This patch lowers the complex operations supported by the MLIR complex
dialect to those operations rather than libm. When the math runtime flag
is set to precise, libm lowering is used instead.
Differential Revision: https://reviews.llvm.org/D135882
As Fortran 2018 18.2.3.2, the arguments of C_ASSOCIATED have the same
type, a scalar of type C_PTR or C_FUNPTR, and the result has the default
logical scalar type. The interface is defined with two module procedures
c_associated_c_ptr/c_associated_c_funptr in flang/module/iso_c_binding.
The result is false if the first argument is a C null pointer. If the
second argument is present, the result is true only if the two arguments
are equal. Support the lowering by comparing the C pointer address
values of two arguments if the second argument is dynamically present
and comparing the C pointer address value of the first argument with the
value 0.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D136419
This patch adds a cpowi function to the flang runtime, and switches
to using that function instead of pgmath for complex number to
integer power operations.
Differential Revision: https://reviews.llvm.org/D134889
This patch updates lowering to produce the correct fir.class types for
various polymorphic and unlimited polymoprhic entities cases. This is only the
lowering. Some TODOs have been added to the CodeGen part to avoid errors since
this part still need to be updated as well.
The fir.class<*> representation for unlimited polymorphic entities mentioned in
the document has been updated to fir.class<none> to avoid useless work in pretty
parse/printer.
This patch is part of the implementation of the poltymorphic
entities.
https://github.com/llvm/llvm-project/blob/main/flang/docs/PolymorphicEntities.md
Depends on D134957
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D134959
This patch changes the handling of complex number intrinsics that
have C libm equivalents to call into those instead of calling the
external pgmath library.
Currently complex numbers to integer powers are excluded as libm
has no powi equivalent function.
Differential Revision: https://reviews.llvm.org/D134655
This calls the corresponding runtime functions when appropriate. The implementation
follows the pattern of the SUM and PRODUCT intrinsics.
Differential Revision: https://reviews.llvm.org/D129616
The TARGET argument of ASSOCIATED has a special lowering to deal with
POINTER and ALLOCATABLE optional actual arguments because they may be
dynamically absent. The previous code was doing a ternary
(mlir::SelectOp) to deal with this case, but generated invalid
code for the unused argument (loading a nullptr fir.ref<fir.box>). This
was not detected until D133779 was merged and modified how fir.load are
lowered to LLVM for fir.box types.
Replace the select by a proper if to prevent the fir.load from being
reachable in context where it should not.
Differential Revision: https://reviews.llvm.org/D134174
C_F_POINTER was added in https://reviews.llvm.org/D132303, but the code
assumed that SHAPE would always be an explicit shape with compile time
constant rank. It can actually be an assumed shape, or an explicit shape
with non compile time constant rank. Get the rank from FPTR pointer
instead.
Differential Revision: https://reviews.llvm.org/D133347
As Fortran 2018 18.2.3.3, the intrinsic module procedure
C_F_POINTER(CPTR, FPTR [, SHAPE]) associates a data pointer with the
target of a C pointer and specify its shape. CPTR shall be a scalar of
type C_PTR, and its value is the C address or the result of a reference
to C_LOC. FPTR is one pointer, either scalar or array. SHAPE is a
rank-one integer array, and it shall be present if and only if FPTR is
an array.
C_PTR is the derived type with only one component of integer 64, and the
integer 64 component value is the address. Build the right "source"
fir::ExtendedValue based on the address and shape, and use
associateMutableBox to associate the pointer with the target of the C
pointer.
Refactor the getting the address of C_PTR to reuse the code.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D132303
This patch update the lowering of the shifta intrinsic to match
the behvior of gfortran. When the SHIFT value is equal to the
integer bitwidth then we handle it differently.
This is due to the operation used in lowering (`mlir::arith::ShRSIOp`)
that lowers to `ashr`.
