This adds a `PassManager.add` method which adds pipeline elements to the
pass manager. This allows for progressively building up a pipeline from
python without string manipulation.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D137344
This adds an extra argument for specifying the pass manager's anchor op,
with a default of `any`. Previously the anchor was always defaulted to
`builtin.module`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136406
The pipeline string must now include the pass manager's anchor op. This
makes the parse API properly roundtrip the printed form of a pass
manager.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136405
Currently any errors during pipeline parsing are reported to stderr.
This adds a new pipeline parsing function to the C api that reports
errors through a callback, and updates the python bindings to use it.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D136402
Add a new OperationType handle type to the Transform dialect. This
transform type is parameterized by the name of the payload operation it
can point to. It is intended as a constraint on transformations that are
only applicable to a specific kind of payload operations. If a
transformation is applicable to a small set of operation classes, it can
be wrapped into a transform op by using a disjunctive constraint, such
as `Type<Or<[Transform_ConcreteOperation<"foo">.predicate,
Transform_ConcreteOperation<"bar">.predicate]>>` for its operand without
modifying this type. Broader sets of accepted operations should be
modeled as specific types.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D135586
This extension to the sparse tensor type system in MLIR
opens up a whole new set of sparse storage schemes, such as
block sparse storage (e.g. BCSR) and ELL (aka jagged diagonals).
This revision merely introduces the type extension and
initial documentation. The actual interpretation of the type
(reading in tensors, lowering to code, etc.) will follow.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D135206
This adds a `write_bytecode` method to the Operation class.
The method takes a file handle and writes the binary blob to it.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D133210
We recently removed the singleton dimension level type (see the revision
https://reviews.llvm.org/D131002) since it was unimplemented but also
incomplete (properties were missing). This revision add singleton back as
extra dimension level type, together with properties ordered/not-ordered
and unique/not-unique. Even though still not lowered to actual code, this
provides a complete way of defining many more sparse storage schemes (in
the long run, we want to support even dimension level types and properties
using the additional extensions proposed in [Chou]).
Note that the current solution of using suffixes for the properties is not
ideal, but keeps the extension relatively simple with respect to parsing and
printing. Furthermore, it is rather consistent with the TACO implementation
which uses things like Compressed-Unique as well. Nevertheless, we probably
want to separate dimension level types from properties when we add more types
and properties.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D132897
This reland includes changes to the Python bindings.
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131801
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D131803
Previously, calling `Value.owner()` would C++ assert in debug builds if
`Value` was a block argument. Additionally, the behavior was just wrong
in release builds. This patch adds support for BlockArg Values.
Previously the elements of the notes tuple would be invalid objects when
accessed from a diagnostic handler, resulting in a segfault when used.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D129943
The type extraction helper function for block argument and op result
list objects was ignoring the slice entirely. So was the slice addition.
Both are caused by a misleading naming convention to implement slices
via CRTP. Make the convention more explicit and hide the helper
functions so users have harder time calling them directly.
Closes#56540.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D130271
Since the very first commits, the Python and C MLIR APIs have had mis-placed registration/load functionality for dialects, extensions, etc. This was done pragmatically in order to get bootstrapped and then just grew in. Downstreams largely bypass and do their own thing by providing various APIs to register things they need. Meanwhile, the C++ APIs have stabilized around this and it would make sense to follow suit.
The thing we have observed in canonical usage by downstreams is that each downstream tends to have native entry points that configure its installation to its preferences with one-stop APIs. This patch leans in to this approach with `RegisterEverything.h` and `mlir._mlir_libs._mlirRegisterEverything` being the one-stop entry points for the "upstream packages". The `_mlir_libs.__init__.py` now allows customization of the environment and Context by adding "initialization modules" to the `_mlir_libs` package. If present, `_mlirRegisterEverything` is treated as such a module. Others can be added by downstreams by adding a `_site_initialize_{i}.py` module, where '{i}' is a number starting with zero. The number will be incremented and corresponding module loaded until one is not found. Initialization modules can:
* Perform load time customization to the global environment (i.e. registering passes, hooks, etc).
