Calling registerName() for the same symbol twice, even with a different
size, has no effect other than the lookup overhead. Avoid the
redundancy.
Fixesfacebookincubator/BOLT#299
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D136115
Simplify the logic of handling sections in BOLT. This change brings more
direct and predictable mapping of BinarySection instances to sections in
the input and output files.
* Only sections from the input binary will have a non-null SectionRef.
When a new section is created as a copy of the input section,
its SectionRef is reset to null.
* RewriteInstance::getOutputSectionName() is removed as the section name
in the output file is now defined by BinarySection::getOutputName().
* Querying BinaryContext for sections by name uses their original name.
E.g., getUniqueSectionByName(".rodata") will return the original
section even if the new .rodata section was created.
* Input file sections (with relocations applied) are emitted via MC with
".bolt.org" prefix. However, their name in the output binary is
unchanged unless a new section with the same name is created.
* New sections are emitted internally with ".bolt.new" prefix if there's
a name conflict with an input file section. Their original name is
preserved in the output file.
* Section header string table is properly populated with section names
that are actually used. Previously we used to include discarded
section names as well.
* Fix the problem when dynamic relocations were propagated to a new
section with a name that matched a section in the input binary.
E.g., the new .rodata with jump tables had dynamic relocations from
the original .rodata.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D135494
When BOLT updates .eh_frame section, it concatenates newly-generated
contents (from CFI directives) with the original .eh_frame that has
relocations applied to it. However, if no new content is generated,
the original .eh_frame has to be left intact. In that case, BOLT was
still writing out the relocatable copy of the original .eh_frame section
to the new segment, even though this copy was never used and was not
even marked in the section header table.
Detect the scenario above and skip allocating extra space for .eh_frame.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D135223
To properly set the "_end" symbol, we need to track the last allocatable
address. Simply emitting "_end" at the end of some section is not
sufficient since the order of section allocation is unknown during the
emission step.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D135121
We can emit a binary without a new text section. Hence, the text section
assertion is not needed.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D135120
In lite mode, BOLT only transforms a subset of functions, leave the
remaining functions intact.
For NoPIC, it is fine. BOLT can scan relocations and fix-up all refs
that point to any function body in the subset.
For no-split function PIC, it is fine. Since jump tables are intra-
procedural transfer, BOLT can find both the jump table base and the
target within same function. Thus, BOLT can update and/or move jump
tables.
However, it is wrong to process a subset of functions in split function
PIC. This is because BOLT does not know if functions in the subset are
isolated, i.e., cannot be accessed by functions out of the subset,
especially via split jump table.
For example, BOLT only process three functions A, B and C. Suppose that
A is reached via jump table from A.cold, which is not processed. When
A is moved (due to optimization), the jump table in A.cold is invalid.
We cannot fix-up this jump table since it is only recognized in A.cold,
which BOLT does not process.
Solution: Disable lite mode if split function is present.
Future improvement: In lite mode, if split function is found, BOLT
processes both functions in the subset and all of their sibling
fragments.
Test Plan:
```
ninja check-bolt
```
Reviewed By: Amir, maksfb
Differential Revision: https://reviews.llvm.org/D131283
In perf2bolt and `-aggregate-only` BOLT mode, the output profile file is written
in fdata format by default. Provide a knob `-profile-format=[fdata,yaml]` to
control the format.
Note that `-w` option still dumps in YAML format.
Reviewed By: #bolt, maksfb
Differential Revision: https://reviews.llvm.org/D133995
This patch fixes warnings during a release build:
mlir/lib/Dialect/Transform/IR/TransformInterfaces.cpp:198:52: error:
lambda capture 'this' is not used [-Werror,-Wunused-lambda-capture]
bolt/lib/Rewrite/RewriteInstance.cpp:5318:18: error: unused variable
'HasNoAddress' [-Werror,-Wunused-variable]
To generate all symbols correctly, it is necessary to record the address
of each fragment. This patch moves the address info for the main and
cold fragments from BinaryFunction to FunctionFragment, where this data
is recorded for all fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132051
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
To generate all symbols correctly, it is necessary to record the address
of each fragment. This patch moves the address info for the main and
cold fragments from BinaryFunction to FunctionFragment, where this data
is recorded for all fragments.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132051
This changes `FunctionFragment` from being used as a temporary proxy
object to access basic block ranges to a heap-allocated object that can
store fragment-specific information.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132050
This patch adds support to generate any number of sections that are
assigned to fragments of functions that are split more than two-way.
