is triggered. The bug fix is to
check against FuncTypeLoc.NumParams before accessing
FuncTypeLoc.getParam(Idx).
Differential Revision: https://reviews.llvm.org/D111199
This reverts commits 737e4216c5 and
ce7ac9e66a.
After those commits, the compiler can crash with a reduced
testcase like this:
$ cat reduced.c
void a(*);
void a() {}
$ clang -c reduced.c -O2 -g
This patch added clang codegen and llvm support
for btf_type_tag support. Currently, btf_type_tag
attribute info is preserved in DebugInfo IR only for
pointer types associated with typedef, global variable
and function declaration. Eventually, such information
is emitted to dwarf.
The following is an example:
$ cat test.c
#define __tag __attribute__((btf_type_tag("tag")))
int __tag *g;
$ clang -O2 -g -c test.c
$ llvm-dwarfdump --debug-info test.o
...
0x0000001e: DW_TAG_variable
DW_AT_name ("g")
DW_AT_type (0x00000033 "int *")
DW_AT_external (true)
DW_AT_decl_file ("/home/yhs/test.c")
DW_AT_decl_line (2)
DW_AT_location (DW_OP_addr 0x0)
0x00000033: DW_TAG_pointer_type
DW_AT_type (0x00000042 "int")
0x00000038: DW_TAG_LLVM_annotation
DW_AT_name ("btf_type_tag")
DW_AT_const_value ("tag")
0x00000041: NULL
0x00000042: DW_TAG_base_type
DW_AT_name ("int")
DW_AT_encoding (DW_ATE_signed)
DW_AT_byte_size (0x04)
0x00000049: NULL
Basically, a DW_TAG_LLVM_annotation tag will be inserted
under DW_TAG_pointer_type tag if that pointer has a btf_type_tag
associated with it.
Differential Revision: https://reviews.llvm.org/D111199
Current btf_tag is applied to declaration only.
Per discussion in https://reviews.llvm.org/D111199,
we plan to introduce btf_type_tag attribute for types.
So rename btf_tag to btf_decl_tag to make it easily
differentiable from btf_type_tag.
Differential Revision: https://reviews.llvm.org/D111588
eg: t1<void () const> - DWARF doesn't have a particularly nice way to
encode this, for real member function types (like `void (t1::*)()
const`) the const-ness is encoded in the type of the artificial first
parameter. But `void () const` has no parameters, so encode it like a
normal const-qualified type, using DW_TAG_const_type. (similarly for
restrict and volatile)
Reference qualifiers (& and &&) coming in a separate commit shortly.
Streamline template arguments across types, variables, and functions -
for convenient reuse in experiments related to template argument list
reconstitution (not including template argument lists in the "name" of
those entities, and leaving it to debug info consumers to rebuild the
full template name from the semantic descriptions of the argument lists)
But the change seems like a good refactoring/cleanup anyway.
I'd certainly be open to suggestions about how this might be more
streamlined - like is there no generic way to query template argument
lists across the 3 kinds of entities, rather than needing special case
code?
Generate btf_tag annotations for record fields. The annotations
are represented as an DINodeArray in DebugInfo.
Differential Revision: https://reviews.llvm.org/D106616
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations.
Differential Revision: https://reviews.llvm.org/D106615
It's noteworthy that GCC has the same bug here, which is a bit
surprising. Both Clang and GCC's bug is only for function template
arguments that are themselves templates with default template arguments
(f1<t1<int[, missing_default_here]>>). Probably because function name
matching isn't generally necessary - whereas type matching is necessary
for DWARF consumers to associate declarations and definitions across
translation units, so the bug's been addressed there already - but
continued to exist for function templates since it's fairly benign
there.
I came across this while working on a change that could reconstitute
these pretty printed names based on the rest of the DWARF, reducing the
size of the DWARF by not having to encode all the template parameters in
the name string. That reconstitution code can't tell the difference
between a defaulted argument or not, so couldn't create the current
buggy-ish output.
Making the names more consistent between direct and indirect references,
and between function and class templates seems all to the good.
(I fixed the function template version of this a few years back in
9fdd09a4cc - clearly I should've looked
more closely and generalized the code better so it only had to be fixed
once - well, doing that here now)
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This is a pre-patch for adding using-enum support. It breaks out
the shadow decl handling of UsingDecl to a new intermediate base
class, BaseUsingDecl, altering the decl hierarchy to
def BaseUsing : DeclNode<Named, "", 1>;
def Using : DeclNode<BaseUsing>;
def UsingPack : DeclNode<Named>;
def UsingShadow : DeclNode<Named>;
def ConstructorUsingShadow : DeclNode<UsingShadow>;
Differential Revision: https://reviews.llvm.org/D101777
The first one is the real parameters of the coroutine function, the
other one just for copying parameters to the coroutine frame.
Considering the following c++ code:
```
struct coro {
...
