Move these to the new PM if they're used there.
Part of removing the legacy pass manager for optimization pipeline.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D137915
This reverts commit 233659c7ae.
I see some sanitizer build bot failures. Not sure if it is change
causing it, but let's see if a revert returns the bots to green...
LoopFlatten has been in the code base off by default for years, but this
enables it to run by default. Downstream this has been running for
years, so it has been exposed to quite some code. Then around the time
we switched to the NPM, several fixes went in related to updating the
MemorySSA state and we moved it to a loop pass manager, which both
helped preventing rerunning certain analysis passes, and thus helped a
bit with compile-times.
About compile-times, adding a pass isn't free, but this should see only
very minor increases. The pass is relatively simple and there shouldn't
be anything algorithmically expensive because all it does is looking at
inner/outer loops and it checks assumptions on loop increments and
indices. If we see increases, I expect this to mainly come from
invalidation of analysis info, and perhaps subsequent passes to trigger
and do more. Despite its simplicity/restrictions, it triggers in most
code-bases, which makes it worth to enable this by default.
Differential Revision: https://reviews.llvm.org/D109958
Second patch in the series to remove legacy PM and
associated -enable-new-pm=0 flag targets pass that
has not been ported to new PM - PruneEH.
Discussion about this can be found in D44415.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134686
Support for the legacy pass manager in ArgPromotion causes
complications in D125485. As the legacy pass manager for middle-end
optimizations is unsupported, drop ArgPromotion from the legacy
pipeline, rather than introducing additional complexity to deal
with it.
Differential Revision: https://reviews.llvm.org/D128536
Some cl::ZeroOrMore were added to avoid the `may only occur zero or one times!`
error. More were added due to cargo cult. Since the error has been removed,
cl::ZeroOrMore is unneeded.
Also remove cl::init(false) while touching the lines.
All callers pass true.
select-unfold-freeze.ll is now a subset of select.ll so delete it.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126501
The legacy LoopUnswitch pass is only used in the legacy pass manager
pipeline, which is deprecated.
The NewPM replacement is SimpleLoopUnswitch and I think it is time to
remove the legacy LoopUnswitch code.
Fixes#31000.
Reviewed By: aeubanks, Meinersbur, asbirlea
Differential Revision: https://reviews.llvm.org/D124376
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove the (Thin)LTO pipelines.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D123882
Legacy PM for optimization pipeline was deprecated in 13.0.0 and Clang dropped
legacy PM support in D123609. This change removes legacy PM passes for PGO so
that downstream projects won't be able to use it. It seems appropriate to start
removing such "add-on" features like instrumentations, before we remove more
stuff after 15.x is branched.
I have checked many LLVM users and only ldc[1] uses the legacy PGO pass.
[1]: https://github.com/ldc-developers/ldc/issues/3961
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D123834
LICM will speculatively hoist code outside of loops. This requires removing information, like alias analysis (https://github.com/llvm/llvm-project/issues/53794), range information (https://bugs.llvm.org/show_bug.cgi?id=50550), among others. Prior to https://reviews.llvm.org/D99249 , LICM would only be run after LoopRotate. Running Loop Rotate prior to LICM prevents a instruction hoist from being speculative, if it was conditionally executed by the iteration (as is commonly emitted by clang and other frontends). Adding the additional LICM pass first, however, forces all of these instructions to be considered speculative, even if they are not speculative after LoopRotate. This destroys information, resulting in performance losses for discarding this additional information.
This PR modifies LICM to accept a ``speculative'' parameter which allows LICM to be set to perform information-loss speculative hoists or not. Phase ordering is then modified to not perform the information-losing speculative hoists until after loop rotate is performed, preserving this additional information.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D119965
Function specialisation was running at all optimisation levels (if enabled on
the command line, it is not on by default). That was an oversight and not
something we want to do. Function specialisation duplicates functions when it
triggers, so the backend is processing more functions/instructions resulting in
compile-time increases, which seems more appropriate with -O3 and inline with
GCC. Please note that since function specialisation is not enabled by default,
this didn't require updating any pass manager tests.
Differential Revision: https://reviews.llvm.org/D112129
IR with matrix intrinsics is likely to also contain large vector
operations, which can benefit from early simplifications.
