@kpn pointed out that the global variable initialization functions didn't
have the "strictfp" metadata set correctly, and @rjmccall said that there
was buggy code in SetFPModel and StartFunction, this patch is to solve
those problems. When Sema creates a FunctionDecl, it sets the
FunctionDeclBits.UsesFPIntrin to "true" if the lexical FP settings
(i.e. a combination of command line options and #pragma float_control
settings) correspond to ConstrainedFP mode. That bit is used when CodeGen
starts codegen for a llvm function, and it translates into the
"strictfp" function attribute. See bugs.llvm.org/show_bug.cgi?id=44571
Reviewed By: Aaron Ballman
Differential Revision: https://reviews.llvm.org/D102343
Set default version for OpenCL C to 1.2. This means that the
absence of any standard flag will be equivalent to passing
'-cl-std=CL1.2'.
Note that this patch also fixes incorrect version check for
the pointer to pointer kernel arguments diagnostic and
atomic test.
Differential Revision: https://reviews.llvm.org/D106504
The anonymous and non-anonymous bit-field diagnostics are easily
combined into one diagnostic. However, the diagnostic was missing a
"the" that is present in the almost-identically worded
warn_bitfield_width_exceeds_type_width diagnostic, hence the changes to
test cases.
Named return of a variable with aligned attribute would
trip an assert in case alignment was dependent.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105380
Named return of a variable with aligned attribute would
trip an assert in case alignment was dependent.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105380
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
Refactor to avoid assignment inside condition by using 'if
(init-decl)'. Also remove some unnecessary braces on a separate
if-nest.
Differential Revision: https://reviews.llvm.org/D104039
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
This is a pre-patch for adding using-enum support. It breaks out
the shadow decl handling of UsingDecl to a new intermediate base
class, BaseUsingDecl, altering the decl hierarchy to
def BaseUsing : DeclNode<Named, "", 1>;
def Using : DeclNode<BaseUsing>;
def UsingPack : DeclNode<Named>;
def UsingShadow : DeclNode<Named>;
def ConstructorUsingShadow : DeclNode<UsingShadow>;
Differential Revision: https://reviews.llvm.org/D101777
The following was found by a customer and is accepted by the other primary
C++ compilers, but fails to compile in Clang:
namespace sss {
double foo(int, double);
template <class T>
T foo(T); // note: target of using declaration
} // namespace sss
namespace oad {
void foo();
}
namespace oad {
using ::sss::foo;
}
namespace sss {
using oad::foo; // note: using declaration
}
namespace sss {
double foo(int, double) { return 0; }
template <class T>
T foo(T t) { // error: declaration conflicts with target of using
return t;
}
} // namespace sss
I believe the issue is that MergeFunctionDecl() was calling
checkUsingShadowRedecl() but only considering a FunctionDecl as a
possible shadow and not FunctionTemplateDecl. The changes in this patch
largely mirror how variable declarations were being handled by also
catching FunctionTemplateDecl.
This attribute applies to a using declaration, and permits importing a
declaration without knowing if that declaration exists. This is useful
for libc++ C wrapper headers that re-export declarations in std::, in
cases where the base C library doesn't provide all declarations.
This attribute was proposed in http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html.
rdar://69313357
Differential Revision: https://reviews.llvm.org/D90188
Recently we added diagnosing ODR-use of host variables
in device functions, which includes ODR-use of const
host variables since they are not really emitted on
device side. This caused regressions since we used
to allow ODR-use of const host variables in device
functions.
This patch allows ODR-use of const variables in device
functions if the const variables can be statically initialized
and have an empty dtor. Such variables are marked with
implicit constant attrs and emitted on device side. This is
in line with what clang does for constexpr variables.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103108
This relands commit 13dd65b3a1.
The original commit contained a test, which failed when compiled
for a MACH-O target.
This patch changes the test to run for x86_64-linux instead of
`%itanium_abi_triple`, to avoid having invalid syntax for MACH-O
sections. The patch itself does not care about section attribute
syntax and a x86 backend does not even need to be included in the
build.
Differential Revision: https://reviews.llvm.org/D102693
When a const-qualified object has a section attribute, that
section is set to read-only and clang outputs a LLVM IR constant
for that object. This is incorrect for dynamically initialised
objects.
For example:
int init() { return 15; }
__attribute__((section("SA")))
const int a = init();
a is allocated to a read-only section and is left
unintialised (zero-initialised).