Before this patch we have the following results:
```
SHIFTA( -1, 8) = 0
SHIFTA( -2, 8) = 0
SHIFTA( -30, 8) = 0
SHIFTA( -31, 8) = 0
SHIFTA( -32, 8) = 0
SHIFTA( -33, 8) = 0
SHIFTA(-126, 8) = 0
SHIFTA(-127, 8) = 0
SHIFTA(-128, 8) = 0
```
While gfortran is giving this:
```
SHIFTA( -1, 8) = -1
SHIFTA( -2, 8) = -1
SHIFTA( -30, 8) = -1
SHIFTA( -31, 8) = -1
SHIFTA( -32, 8) = -1
SHIFTA( -33, 8) = -1
SHIFTA(-126, 8) = -1
SHIFTA(-127, 8) = -1
SHIFTA(-128, 8) = -1
```
With this patch flang and gfortran have the same behavior.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D133104
We used to select the runtime function based on the first argument's
type, which was not correct behavior. The selection is done using
the result type now.
Differential Revision: https://reviews.llvm.org/D133032
As Fortran 2018 18.2.3.5, the intrinsic c_funloc(x) gets the C address
of argument x. It returns the scalar of type C_FUNPTR. As defined in
iso_c_binding in flang/module/__fortran_builtins.f90, C_FUNPTR is the
derived type with only one component of integer 64.
This follows the implementation of https://reviews.llvm.org/D129659. The
argument is lowered as ProcBox and the address is generated using
fir.box_addr.
Reviewed By: jeanPerier, clementval
Differential Revision: https://reviews.llvm.org/D132273
Apply lower bounds before call to the ubound runtime function.
This is similary done in genLBound.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D133001
Lower F08 parity intrinsic. This largely follows the implementation of the ANY
and ALL intrinsics which are related.
Differential Revision: https://reviews.llvm.org/D129788
The code generated for this version of the intrinsic is broken. I'm
marking it as a "TODO" for now so that people don't get unannounce bad
results.
Differential Revision: https://reviews.llvm.org/D132082
Add a proper TODO for the REDUCE instrinsic instead of crashing.
Reviewed By: PeteSteinfeld, vdonaldson
Differential Revision: https://reviews.llvm.org/D132020
With this change all supported pgmath functions for non-complex
data types are replaced with either libm calls or MLIR operations,
except for MOD and some flavors of POW, which are going to be addressed
by other commits.
At the current stage a few math intrinsics are lowered into libm calls
always. When appropriate MLIR operation are available, the table can be
updated to generate them.
This change removes dependency on pgmath mod, and also allows
Fortran runtime to issue a diagnostic message in case of zero
denominator.
Differential Revision: https://reviews.llvm.org/D131192
The semantic checks and runtime have been supported. This supports the
lowering of intrinsic ABORT.
`gfortran` prints a backtrace before abort, unless `-fno-backtrace` is
given. This is good to use. The intrinsic BACKTRACE is not supported
yet, so add TODO in the runtime.
This extention is needed in SPEC2017 521.wrf_r in
https://github.com/llvm/llvm-project/issues/55955.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D130439
As Fortran 2018 18.2.3.6, the intrinsic `c_loc(x)` gets the C address
of argument `x`. It returns the scalar of type C_PTR. As defined in
iso_c_binding in `flang/module/__fortran_builtins.f90`, C_PTR is the
derived type with only one component of integer 64.
This supports the lowering of intrinsic module procedure `c_loc` by
converting the address of argument into integer 64, where the argument
is lowered as Box and the address is generated using fir.box_addr.
The lowering of intrinsic `c_funloc` has the similar characteristic and
will be supported later.
The execution tests for various data types are in issue
https://github.com/llvm/llvm-project/issues/56552.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D129659
This patch refactors the runtime support for GET_COMMAND_ARGUMENT to
have a single entry point instead of 2. It also updates lowering
accordingly.
This makes it easier to handle dynamically optional arguments. See also
https://reviews.llvm.org/D118777
Differential Revision: https://reviews.llvm.org/D130475
The fp128 in llvm.round and llvm.trunc is not supported in X86_64 for
now. Revert the support. To support quad precision for llvm.round and
llvm.trunc, it may should be supported using runtime.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D130556
As Fortran 2018 16.9.169, the argument of selected_int_kind is integer
scalar, and result is default integer scalar. The constant expression in
this intrinsic has been supported by folding the constant expression.
