Commit Graph

109 Commits

Author SHA1 Message Date
Fangrui Song a996cc217c Remove unused #include "llvm/ADT/Optional.h" 2022-12-05 06:31:11 +00:00
Kazu Hirata d49613f4d8 [Analysis] Use std::optional in CGSCCPassManager.cpp (NFC)
This is part of an effort to migrate from llvm::Optional to
std::optional:

https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
2022-11-25 10:18:53 -08:00
Arthur Eubanks 0cdd671df9 [CGSCC][DevirtWrapper] Properly handle invalidating analyses for invalidated SCCs
f77342693 handled the adaptor and pass manager but missed the devirt wrapper.
2022-09-29 09:55:23 -07:00
Arthur Eubanks f77342693b [CGSCC] Properly handle invalidating analyses for invalidated SCCs
Currently if we mark an SCC as invalid, if we haven't set UR.UpdatedC, we won't propagate the PreservedAnalyses up to the parent pass (adaptor/pass manager).

In the provided test case, we inline the function into itself then delete it as it has no users. The SCC is marked as invalid without providing a replacement UR.UpdatedC. Then the CGSCC pass manager and adaptor discard the PreservedAnalyses. Instead, handle PreservedAnalyses first before bailing due to the invalid SCC.

Fixes crashes due to out of date analyses.
2022-09-21 09:50:00 -07:00
Junduo Dong 6975ab7126 [Clang] Reimplement time tracing of NewPassManager by PassInstrumentation framework
The previous implementation of time tracing in NewPassManager is direct but messive.

The key codes are like the demo below:
```
  /// Runs the function pass across every function in the module.
  PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
                        LazyCallGraph &CG, CGSCCUpdateResult &UR) {
      /// ...
      PreservedAnalyses PassPA;
      {
        TimeTraceScope TimeScope(Pass.name());
        PassPA = Pass.run(F, FAM);
      }
      /// ...
 }
```

It can be bothered to judge where should we add the tracing codes by hands.

With the PassInstrumentation framework, we can easily add `Before/After` callback
functions to add time tracing codes.

Differential Revision: https://reviews.llvm.org/D131960
2022-09-11 05:42:55 -07:00
Fangrui Song dcad676958 [CGSCC] Use make_early_inc_range. NFC 2022-03-23 15:31:09 -07:00
Arthur Eubanks ddc702376a [NewPM] Don't skip SCCs not in current RefSCC
With D107249 I saw huge compile time regressions on a module (150s ->
5700s). This turned out to be due to a huge RefSCC in
the module. As we ran the function simplification pipeline on functions
in the SCCs in the RefSCC, some of those SCCs would be split out to
their RefSCC, a child of the current RefSCC. We'd skip the remaining
SCCs in the huge RefSCC because the current RefSCC is now the RefSCC
just split out, then revisit the original huge RefSCC from the
beginning.  This happened many times because many functions in the
RefSCC were optimizable to the point of becoming their own RefSCC.

This patch makes it so we don't skip SCCs not in the current RefSCC so
that we split out all the child RefSCCs on the first iteration of
RefSCC. When we split out a RefSCC, we invalidate the original RefSCC
and add the remainder of the SCCs into a new RefSCC in
RCWorklist. This happens repeatedly until we finish visiting all
SCCs, at which point there is only one valid RefSCC in
RCWorklist from the original RefSCC containing all the SCCs that
were not split out, and we visit that.

For example, in the newly added test cgscc-refscc-mutation-order.ll,
we'd previously run instcombine in this order:
f1, f2, f1, f3, f1, f4, f1

Now it's:
f1, f2, f3, f4, f1

This can cause more passes to be run in some specific cases,
e.g. if f1<->f2 gets optimized to f1<-f2, we'd previously run f1, f2;
now we run f1, f2, f2.

This improves kimwitu++ compile times by a lot (12-15% for various -O3 configs):
https://llvm-compile-time-tracker.com/compare.php?from=2371c5a0e06d22b48da0427cebaf53a5e5c54635&to=00908f1d67400cab1ad7bcd7cacc7558d1672e97&stat=instructions

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D121953
2022-03-18 14:16:29 -07:00
Florian Hahn f98125abb2
Revert "[PassManager] Add pretty stack entries before P->run() call."
This reverts commit 128745cc26.

This increased compile-time unnecessarily. Revert this change and follow
ups 2c7afadb47 & add0c5856d.

http://llvm-compile-time-tracker.com/compare.php?from=338dfcd60f843082bb589b287d890dbd9394eb82&to=128745cc2681c284bc6d0150a319673a6d6e8424&stat=instructions
2022-03-09 18:46:32 +00:00
Florian Hahn 128745cc26
[PassManager] Add pretty stack entries before P->run() call.
This patch adds PrettyStackEntries before running passes. The entries
include the pass name and the IR unit the pass runs on.