* Define a `register_dialects(registry: DialectRegistry)` function that can extend the `DialectRegistry` that will be used to bootstrap the `Context`.
* Define a `context_init_hook(context: Context)` function that will be added to a list of callbacks which will be invoked after dialect registration during `Context` initialization.
Note that the `MLIRPythonExtension.RegisterEverything` is not included by default when building a downstream (its corresponding behavior was prior). For downstreams which need the default MLIR initialization to take place, they must add this back in to their Python CMake build just like they add their own components (i.e. to `add_mlir_python_common_capi_library` and `add_mlir_python_modules`). It is perfectly valid to not do this, in which case, only the things explicitly depended on and initialized by downstreams will be built/packaged. If the downstream has not been set up for this, it is recommended to simply add this back for the time being and pay the build time/package size cost.
CMake changes:
* `MLIRCAPIRegistration` -> `MLIRCAPIRegisterEverything` (renamed to signify what it does and force an evaluation: a number of places were incidentally linking this very expensive target)
* `MLIRPythonSoure.Passes` removed (without replacement: just drop)
* `MLIRPythonExtension.AllPassesRegistration` removed (without replacement: just drop)
* `MLIRPythonExtension.Conversions` removed (without replacement: just drop)
* `MLIRPythonExtension.Transforms` removed (without replacement: just drop)
Header changes:
* `mlir-c/Registration.h` is deleted. Dialect registration functionality is now in `IR.h`. Registration of upstream features are in `mlir-c/RegisterEverything.h`. When updating MLIR and a couple of downstreams, I found that proper usage was commingled so required making a choice vs just blind S&R.
Python APIs removed:
* mlir.transforms and mlir.conversions (previously only had an __init__.py which indirectly triggered `mlirRegisterTransformsPasses()` and `mlirRegisterConversionPasses()` respectively). Downstream impact: Remove these imports if present (they now happen as part of default initialization).
* mlir._mlir_libs._all_passes_registration, mlir._mlir_libs._mlirTransforms, mlir._mlir_libs._mlirConversions. Downstream impact: None expected (these were internally used).
C-APIs changed:
* mlirRegisterAllDialects(MlirContext) now takes an MlirDialectRegistry instead. It also used to trigger loading of all dialects, which was already marked with a TODO to remove -- it no longer does, and for direct use, dialects must be explicitly loaded. Downstream impact: Direct C-API users must ensure that needed dialects are loaded or call `mlirContextLoadAllAvailableDialects(MlirContext)` to emulate the prior behavior. Also see the `ir.c` test case (e.g. ` mlirContextGetOrLoadDialect(ctx, mlirStringRefCreateFromCString("func"));`).
* mlirDialectHandle* APIs were moved from Registration.h (which now is restricted to just global/upstream registration) to IR.h, arguably where it should have been. Downstream impact: include correct header (likely already doing so).
C-APIs added:
* mlirContextLoadAllAvailableDialects(MlirContext): Corresponds to C++ API with the same purpose.
Python APIs added:
* mlir.ir.DialectRegistry: Mapping for an MlirDialectRegistry.
* mlir.ir.Context.append_dialect_registry(MlirDialectRegistry)
* mlir.ir.Context.load_all_available_dialects()
* mlir._mlir_libs._mlirAllRegistration: New native extension that exposes a `register_dialects(MlirDialectRegistry)` entry point and performs all upstream pass/conversion/transforms registration on init. In this first step, we eagerly load this as part of the __init__.py and use it to monkey patch the Context to emulate prior behavior.
* Type caster and capsule support for MlirDialectRegistry
This should make it possible to build downstream Python dialects that only depend on a subset of MLIR. See: https://github.com/llvm/llvm-project/issues/56037
Here is an example PR, minimally adapting IREE to these changes: https://github.com/iree-org/iree/pull/9638/files In this situation, IREE is opting to not link everything, since it is already configuring the Context to its liking. For projects that would just like to not think about it and pull in everything, add `MLIRPythonExtension.RegisterEverything` to the list of Python sources getting built, and the old behavior will continue.