This supports lowering and runtime for variables in this intrinsic.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D129959
As Fortran 2018 16.9.170, the argument of `selected_real_kind` is integer
scalar, and result is default integer scalar. The constant expression in
this intrinsic has been supported by folding the constant expression.
This supports lowering this intrinsic for variables using runtime.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D130183
For aint/anint, LLVM conversion operations llvm.trunc and llvm.round
can support the edge case of aint(-0.) and anint(-0.). The output is -0.
and it is the same of `gfortran` and `classic flang`, while the output
of `ifort` is 0.. The `real(10)/real(16)` is not supported before.
Support it and remove the runtime functions for aint/anint.
For nint, `gfortran`, `ifort`, and LLVM Flang using llvm.lround have
different results when the magnitude of argument is more than the max of
result value range. So delay its support in lowering after more
investigations.
Reviewed By: vzakhari
Differential Revision: https://reviews.llvm.org/D130024
This commit changes how math intrinsics are lowered: we, first,
try to lower them into MLIR operations or libm calls via
mathOperations table and only then fallback to pgmath runtime calls.
The pgmath fallback is needed, because mathOperations does not
support all intrinsics that pgmath supports. The main purpose
of this change is to get rid of llvmIntrinsics table so that
we do not have to update both llvmIntrinsics and mathOperations
when adding new intrinsic support.
mathOperations lowering should phase out pgmath lowering, when
more operations are available (e.g. power operations being
added in D129809 and D129811; complex type operations from
Complex dialect).
Differential Revision: https://reviews.llvm.org/D130129
Lower F08 shift (shiftl, shiftr, shifta) and combined shift (dshiftl, dshiftr)
intrinsics. The combined shift intrinsics are implemented using the
definitions of shiftl and shiftr as described by the standard.
For non-conformant arguments to the shift intrinsics, the implementation tries
to replicate the behavior of other compilers if most of the other behave
consistently.
Differential Revision: https://reviews.llvm.org/D129316
Lower F08 bit population count intrinsics popcnt, poppar, leadz and trailz. popcnt, leadz and trailz are implemented using the corresponding MLIR math intrinsics. poppar is implemented in terms of popcnt.
Differential Revision: https://reviews.llvm.org/D129584
mathOperations should now support all intrinsics that are handled
by the llvmIntrinsics table + `tan` lowered as Math dialect operation +
f128 flavor of abs.
I am going to flip the default to late math lowering after this change,
but still keep the fallback via pgmath. This will allow getting rid
of the llvmIntrinsics table and continue populating
only the mathOperations table, otherwise, updating both tables
seems to be inconvenient.
Differential Revision: https://reviews.llvm.org/D130048
This patch implements lowering for the F08 bitwise comparison intrinsics
(BGE, BGT, BLE and BLT).
This does not create any runtime functions since the functionality is
simple enough to carry out in IR.
The existing semantic check has been changed because it unconditionally
converted the arguments to the largest possible integer type. This
resulted in the argument with the smaller bit-size being sign-extended.
However, the standard requires the argument with the smaller bit-size to
be zero-extended.
Reviewed By: klausler, jeanPerier
Differential Revision: https://reviews.llvm.org/D127805
The check to see if the arguments for the MIN/MAX intrinsics were of CHARACTER
type was not handling assumed length characters. In this case, the FIR type is
"!fir.ref<!fir.char<1,?>>".
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128922
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
The original assertion is not necessarily correct since the shape
argument may involve a slice of an array (an expression) and not a whole
vector with constant length. In the presence of a slice operation, the
size must be computed (left as a TODO for now).
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128894
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Added new -lower-math-early option that defaults to 'true' that matches
the current math lowering scheme. If set to 'false', the intrinsic math
operations will be lowered to MLIR operations, which should potentially
enable more MLIR optimizations, or libm calls, if there is no corresponding
MLIR operation exists or if "precise" mode is requested.