This patch adds checks if an initialiser is a constant expression
and allocates objects to sections as follows:
* const-qualified objects
- no initialiser or constant initialiser: .rodata
- dynamic initializer: .bss
* non const-qualified objects
- no initialiser or dynamic initialiser: .bss
- constant initialiser: .data
(".rodata", ".data", and ".bss" names used just for explanatory
purpose)
Differential Revision: https://reviews.llvm.org/D102693
Allow use of bit-fields as a clang extension
in OpenCL. The extension can be enabled using
pragma directives.
This fixes PR45339!
Differential Revision: https://reviews.llvm.org/D101843
Reduce memory footprint of AST Reader/Writer:
1. Adjust internal data containers' element type.
2. Switch to set for deduplication of deferred diags.
Differential Revision: https://reviews.llvm.org/D101793
when implementing an optional protocol requirement
When an Objective-C method implements an optional protocol requirement,
allow the method to use a newer introduced or older obsoleted
availability version than what's specified on the method in the protocol
itself. This allows SDK adopters to adopt an optional method from a
protocol later than when the method is introduced in the protocol. The users
that call an optional method on an object that conforms to this protocol
are supposed to check whether the object implements the method or not,
so a lack of appropriate `if (@available)` check for a new OS version
is not a cause of concern as there's already another runtime check that's required.
Differential Revision: https://reviews.llvm.org/D102459
This fixes the initialization of objects in the __constant
address space that occurs when declaring the object.
Fixes part of PR42566
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D102248
Drop non-conformant extension pragma implementation as
it does not properly disable anything and therefore
enabling non-disabled logic has no meaning.
This simplifies clang code and user interface to the extension
functionality. With this patch extension pragma 'begin'/'end'
and 'enable'/'disable' are only accepted for backward
compatibility and no longer have any default behavior.
Differential Revision: https://reviews.llvm.org/D101043
This patch fixes various issues with our prior `declare target` handling
and extends it to support `omp begin declare target` as well.
This started with PR49649 in mind, trying to provide a way for users to
avoid the "ref" global use introduced for globals with internal linkage.
From there it went down the rabbit hole, e.g., all variables, even
`nohost` ones, were emitted into the device code so it was impossible to
determine if "ref" was needed late in the game (based on the name only).
To make it really useful, `begin declare target` was needed as it can
carry the `device_type`. Not emitting variables eagerly had a ripple
effect. Finally, the precedence of the (explicit) declare target list
items needed to be taken into account, that meant we cannot just look
for any declare target attribute to make a decision. This caused the
handling of functions to require fixup as well.
I tried to clean up things while I was at it, e.g., we should not "parse
declarations and defintions" as part of OpenMP parsing, this will always
break at some point. Instead, we keep track what region we are in and
act on definitions and declarations instead, this is what we do for
declare variant and other begin/end directives already.
Highlights:
- new diagnosis for restrictions specificed in the standard,
- delayed emission of globals not mentioned in an explicit
list of a declare target,
- omission of `nohost` globals on the host and `host` globals on the
device,
- no explicit parsing of declarations in-between `omp [begin] declare
variant` and the corresponding end anymore, regular parsing instead,
- precedence for explicit mentions in `declare target` lists over
implicit mentions in the declaration-definition-seq, and
- `omp allocate` declarations will now replace an earlier emitted
global, if necessary.
---
Notes:
The patch is larger than I hoped but it turns out that most changes do
on their own lead to "inconsistent states", which seem less desirable
overall.
After working through this I feel the standard should remove the
explicit declare target forms as the delayed emission is horrible.
That said, while we delay things anyway, it seems to me we check too
often for the current status even though that is often not sufficient to
act upon. There seems to be a lot of duplication that can probably be
trimmed down. Eagerly emitting some things seems pretty weak as an
argument to keep so much logic around.
---
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D101030
Added __cl_clang_non_portable_kernel_param_types extension that
allows using non-portable types as kernel parameters. This allows
bypassing the portability guarantees from the restrictions specified
in C++ for OpenCL v1.0 s2.4.
Currently this only disables the restrictions related to the data
layout. The programmer should ensure the compiler generates the same
layout for host and device or otherwise the argument should only be
accessed on the device side. This extension could be extended to other
case (e.g. permitting size_t) if desired in the future.