Reviewed By: mehdi_amini, ftynse
Differential Revision: https://reviews.llvm.org/D128593
Introduce a new transformation on structured ops that splits the iteration
space into two parts along the specified dimension. The index at which the
splitting happens may be static or dynamic. This transformation can be seen as
a rudimentary form of index-set splitting that only supports the splitting
along hyperplanes parallel to the iteration space hyperplanes, and is therefore
decomposable into per-dimension application.
It is a key low-level transformation that enables independent scheduling for
different parts of the iteration space of the same op, which hasn't been
possible previously. It may be used to implement, e.g., multi-sized tiling. In
future, peeling can be implemented as a combination of split-off amount
computation and splitting.
The transformation is conceptually close to tiling in its separation of the
iteration and data spaces, but cannot be currently implemented on top of
TilingInterface as the latter does not properly support `linalg.index`
offsetting.
Note that the transformation intentionally bypasses folding of
`tensor.extract_slice` operations when creating them as this folding was found
to prevent repeated splitting of the same operation because due to internal
assumptions about extract/insert_slice combination in dialect utilities.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D129090
The useLocalScope printing flag has been passed around between pybind methods, but doesn't actually enable the corresponding printing flag.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D127907
Implement the C-API and Python bindings for the builtin opaque type, which was previously missing.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D127303
Currently, building mlir with the python bindings enabled on Windows in Debug is broken because pybind11, python and cmake don't like to play together. This change normalizes how the three interact, so that the builds can now run and succeed.
The main issue is that python and cmake both make assumptions about which libraries are needed in a Windows build based on the flavor.
- cmake assumes that a debug (or a debug-like) flavor of the build will always require pythonX_d.lib and provides no option/hint to tell it to use a different library. cmake does find both the debug and release versions, but then uses the debug library.
- python (specifically pyconfig.h and by extension python.h) hardcodes the dependency on pythonX_d.lib or pythonX.lib depending on whether `_DEBUG` is defined. This is NOT transparent - it does not show up anywhere in the build logs until the link step fails with `pythonX_d.lib is missing` (or `pythonX.lib is missing`)
- pybind11 tries to "fix" this by implementing a workaround - unless Py_DEBUG is defined, `_DEBUG` is explicitly undefined right before including python headers. This also requires some windows headers to be included differently, so while clever, this is a non-trivial workaround.
mlir itself includes the pybind11 headers (which contain the workaround) AS WELL AS python.h, essentially always requiring both pythonX.lib and pythonX_d.lib for linking. cmake explicitly only adds one or the other, so the build fails.
This change does a couple of things:
- In the cmake files, explicitly add the release version of the python library on Windows builds regardless of flavor. Since Py_DEBUG is not defined, pybind11 will always require release and it will be satisfied
- To satisfy python as well, this change removes any explicit inclusions of Python.h on Windows instead relying on the fact that pybind11 headers will bring in what is needed
There are a few additional things that we could do but I rejected as unnecessary at this time:
- define Py_DEBUG based on the CMAKE_BUILD_TYPE - this will *mostly* work, we'd have to think through multiconfig generators like VS, but it's possible. There doesn't seem to be a need to link against debug python at the moment, so I chose not to overcomplicate the build and always default to release
- similar to above, but define Py_DEBUG based on the CMAKE_BUILD_TYPE *as well as* the presence of the debug python library (`Python3_LIBRARY_DEBUG`). Similar to above, this seems unnecessary right now. I think it's slightly better than above because most people don't actually have the debug version of python installed, so this would prevent breaks in that case.