With this, a function's *nth* split fragment goes into section
`.text.cold.n`.
This also changes `FunctionLayout::erase` to make sure, that there are
no empty fragments at the end of the function. This sometimes happens
when blocks are erased from the function. To avoid creating symbols
pointing to these fragments, they need to be removed.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130521
This changes code emission such that it can emit specific function
fragments instead of scanning all basic blocks of a function and just
emitting those that are hot or cold.
To implement this, `FunctionLayout` explicitly distinguishes the "main"
fragment (i.e. the one that contains the entry block and is associated
with the original symbol) from "split" fragments. Additionally,
`BinaryFunction` receives support for multiple cold symbols - one for
each split fragment.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D130052
With reduced indentation, some strings can be reformatted to take less lines.
Also strategically apply `formatv` to shorten them.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132088
Split out the body of a for-loop in `RewriteInstance::readRelocations` into a
separate function (`handleRelocation`). It's still over 300 lines of code,
so it's worth splitting down further.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D132078
This patch refactors BAT to be testable as a library, so we
can have open-source tests on it. This further fixes an issue with
basic blocks that lack a valid input offset, making BAT omit those
when writing translation tables.
Test Plan: new testcases added, new testing tool added (llvm-bat-dump)
Differential Revision: https://reviews.llvm.org/D129382
AllowStripped has not been used in BOLT.
This option is replaced by actively detecting stripped binary.
Test Plan:
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D130036
Determine stripped status of a binary based on .symtab
Test Plan:
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D130034
`LastSymbol` handling in `discoverFileObjects` assumes a non-zero number of
symbols in an object file. It's not the case for broken_dynsym.test added in
D130073, and potentially other stripped binaries.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D130544
Strip tools cause a few symbols in .dynsym to have bad section index.
This update safely keeps such broken symbols intact.
Test Plan:
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D130073
We previously support split jump table, where some jump table entries
target different fragments of same function. In this fix, we provide
support for another type of intra-indirect transfer: landing pad.
When C++ exception handling is used, compiler emits .gcc_except_table
that describes the location of catch block (landing pad) for specific
range that potentially invokes a throw(). Normally landing pads reside
in the function, but with -fsplit-machine-functions, landing pads can
be moved to another fragment. The intuition is, landing pads are rarely
executed, so compiler can move them to .cold section.
This update will mark all fragments that have landing pad to another
fragment as non-simple, and later propagate non-simple to all related
fragments.
This update also includes one manual test case: split-landing-pad.s
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D128561
There are two assumptions regarding jump table:
(a) It is accessed by only one fragment, say, Parent
(b) All entries target instructions in Parent
For (a), BOLT stores jump table entries as relative offset to Parent.
For (b), BOLT treats jump table entries target somewhere out of Parent
as INVALID_OFFSET, including fragment of same split function.
In this update, we extend (a) and (b) to include fragment of same split
functinon. For (a), we store jump table entries in absolute offset
instead. In addition, jump table will store all fragments that access
it. A fragment uses this information to only create label for jump table
entries that target to that fragment.
For (b), using absolute offset allows jump table entries to target
fragments of same split function, i.e., extend support for split jump
table. This can be done using relocation (fragment start/size) and
fragment detection heuristics (e.g., using symbol name pattern for
non-stripped binaries).
For jump table targets that can only be reached by one fragment, we
mark them as local label; otherwise, they would be the secondary
function entry to the target fragment.
Test Plan
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D128474
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D129260
This reverts commit 425dda76e9.
This commit is currently causing BOLT to crash in one of our
binaries and needs a bit more checking to make sure it is safe
to land.
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D128082
Add functionality to allow splitting code with C++ exceptions in shared
libraries and PIEs. To overcome a limitation in exception ranges format,
for functions with fragments spanning multiple sections, add trampoline
landing pads in the same section as the corresponding throwing range.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127936
Allow cold fragment to get new address.