};
coro foo(struct test & t) {
...
co_await suspend_always();
...
co_await suspend_always();
...
co_await suspend_always();
}
int main(int argc, char *argv[]) {
auto c = foo(...);
c.handle.resume();
...
}
```
Function foo is the standard coroutine function, and it has only
one parameter named t (ignoring this at first),
when we use the llvm code to compile this function, we can get the
following ir:
```
!2921 = distinct !DISubprogram(name: "foo", linkageName:
"_ZN6Object3fooE4test", scope: !2211, file: !45, li\
ne: 48, type: !2329, scopeLine: 48, flags: DIFlagPrototyped |
DIFlagAllCallsDescribed, spFlags: DISPFlagDefi\
nition | DISPFlagOptimized, unit: !44, declaration: !2328,
retainedNodes: !2922)
!2924 = !DILocalVariable(name: "t", arg: 2, scope: !2921, file: !45,
line: 48, type: !838)
...
!2926 = !DILocalVariable(name: "t", scope: !2921, type: !838, flags:
DIFlagArtificial)
```
We can find there are two `the same` DIVariable named t in the same
dwarf scope for foo.resume.
And when we try to use llvm-dwarfdump to dump the dwarf info of this
elf, we get the following output:
```
0x00006684: DW_TAG_subprogram
DW_AT_low_pc (0x00000000004013a0)
DW_AT_high_pc (0x00000000004013a8)
DW_AT_frame_base (DW_OP_reg7 RSP)
DW_AT_object_pointer (0x0000669c)
DW_AT_GNU_all_call_sites (true)
DW_AT_specification (0x00005b5c "_ZN6Object3fooE4test")
0x000066a5: DW_TAG_formal_parameter
DW_AT_name ("t")
DW_AT_decl_file ("/disk1/yifeng.dongyifeng/my_code/llvm/build/bin/coro-debug-1.cpp")
DW_AT_decl_line (48)
DW_AT_type (0x00004146 "test")
0x000066ba: DW_TAG_variable
DW_AT_name ("t")
DW_AT_type (0x00004146 "test")
DW_AT_artificial (true)
```
The elf also has two 't' in the same scope.
But unluckily, it might let the debugger
confused. And failed to print parameters for O0 or above.
This patch will make coroutine parameters and move
parameters use the same DIVar and try to fix the problems
that I mentioned before.
Test Plan: check-clang
Reviewed By: aprantl, jmorse
Differential Revision: https://reviews.llvm.org/D97533
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
Check that getDebugInfo() is not null, as in the first revision, before
calling getDebugInfo()->addHeapAllocSiteMetadata().
Else would cause a crash with a new expression in a default arg.
---
Clang marks calls to operator new as heap allocation sites, but the
operator declared at global scope returns a void pointer. There is no
explicit cast in the code, so the compiler has to write down the
allocated type itself.
Also generalize a cast to use CallBase, so that we mark heap alloc sites
when exceptions are enabled.
Differential Revision: https://reviews.llvm.org/D80966
With a change to use `CGM.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo`
instead of `getDebugInfo()`,
to fix `Profile-<arch> :: instrprof-gcov-multithread_fork.test`
See CodeGenModule::CodeGenModule, `EmitGcovArcs || EmitGcovNotes` can
set `clang::CodeGen::CodeGenModule::DebugInfo`.
---
Clang marks calls to operator new as heap allocation sites, but the
operator declared at global scope returns a void pointer. There is no
explicit cast in the code, so the compiler has to write down the
allocated type itself.
Also generalize a cast to use CallBase, so that we mark heap alloc sites
when exceptions are enabled.
Differential Revision: https://reviews.llvm.org/D80966
Clang marks calls to operator new as heap allocation sites, but the
operator declared at global scope returns a void pointer. There is no
explicit cast in the code, so the compiler has to write down the
allocated type itself.
Also generalize a cast to use CallBase, so that we mark heap alloc sites
when exceptions are enabled.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D80966
This patch adds a matrix type to Clang as described in the draft
specification in clang/docs/MatrixSupport.rst. It introduces a new option
-fenable-matrix, which can be used to enable the matrix support.
The patch adds new MatrixType and DependentSizedMatrixType types along
with the plumbing required. Loads of and stores to pointers to matrix
values are lowered to memory operations on 1-D IR arrays. After loading,
the loaded values are cast to a vector. This ensures matrix values use
the alignment of the element type, instead of LLVM's large vector
alignment.
The operators and builtins described in the draft spec will will be added in
follow-up patches.
Reviewers: martong, rsmith, Bigcheese, anemet, dexonsmith, rjmccall, aaron.ballman
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72281
This reverts commit 61ba1481e2.
I'm reverting this because it breaks the lldb build with
incomplete switch coverage warnings. I would fix it forward,
but am not familiar enough with lldb to determine the correct
fix.
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:3958:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4633:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4889:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
Introduction/Motivation:
LLVM-IR supports integers of non-power-of-2 bitwidth, in the iN syntax.