- similar to the two above, but add a cmake variable to control the logic
- implement the pybind11 workaround directly in mlir (specifically in Interop.h) so that Python.h can still be included directly. This seems prone to error and a pain to maintain in lock step with pybind11
- reorganize how the pybind11 headers are included and place at least one of them in Interop.h directly, so that the header has all of its dependencies included as was the original intention. I decided against this because it really doesn't need pybind11 logic and it's always included after pybind11 is, so we don't necessarily need the python includes
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D125284
Introduce a method on PyMlirContext (and plumb it through to Python) to
invalidate all of the operations in the live operations map and clear
it. Since Python has no notion of private data, an end-developer could
reach into some 3rd party API which uses the MLIR Python API (that is
behaving correctly with regard to holding references) and grab a
reference to an MLIR Python Operation, preventing it from being
deconstructed out of the live operations map. This allows the API
developer to clear the map when it calls C++ code which could delete
operations, protecting itself from its users.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123895
With this change, there's going to be a clear distinction between LLVM
and MLIR pass maanger options (e.g. `-mlir-print-after-all` vs
`-print-after-all`). This change is desirable from the point of view of
projects that depend on both LLVM and MLIR, e.g. Flang.
For consistency, all pass manager options in MLIR are prefixed with
`mlir-`, even options that don't have equivalents in LLVM .
Differential Revision: https://reviews.llvm.org/D123495
Adds `mlirBlockDetach` to the CAPI to remove a block from its parent
region. Use it in the Python bindings to implement
`Block.append_to(region)`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123165
Previously only accessing values for `index` and signless int types
would work; signed and unsigned ints would hit an assert in
`IntegerAttr::getInt`. This exposes `IntegerAttr::get{S,U}Int` to the C
API and calls the appropriate function from the python bindings.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D120194
* While annoying, this is the only way to get C++ exception handling out of the happy path for normal iteration.
* Implements sq_length and sq_item for the sequence protocol (used for iteration, including list() construction).
* Implements mp_subscript for general use (i.e. foo[1] and foo[1:1]).
* For constructing a `list(op.results)`, this reduces the time from ~4-5us to ~1.5us on my machine (give or take measurement overhead) and eliminates C++ exceptions, which is a worthy goal in itself.
* Compared to a baseline of similar construction of a three-integer list, which takes 450ns (might just be measuring function call overhead).
* See issue discussed on the pybind side: https://github.com/pybind/pybind11/issues/2842
Differential Revision: https://reviews.llvm.org/D119691
This extends dense attribute element access to support 8b and 16b ints.
Also extends the corresponding parts of the C api.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D117731
BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
This change adds full python bindings for PDL, including types and operations
with additional mixins to make operation construction more similar to the PDL
syntax.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D117458
Historically, the bindings for the Linalg dialect were included into the
"core" bindings library because they depended on the C++ implementation
of the "core" bindings. The other dialects followed the pattern. Now
that this dependency is gone, split out each dialect into a separate
Python extension library.
Depends On D116649, D116605
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D116662
So far, only the custom dialect types are exposed.
The build and packaging is same as for Linalg and SparseTensor, and in
need of refactoring that is beyond the scope of this patch.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D116605
Previously, the Python bindings for the Linalg dialect relied on the internal
implementation of core bindings. Most of that functionality was moved, and the
remaining one does not need access to the implementation: it used to accept a
dialect pointer as argument, but it can always be extracted from the operation
that it also accepts; operations are available through PybindAdaptors in an
opaque way. Change the bindings in that direction.
This enables the decoupling of the Linalg dialect Python extension from the
core IR Python extension.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D116649
If a fusedloc is created with a single location then no fusedloc
was previously created and single location returned instead. In the case
where there is a metadata associated with the location this results in
discarding the metadata. Instead only canonicalize where there is no
loss of information.
Differential Revision: https://reviews.llvm.org/D115605
I considered multiple approaches for this but settled on this one because I could make the lifetime management work in a reasonably easy way (others had issues with not being able to cast to a Python reference from a C++ constructor). We could stand to have more formatting helpers, but best to get the core mechanism in first.
Differential Revision: https://reviews.llvm.org/D116568