Patch by olestrohm (Ole Strohm)!
https://reviews.llvm.org/D101168
Warn when a declaration uses an identifier that doesn't obey the reserved
identifier rule from C and/or C++.
Differential Revision: https://reviews.llvm.org/D93095
Refactored diagnostics for OpenCL types to allow their
reuse for templates.
Patch by olestrohm (Ole Strohm)!
Differential Revision: https://reviews.llvm.org/D100860
Commit e3d8ee35e4 ("reland "[DebugInfo] Support to emit debugInfo
for extern variables"") added support to emit debugInfo for
extern variables if requested by the target. Currently, only
BPF target enables this feature by default.
As BPF ecosystem grows, callback function started to get
support, e.g., recently bpf_for_each_map_elem() is introduced
(https://lwn.net/Articles/846504/) with a callback function as an
argument. In the future we may have something like below as
a demonstration of use case :
extern int do_work(int);
long bpf_helper(void *callback_fn, void *callback_ctx, ...);
long prog_main() {
struct { ... } ctx = { ... };
return bpf_helper(&do_work, &ctx, ...);
}
Basically bpf helper may have a callback function and the
callback function is defined in another file or in the kernel.
In this case, we would like to know the debuginfo types for
do_work(), so the verifier can proper verify the safety of
bpf_helper() call.
For the following example,
extern int do_work(int);
long bpf_helper(void *callback_fn);
long prog() {
return bpf_helper(&do_work);
}
Currently, there is no debuginfo generated for extern function do_work().
In the IR, we have,
...
define dso_local i64 @prog() local_unnamed_addr #0 !dbg !7 {
entry:
%call = tail call i64 @bpf_helper(i8* bitcast (i32 (i32)* @do_work to i8*)) #2, !dbg !11
ret i64 %call, !dbg !12
}
...
declare dso_local i32 @do_work(i32) #1
...
This patch added support for the above callback function use case, and
the generated IR looks like below:
...
declare !dbg !17 dso_local i32 @do_work(i32) #1
...
!17 = !DISubprogram(name: "do_work", scope: !1, file: !1, line: 1, type: !18, flags: DIFlagPrototyped, spFlags: DISPFlagOptimized, retainedNodes: !2)
!18 = !DISubroutineType(types: !19)
!19 = !{!20, !20}
!20 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
The TargetInfo.allowDebugInfoForExternalVar is renamed to
TargetInfo.allowDebugInfoForExternalRef as now it guards
both extern variable and extern function debuginfo generation.
Differential Revision: https://reviews.llvm.org/D100567
These are intended to mimic warnings available in gcc.
-Wunused-but-set-variable is triggered in the case of a variable which
appears on the LHS of an assignment but not otherwise used.
For instance:
void f() {
int x;
x = 0;
}
-Wunused-but-set-parameter works similarly, but for function parameters
instead of variables.
In C++, they are triggered only for scalar types; otherwise, they are
triggered for all types. This is gcc's behavior.
-Wunused-but-set-parameter is controlled by -Wextra, while
-Wunused-but-set-variable is controlled by -Wunused. This is slightly
different from gcc's behavior, but seems most consistent with clang's
behavior for -Wunused-parameter and -Wunused-variable.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D100581
When an object is allocated in a non-default address space we do not
need to check for a constructor if it is not initialized and has a
trivial constructor (which we won't call then).
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100929
Add restrictions on type layout (PR48099):
- Types passed by pointer or reference must be standard layout types.
- Types passed by value must be POD types.
Patch by olestrohm (Ole Strohm)!
Differential Revision: https://reviews.llvm.org/D100471
Similar to variables with an initializer, this is never valid in
standard C, so we can safely constant-fold as an extension. I ran into
this construct in a couple proprietary codebases.
While I'm here, drive-by fix for 090dd647: we should only fold variables
with VLA types, not arbitrary variably modified types.
Differential Revision: https://reviews.llvm.org/D98363
ICC permits this, and after some extensive testing it looks like we can
support this with very little trouble. We intentionally don't choose to
do this with attribute-target (despite it likely working as well!)
because GCC does not support that, and introducing said
incompatibility doesn't seem worth it.