Integers of non-power-of-two aren't particularly interesting or useful
on most hardware, so much so that no language in Clang has been
motivated to expose it before.
However, in the case of FPGA hardware normal integer types where the
full bitwidth isn't used, is extremely wasteful and has severe
performance/space concerns. Because of this, Intel has introduced this
functionality in the High Level Synthesis compiler[0]
under the name "Arbitrary Precision Integer" (ap_int for short). This
has been extremely useful and effective for our users, permitting them
to optimize their storage and operation space on an architecture where
both can be extremely expensive.
We are proposing upstreaming a more palatable version of this to the
community, in the form of this proposal and accompanying patch. We are
proposing the syntax _ExtInt(N). We intend to propose this to the WG14
committee[1], and the underscore-capital seems like the active direction
for a WG14 paper's acceptance. An alternative that Richard Smith
suggested on the initial review was __int(N), however we believe that
is much less acceptable by WG14. We considered _Int, however _Int is
used as an identifier in libstdc++ and there is no good way to fall
back to an identifier (since _Int(5) is indistinguishable from an
unnamed initializer of a template type named _Int).
[0]https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html)
[1]http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2472.pdf
Differential Revision: https://reviews.llvm.org/D73967
Saves only 36 includes of ASTContext.h and related headers.
There are two deps on ASTContext.h:
- C++ method overrides iterator types (TinyPtrVector)
- getting LangOptions
For #1, duplicate the iterator type, which is
TinyPtrVector<>::const_iterator.
For #2, add an out-of-line accessor to get the language options. Getting
the ASTContext from a Decl is already an out of line method that loops
over the parent DeclContexts, so if it is ever performance critical, the
proper fix is to pass the context (or LangOpts) into the predicate in
question.
Other changes are just header fixups.
Module.h takes 86ms to parse, mostly parsing the class itself. Avoid it
if possible. ASTContext.h depends on ExternalASTSource.h.
A few NFC changes were needed to make this possible:
- Move ASTSourceDescriptor to Module.h. This needs Module to be
complete, and seems more related to modules and AST files than
external AST sources.
- Move "import complete" bit from Module* pointer int pair to
NextLocalImport pointer. Required because PointerIntPair<Module*,...>
requires Module to be complete, and now it may not be.
Reviewed By: aaron.ballman, hans
Differential Revision: https://reviews.llvm.org/D75784
Summary:
This was reverted in e45fcfc3aa due to
libcxx build failure. This revision addresses that case.
Original commit message:
This patch will provide support for auto return type for the C++ member
functions.
This patch includes clang side implementation of this feature.
Patch by: Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: dblaikie, aprantl, shafik, alok, SouraVX, jini.susan.george
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D70524
Summary:
This patch will provide support for auto return type for the C++ member
functions.
This patch includes clang side implementation of this feature.
Patch by: Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: dblaikie, aprantl, shafik, alok, SouraVX, jini.susan.george
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D70524
Commit d77ae1552f
("[DebugInfo] Support to emit debugInfo for extern variables")
added deebugInfo for extern variables for BPF target.
The commit is reverted by 891e25b02d
as the committed tests using %clang instead of %clang_cc1 causing
test failed in certain scenarios as reported by Reid Kleckner.
This patch fixed the tests by using %clang_cc1.
Differential Revision: https://reviews.llvm.org/D71818
Extern variable usage in BPF is different from traditional
pure user space application. Recent discussion in linux bpf
mailing list has two use cases where debug info types are
required to use extern variables:
- extern types are required to have a suitable interface
in libbpf (bpf loader) to provide kernel config parameters
to bpf programs.
https://lore.kernel.org/bpf/CAEf4BzYCNo5GeVGMhp3fhysQ=_axAf=23PtwaZs-yAyafmXC9g@mail.gmail.com/T/#t
- extern types are required so kernel bpf verifier can
verify program which uses external functions more precisely.
This will make later link with actual external function no
need to reverify.
https://lore.kernel.org/bpf/87eez4odqp.fsf@toke.dk/T/#m8d5c3e87ffe7f2764e02d722cb0d8cbc136880ed
This patch added clang support to emit debuginfo for extern variables
with a TargetInfo hook to enable it. The debuginfo for the
extern variable is emitted only if that extern variable is
referenced in the current compilation unit.
Currently, only BPF target enables to generate debug info for
extern variables. The emission of such debuginfo is disabled for C++
at this moment since BPF only supports a subset of C language.
Emission with C++ can be enabled later if an appropriate use case
is identified.
-fstandalone-debug permits us to see more debuginfo with the cost
of bloated binary size. This patch did not add emission of extern
variable debug info with -fstandalone-debug. This can be
re-evaluated if there is a real need.
Differential Revision: https://reviews.llvm.org/D70696
This unbreaks the debuginfo-tests testsuite by replacing the assertion
with a default location. There are cleanups in helper functions that
don't have a valid source location such as block copy helpers and it's
not worth tracking each of them down.
rdar://57630879