The information is used the print additional information when a pass
crashes, including the name and a reference to the IR unit on which it
crashed. This is similar to the behavior of the legacy pass manager.

The improved stack trace now includes:

Stack dump:
0.	Program arguments: bin/opt -loop-vectorize -force-vector-width=4 crash.ll
1.	Running pass 'ModuleToFunctionPassAdaptor' on module 'crash.ll'
2.	Running pass 'LoopVectorizePass' on function '@a'

Reviewed By: aeubanks

Differential Revision: https://reviews.llvm.org/D120993
2022-03-09 13:01:09 +00:00
serge-sans-paille 71c3a5519d Cleanup includes: LLVMAnalysis
Number of lines output by preprocessor:
before: 1065940348
after:  1065307662

Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D120659
2022-03-01 18:01:54 +01:00
Arthur Eubanks e3e25b5112 [NewPM] Add option to prevent rerunning function pipeline on functions in CGSCC adaptor
In a CGSCC pass manager, we may visit the same function multiple times
due to SCC mutations. In the inliner pipeline, this results in running
the function simplification pipeline on a function multiple times even
if it hasn't been changed since the last function simplification
pipeline run.

We use a newly introduced analysis to keep track of whether or not a
function has changed since the last time the function simplification
pipeline has run on it. If we see this analysis available for a function
in a CGSCCToFunctionPassAdaptor, we skip running the function passes on
the function. The analysis is queried at the end of the function passes
so that it's available after the first time the function simplification
pipeline runs on a function. This is a per-adaptor option so it doesn't
apply to every adaptor.

The goal of this is to improve compile times. However, currently we
can't turn this on by default at least for the higher optimization
levels since the function simplification pipeline is not robust enough
to be idempotent in many cases, resulting in performance regressions if
we stop running the function simplification pipeline on a function
multiple times. We may be able to turn this on for -O1 in the near
future, but turning this on for higher optimization levels would require
more investment in the function simplification pipeline.

Heavily inspired by D98103.

Example compile time improvements with flag turned on:
https://llvm-compile-time-tracker.com/compare.php?from=998dc4a5d3491d2ae8cbe742d2e13bc1b0cacc5f&to=5c27c913687d3d5559ef3ab42b5a3d513531d61c&stat=instructions

Reviewed By: asbirlea, nikic

Differential Revision: https://reviews.llvm.org/D113947
2021-11-17 09:06:46 -08:00
Arthur Eubanks 19867de9e7 [NewPM] Only invalidate modified functions' analyses in CGSCC passes + turn on eagerly invalidate analyses
Previously, any change in any function in an SCC would cause all
analyses for all functions in the SCC to be invalidated. With this
change, we now manually invalidate analyses for functions we modify,
then let the pass manager know that all function analyses should be
preserved since we've already handled function analysis invalidation.

So far this only touches the inliner, argpromotion, function-attrs, and
updateCGAndAnalysisManager(), since they are the most used.

This is part of an effort to investigate running the function
simplification pipeline less on functions we visit multiple times in the
inliner pipeline.

However, this causes major memory regressions especially on larger IR.
To counteract this, turn on the option to eagerly invalidate function
analyses. This invalidates analyses on functions immediately after
they're processed in a module or scc to function adaptor for specific
parts of the pipeline.

Within an SCC, if a pass only modifies one function, other functions in
the SCC do not have their analyses invalidated, so in later function
passes in the SCC pass manager the analyses may still be cached. It is
only after the function passes that the eager invalidation takes effect.
For the default pipelines this makes sense because the inliner pipeline
runs the function simplification pipeline after all other SCC passes
(except CoroSplit which doesn't request any analyses).

Overall this has mostly positive effects on compile time and positive effects on memory usage.
https://llvm-compile-time-tracker.com/compare.php?from=7f627596977624730f9298a1b69883af1555765e&to=39e824e0d3ca8a517502f13032dfa67304841c90&stat=instructions
https://llvm-compile-time-tracker.com/compare.php?from=7f627596977624730f9298a1b69883af1555765e&to=39e824e0d3ca8a517502f13032dfa67304841c90&stat=max-rss

D113196 shows that we slightly regressed compile times in exchange for
some memory improvements when turning on eager invalidation.  D100917
shows that we slightly improved compile times in exchange for major
memory regressions in some cases when invalidating less in SCC passes.
Turning these on at the same time keeps the memory improvements while
keeping compile times neutral/slightly positive.

Reviewed By: asbirlea, nikic

Differential Revision: https://reviews.llvm.org/D113304
2021-11-15 14:44:53 -08:00
Arthur Eubanks 7175886a0f [NewPM] Make eager analysis invalidation per-adaptor
Follow-up change to D111575.
We don't need eager invalidation on every adaptor. Most notably,
adaptors running passes that use very few analyses, or passes that
purely invalidate specific analyses.