The previous implementation was insufficient for checking statement
attribute mutual exclusion because attributed statements do not collect
their attributes one-at-a-time in the same way that declarations do. So
the design that was attempting to check for mutual exclusion as each
attribute was processed would not ever catch a mutual exclusion in a
statement. This was missed due to insufficient test coverage, which has
now been added for the [[likely]] and [[unlikely]] attributes.
The new approach is to check all of attributes that are to be applied
to the attributed statement in a group. This required generating
another DiagnoseMutualExclusions() function into AttrParsedAttrImpl.inc.
This patch fixes an issue with the SVE prefetch and qinc/qdec intrinsics
that take an `enum` argument, but where the builtin prototype encodes
these as `int`. Some code in SemaDecl found the mismatch and chose
to forget about the builtin altogether, which meant that any future
code using that builtin would fail. The code that forgets about the
builtin was actually obsolete after D77491 and should have been removed.
This patch now removes that code.
This patch also fixes another issue with the SVE prefetch intrinsic
when built with C++, where the builtin didn't accept the correct
pointer type, which should be `const void *`.
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D100046
I have been trying to statically find and analyze all calls to heap
allocation functions to determine how many of them use sizes known at
compile time vs only at runtime. While doing so I saw that quite a few
projects use replaceable function pointers for heap allocation and noticed
that clang was not able to annotate functions pointers with alloc_size.
I have changed the Sema checks to allow alloc_size on all function pointers
and typedefs for function pointers now and added checks that these
attributes are propagated to the LLVM IR correctly.
With this patch we can also compute __builtin_object_size() for calls to
allocation function pointers with the alloc_size attribute.
Reviewed By: aaron.ballman, erik.pilkington
Differential Revision: https://reviews.llvm.org/D55212
Currently, when one or more attributes are mutually exclusive, the
developer adding the attribute has to manually emit diagnostics. In
practice, this is highly error prone, especially for declaration
attributes, because such checking is not trivial. Redeclarations
require you to write a "merge" function to diagnose mutually exclusive
attributes and most attributes get this wrong.
This patch introduces a table-generated way to specify that a group of
two or more attributes are mutually exclusive:
def : MutualExclusions<[Attr1, Attr2, Attr3]>;
This works for both statement and declaration attributes (but not type
attributes) and the checking is done either from the common attribute
diagnostic checking code or from within mergeDeclAttribute() when
merging redeclarations.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49534, where the call to the constructor
of the anonymous union is checked and triggers assertion failure when trying to retrieve
the alignment of the `this` argument (which is a union with virtual function).
The extra check for alignment was introduced in D97187.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D98548
This patch is a second attempt at fixing a link error for MSVC
entry points when calling conventions are specified using a flag.
Calling conventions specified using flags should not be applied to MSVC
entry points. The default calling convention is set in this case. The
default calling convention for MSVC entry points main and wmain is cdecl.
For WinMain, wWinMain and DllMain, the default calling convention is
stdcall on 32 bit Windows.
Explicitly specified calling conventions are applied to MSVC entry points.
For MinGW, the default calling convention for all MSVC entry points is
cdecl.
First attempt: 4cff1b40da
Revert of first attempt: bebfc3b92d
Differential Revision: https://reviews.llvm.org/D97941
There is no need to check for enabled pragma for core or optional core features,
thus this check is removed
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D97058
emission
Ensure that we are in a function declaration context before checking
the diagnostic emission status, to avoid dereferencing a NULL function
declaration.
Differential Revision: https://reviews.llvm.org/D97573
For ELF targets, GCC 11 will set SHF_GNU_RETAIN on the section of a
`__attribute__((retain))` function/variable to prevent linker garbage
collection. (See AttrDocs.td for the linker support).
This patch adds `retain` functions/variables to the `llvm.used` list, which has
the desired linker GC semantics. Note: `retain` does not imply `used`,
so an unused function/variable can be dropped by Sema.
Before 'retain' was introduced, previous ELF solutions require inline asm or
linker tricks, e.g. `asm volatile(".reloc 0, R_X86_64_NONE, target");`
(architecture dependent) or define a non-local symbol in the section and use
`ld -u`. There was no elegant source-level solution.
With D97448, `__attribute__((retain))` will set `SHF_GNU_RETAIN` on ELF targets.
Differential Revision: https://reviews.llvm.org/D97447
It would be beneficial to allow not_tail_called attribute to be applied to
virtual functions. I don't see any drawback of allowing this.
Differential Revision: https://reviews.llvm.org/D96832