This is the last step in a series of changes to improve code-gen for
code using matrix subscript operators with the C/C++ matrix extension in
CLang, like
using matrix_t = double __attribute__((matrix_type(15, 15)));
void foo(unsigned i, matrix_t &A, matrix_t &B) {
for (unsigned j = 0; j < 4; ++j)
for (unsigned k = 0; k < i; k++)
B[k][j] -= A[k][j] * B[i][j];
}
https://clang.godbolt.org/z/6dKxK1Ed7
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D102496
The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.
This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.
This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:
```
sw.bb sw.bb
/ | \ / | \
case1 case2 case3 case1 case2 case3
\ | / / | \
latch.bb latch.2 latch.3 latch.1
br sw.bb / | \
sw.bb.2 sw.bb.3 sw.bb.1
br case2 br case3 br case1
```
Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99205
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.
This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.
I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D105627
This adds a function specialization pass to LLVM. Constant parameters
like function pointers and constant globals are propagated to the callee by
specializing the function.
This is a first version with a number of limitations:
- The pass is off by default, so needs to be enabled on the command line,
- It does not handle specialization of recursive functions,
- It does not yet handle constants and constant ranges,
- Only 1 argument per function is specialised,
- The cost-model could be further looked into, and perhaps related,
- We are not yet caching analysis results.
This is based on earlier work by Matthew Simpson (D36432) and Vinay Madhusudan.
More recently this was also discussed on the list, see:
https://lists.llvm.org/pipermail/llvm-dev/2021-March/149380.html.
The motivation for this work is that function specialisation often comes up as
a reason for performance differences of generated code between LLVM and GCC,
which has this enabled by default from optimisation level -O3 and up. And while
this certainly helps a few cpu benchmark cases, this also triggers in real
world codes and is thus a generally useful transformation to have in LLVM.
Function specialisation has great potential to increase compile-times and
code-size. The summary from some investigations with this patch is:
- Compile-time increases for short compile jobs is high relatively, but the
increase in absolute numbers still low.
- For longer compile-jobs, the extra compile time is around 1%, and very much
in line with GCC.
- It is difficult to blame one thing for compile-time increases: it looks like
everywhere a little bit more time is spent processing more functions and
instructions.
- But the function specialisation pass itself is not very expensive; it doesn't
show up very high in the profile of the optimisation passes.
The goal of this work is to reach parity with GCC which means that eventually
we would like to get this enabled by default. But first we would like to address
some of the limitations before that.
Differential Revision: https://reviews.llvm.org/D93838
This is split off from D102002, and I think it is clear that
the difference in behavior was not intended. Options were
added to SimplifyCFG over time, but different chunks of
the pass pipelines were not kept in sync.
This is better no-functional-change-intended than the 1st attempt.
As noted in D102002, there were at least 2 diffs that went
unchecked in pass manager regressions tests: different pass
parameters (SimplifyCFG) and an extension point/callback.
Those should be lifted from the original code blocks correctly
now.
This reverts commit fefcb1f878.
It was supposed to be NFC, but as noted in the post-commit
comments in D102002, that was not true: SimplifyCFG uses
different parameters and there's a difference in an
extension point / callback.
Hoisting and sinking instructions out of conditional blocks enables
additional vectorization by:
1. Executing memory accesses unconditionally.
2. Reducing the number of instructions that need predication.
After disabling early hoisting / sinking, we miss out on a few
vectorization opportunities. One of those is causing a ~10% performance
regression in one of the Geekbench benchmarks on AArch64.
This patch tires to recover the regression by running hoisting/sinking
as part of a SimplifyCFG run after LoopRotate and before LoopVectorize.
Note that in the legacy pass-manager, we run LoopRotate just before
vectorization again and there's no SimplifyCFG run in between, so the
sinking/hoisting may impact the later run on LoopRotate. But the impact
should be limited and the benefit of hosting/sinking at this stage
should outweigh the risk of not rotating.
Compile-time impact looks slightly positive for most cases.
http://llvm-compile-time-tracker.com/compare.php?from=2ea7fb7b1c045a7d60fcccf3df3ebb26aa3699e5&to=e58b4a763c691da651f25996aad619cb3d946faf&stat=instructions
NewPM-O3: geomean -0.19%
NewPM-ReleaseThinLTO: geoman -0.54%
NewPM-ReleaseLTO-g: geomean -0.03%
With a few benchmarks seeing a notable increase, but also some
improvements.
Alternative to D101290.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101468
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D99202
Retry of 330619a3a6 that includes a clang test update.
Original commit message:
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898 <https://reviews.llvm.org/D98898>.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355