Also allow testing of this via a pipeline string
"function<eager-inv>()".

The compile time/memory impact of this is very comparable to D111575.
https://llvm-compile-time-tracker.com/compare.php?from=9a2eec512a29df45c90c2fcb741e9d5c693b1383&to=b9f20bcdea138060967d95a98eab87ce725b22bb&stat=instructions

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D113196
2021-11-04 17:16:11 -07:00
Arthur Eubanks b8ce97372d [NewPM] Add PipelineTuningOption to eagerly invalidate analyses
This trades off more compile time for less peak memory usage. Right now
it invalidates all function analyses after a module->function or
cgscc->function adaptor.

https://llvm-compile-time-tracker.com/compare.php?from=1fb24fe85a19ae71b00875ff6c96ef1831dcf7e3&to=cb28ddb063c87f0d5df89812ab2de9a69dd276db&stat=instructions
https://llvm-compile-time-tracker.com/compare.php?from=1fb24fe85a19ae71b00875ff6c96ef1831dcf7e3&to=cb28ddb063c87f0d5df89812ab2de9a69dd276db&stat=max-rss

For now this is just experimental.

See comments on why this may affect optimizations.

Reviewed By: asbirlea, nikic

Differential Revision: https://reviews.llvm.org/D111575
2021-10-18 13:20:35 -07:00
Arthur Eubanks 0db9481208 [NFC] Remove FIXMEs about calling LLVMContext::yield()
Nobody has complained about this, and the documentation for
LLVMContext::yield() states that LLVM is allowed to never call it.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D110008
2021-09-17 14:59:34 -07:00
Arthur Eubanks 6cbb35dd3b [NewPM] Bail out of devirtualization wrapper if the current SCC is invalidated
The specific case that triggered this was when inlining a recursive
internal function into itself caused the recursion to go away, allowing
the inliner to mark the function as dead. The inliner marks the SCC as
invalidated but does not provide a new SCC to continue with.

This matches the implementations of ModuleToPostOrderCGSCCPassAdaptor
and CGSCCPassManager.

Fixes PR50363.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D106306
2021-07-19 15:07:30 -07:00
Arthur Eubanks f7788e1bff Revert "[NewPM] Only invalidate modified functions' analyses in CGSCC passes"
This reverts commit d14d84af2f.

Causes unacceptable memory regressions.
2021-05-21 16:38:03 -07:00
Arthur Eubanks a52530dd6a Revert "[NPM] Do not run function simplification pipeline unnecessarily"
This reverts commit 97ab068034.

Depends on D100917, which is to be reverted.
2021-05-21 16:38:02 -07:00
Arthur Eubanks 34a8a437bf [NewPM] Hide pass manager debug logging behind -debug-pass-manager-verbose
Printing pass manager invocations is fairly verbose and not super
useful.

This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.

This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D101797
2021-05-07 21:51:47 -07:00
Mircea Trofin 97ab068034 [NPM] Do not run function simplification pipeline unnecessarily
The CGSCC pass manager interplay with the FunctionAnalysisManagerCGSCCProxy is 'special' in the sense that the former will rerun the latter if there are changes to a SCC structure; that being said, some of the functions in the SCC may be unchanged. In that case, the function simplification pipeline will be re-run, which impacts compile time[1].

This patch allows the function simplification pipeline be skipped if it was already run and the function was not modified since.

The behavior is currently disabled by default. This is because, currently, the rerunning of the function simplification pipeline on an unchanged function may still result in changes. The patch simplifies investigating and fixing those cases where repeated function pass runs do actually positively impact code quality, while offering an easy workaround for those impacted negatively by compile time regressions, and not impacting mainline scenarios.

[1] A [[ http://llvm-compile-time-tracker.com/compare.php?from=eb37d3546cd0c6e67798496634c45e501f7806f1&to=ac722d1190dc7bbdd17e977ef7ec95e69eefc91e&stat=instructions | compile time tracker ]] run with the option enabled.

Differential Revision: https://reviews.llvm.org/D98103
2021-05-06 12:24:33 -07:00
Arthur Eubanks d14d84af2f [NewPM] Only invalidate modified functions' analyses in CGSCC passes
Previously, any change in any function in an SCC would cause all
analyses for all functions in the SCC to be invalidated. With this
change, we now manually invalidate analyses for functions we modify,
then let the pass manager know that all function analyses should be
preserved.

So far this only touches the inliner, argpromotion, funcattrs, and
updateCGAndAnalysisManager(), since they are the most used.