The generated math MLIR operations are then converted to LLVM dialect
during codegen phase.
The -lower-math-early option is not exposed to users currently. I plan to
get rid of the "early" lowering completely, when "late" lowering
is robust enough to support all math intrinsics that are currently
supported via pgmath. So "late" mode will become default and -lower-math-early
option will not be needed. This will effectively eliminate the mandatory
dependency on pgmath in Fortran lowering, but this is WIP.
Differential Revision: https://reviews.llvm.org/D128385
In merge FSOURCE and TSOURCE must have the same Fortran dynamic types,
but this does not imply that FSOURCE and TSOURCE will be lowered to the
same MLIR types. For instance, TSOURCE may be a character expression
with a compile type constant length (!fir.char<1,4>) while FSOURCE may
have dynamic length (!fir.char<1,?>).
Cast FSOURCE to TSOURCE MLIR types to handle these cases.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128507
Co-authored-by: Jean Perier <jperier@nvidia.com>
LBOUND with a non constant DIM argument use the runtime to allow runtime
verification of DIM <= RANK. The interface uses a descriptor. This caused
undefined behavior because the runtime believed it was seeing an explicit
shape arrays with zero extent and returned `1` (the runtime descriptor
does not allow making a difference between an explicit shape and an
assumed size. Assumed size are not meant to be described by runtime
descriptors).
Fix the issue by setting the last extent of assumed size to `1` when
creating the descriptor to inquire about the LBOUND with the runtime.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128509
Co-authored-by: Jean Perier <jperier@nvidia.com>
* Make Semantics test doconcurrent01.f90 an expected failure pending a fix
for a problem in recognizing a PURE prefix specifier for a specific procedure
that occurs in new intrinsic module source code,
* review update
* review update
* Increase support for intrinsic module procedures
The f18 standard defines 5 intrinsic modules that define varying numbers
of procedures, including several operators:
2 iso_fortran_env
55 ieee_arithmetic
10 ieee_exceptions
0 ieee_features
6 iso_c_binding
There are existing fortran source files for each of these intrinsic modules.
This PR adds generic procedure declarations to these files for procedures
that do not already have them, together with associated specific procedure
declarations. It also adds the capability of recognizing intrinsic module
procedures in lowering code, making it possible to use existing language
intrinsic code generation for intrinsic module procedures for both scalar
and elemental calls. Code can then be generated for intrinsic module
procedures using existing options, including front end folding, direct
inlining, and calls to runtime support routines. Detailed code generation
is provided for several procedures in this PR, with others left to future PRs.
Procedure calls that reach lowering and don't have detailed implementation
support will generate a "not yet implemented" message with a recognizable name.
The generic procedures in these modules may each have as many as 36 specific
procedures. Most specific procedures are generated via macros that generate
type specific interface declarations. These specific declarations provide
detailed argument information for each individual procedure call, similar
to what is done via other means for standard language intrinsics. The
modules only provide interface declarations. There are no procedure
definitions, again in keeping with how language intrinsics are processed.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128431
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
system_clock intrinsic calls with dynamically optional arguments
Modify intrinsic system_clock calls to allow for an argument that is optional
or a disassociated pointer or an unallocated allocatable. A call with such an
argument is the same as a call that does not specify that argument.
Rename (genIsNotNull -> genIsNotNullAddr) and (genIsNull -> genIsNullAddr)
and add a use of genIsNotNullAddr.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D127616
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Remove a backwards dependence from Optimizer -> Lower by moving Todo.h
to the optimizer and out of lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127292
The lowering code was mistakenly assuming that the second argument
in the signature provided by semantics is the DIM argument. This
caused calls with a KIND argument but no DIM to be lowered as if the
KIND argument was DIM.
Differential Revision: https://reviews.llvm.org/D124243
In some case the lowering of `ichar` is generating an `arith.extui` operation
with the same from/to type. This operation do not accept from/to types to be
the same. If the from/to types are identical, we do not generate the extra
operation.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D124107