Our previous assumption is that a fragment (.cold) is only reached
through the main fragment of same function. In addition, .cold fragment
must be reached through either (a) direct transfer, or (b) split jump
table. For (a), we perform a simple fix-up. For (b), we currently mark
all relevant fragments as non-simple. Therefore, there is no need to
get new address for .cold fragment.
This is not always the case, as function entry can be rarely executed,
and is placed in .text.cold segment. Essentially we cannot tell which
the source-level function entry is based on hot and cold segments,
so we must treat each fragment a function on its own. Therfore, we
remove the assertion that a function entry cannot be cold fragment.
Test Plan:
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D128111
Resolve a crash related to split functions
Due to split function optimization, a function can be divided to two
fragments, and both fragments can access same jump table. This
violates the assumption that a jump table can only have one parent
function, which causes a crash during instrumentation.
We want to support the case: different functions cannot access same
jump tables, but different fragments of same function can!
As all fragments are from same function, we point JT::Parent to one
specific fragment. Right now it is the first disassembled fragment, but
we can point it to the function's main fragment later.
Functions are disassembled sequentially. Previously, at the end of
processing a function, JT::OffsetEntries is cleared, so other fragment
can no longer reuse JT::OffsetEntries. To extend the support for split
function, we only clear JT::OffsetEntries after all functions are
disassembled.
Let say A.hot and A.cold access JT of three targets {X, Y, Z}, where
X and Y are in A.hot, and Z is in A.cold. Suppose that A.hot is
disassembled first, JT::OffsetEntries = {X',Y',INVALID_OFFSET}. When
A.cold is disassembled, it cannot reuse JT::OffsetEntries above due to
different fragment start. A simple solution:
A.hot = {X',Y',INVALID_OFFSET}
A.cold = {INVALID_OFFSET, INVALID_OFFSET, INVALID_OFFSET}
We update the assertion to allow different fragments of same function
to get the same JumpTable object.
Potential improvements:
A.hot = {X',Y',INVALID_OFFSET}
A.cold = {INVALID_OFFSET, INVALID_OFFSET, Z'}
The main issue is A.hot and A.cold have separate CFGs, thus jump table
targets are still constrained within fragment bounds.
Future improvements:
A.hot = {X, Y, Z}
A.cold = {X, Y, Z}
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127924
Supress failed to analyze relocations warning for R_AARCH64_LD_PREL_LO19
relocation. This relocation is mostly used to get value stored in CI and
we don't process it since we are caluclating target address using the
instruction value in evaluateMemOperandTarget().
Differential Revision: https://reviews.llvm.org/D127413
Mark fragments related to split jump table as non-simple.
A function could be splitted into hot and cold fragments. A split jump table is
challenging for correctly reconstructing control flow graphs, so it was marked
as ignored. This update marks those fragments as non-simple, allowing them
to be printed and partial control flow graph construction.
Test Plan:
```
llvm-lit -a tools/bolt/test/X86/split-func-icf.s
```
This test has two functions (main, main2), each has a jump table target to the
same cold portion main2.cold.1(*2). We try to print out only this cold portion.
If it is ignored, it cannot be printed. If it is non-simple, it can be printed. We
verify that it can be printed.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127464
Use color coding to distinguish nodes:
- Entry nodes have bold border
- Scalar (non-loopy) code is milk white
- Outer loops are light yellow
- Innermost loops are light blue
`-print-loops` needs to be enabled to provide BinaryLoopInfo.
Examples:
{F23170673}
{F23170680}
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D126248
Fix BOLT's constant island mapping when a constant island marked by $d
spans multiple functions. Currently, because BOLT only marks the
constant island in the first function where $d is located, if the next
function contains data at its start, BOLT will miss the data and try
to disassemble it. This patch adds code to explicitly go through all
symbols between $d and $x markers and mark their respective offsets as
data, which stops BOLT from trying to disassemble data. It also adds
MarkerType enum and refactors related functions.
Reviewed By: yota9, rafauler
Differential Revision: https://reviews.llvm.org/D126177
Addresses the warnings emitted by Apple Clang 13.1.6 (Xcode 13.3.1).
Tip @tschuett issue #55404.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D125733
Added implementation to support DWARF5 in monolithic mode.
Next step DWARF5 split dwarf support.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D121876