Slight compile time improvements:
http://llvm-compile-time-tracker.com/compare.php?from=326da4adcb8def2abdd530299d87ce951c0edec9&to=8942c7669f330082ef159f3c6c57c3c28484f4be&stat=instructions

Reviewed By: mtrofin

Differential Revision: https://reviews.llvm.org/D100917
2021-05-03 17:21:44 -07:00
Mircea Trofin 92ccc6cb17 Reapply "[NPM][CGSCC] FunctionAnalysisManagerCGSCCProxy: do not clear immutable function passes"
This reverts commit 11b70b9e3a.

The bot failure was due to ArgumentPromotion deleting functions
without deleting their analyses. This was separately fixed in 4b1c807.
2021-03-18 09:44:34 -07:00
Bardia Mahjour fa9d8ace09 [CGSCC] Print CG node itself instead of its address
Fix the debug output from cgscc
2021-03-17 12:36:55 -04:00
Mircea Trofin 11b70b9e3a Revert "[NPM][CGSCC] FunctionAnalysisManagerCGSCCProxy: do not clear immutable function passes"
This reverts commit 5eaeb0fa67.

It appears there are analyses that assume clearing - example:
https://lab.llvm.org/buildbot#builders/36/builds/5964
2021-03-11 18:31:19 -08:00
Mircea Trofin 5eaeb0fa67 [NPM][CGSCC] FunctionAnalysisManagerCGSCCProxy: do not clear immutable function passes
Check with the analysis result by calling invalidate instead of clear on
the analysis manager.

Differential Revision: https://reviews.llvm.org/D98440
2021-03-11 18:15:28 -08:00
Arthur Eubanks 468fa037b2 Only verify LazyCallGraph under expensive checks
These verify calls are causing a lot of slowdown on some files, up to 8x.
The LazyCallGraph infra has been tested a lot over the years, so I'm fairly confident that we don't always need to run the verifys.

These verifies took >90% of total time in one of the compilations I looked at.

Reviewed By: thakis

Differential Revision: https://reviews.llvm.org/D97225
2021-02-22 20:18:59 -08:00
Kazu Hirata 4ed47858ab [llvm] Use llvm::drop_begin (NFC) 2021-02-22 20:17:16 -08:00
Kazu Hirata 2082b10d10 [llvm] Use *::empty (NFC) 2021-01-16 09:40:55 -08:00
Arthur Eubanks 7fea561eb1 [CGSCC][Coroutine][NewPM] Properly support function splitting/outlining
Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.

Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.

In order to properly support CoroSplit, there are two ways functions can
be split out.

One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.

The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.

This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.

The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.

This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D93828
2021-01-06 11:19:15 -08:00
Kazu Hirata 3285ee143b [Analysis, IR, CodeGen] Use llvm::erase_if (NFC) 2020-12-20 09:19:35 -08:00
Arthur Eubanks c80e193587 [NFC] Inline maxDevirtIterationsReached()
This was separated in the past because the cl::opt was in the .cpp file
but DevirtSCCRepeatedPass::run() was in the .h file. Now that
DevirtSCCRepeatedPass::run() is in the .cpp file, get rid of the tiny
maxDevirtIterationsReached(), it's bad for readability.
2020-12-10 22:12:29 -08:00
Arthur Eubanks 7f6f9f4cf9 [NewPM] Make pass adaptors less templatey
Currently PassBuilder.cpp is by far the file that takes longest to
compile. This is due to tons of templates being instantiated per pass.

Follow PassManager by using wrappers around passes to avoid making
the adaptors templated on the pass type. This allows us to move various
adaptors' run methods into .cpp files.

This reduces the compile time of PassBuilder.cpp on my machine from 66
to 39 seconds. It also reduces the size of opt from 685M to 676M.

Reviewed By: dexonsmith

Differential Revision: https://reviews.llvm.org/D92616
2020-12-04 08:30:50 -08:00
Arthur Eubanks aff058b1a9 Reland [CGSCC] Detect devirtualization in more cases
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.

This fixes some tests testing this exact behavior in the legacy PM.

Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.

check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).

http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.

The initial land assumed CallBase WeakTrackingVHs would always be
CallBases, but they can be RAUW'd with undef.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D89587
2020-11-23 21:28:59 -08:00
Arthur Eubanks 6a2799cf8e Revert "[CGSCC] Detect devirtualization in more cases"
This reverts commit 14a68b4aa9.

Causes building self hosted clang to crash when using NPM.
2020-11-23 13:21:05 -08:00
Arthur Eubanks 14a68b4aa9 [CGSCC] Detect devirtualization in more cases
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.

This fixes some tests testing this exact behavior in the legacy PM.

Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.

check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).

http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D89587
2020-11-23 11:55:20 -08:00
Simon Pilgrim eef203dbdf [Analysis] CGSCCPassManager.cpp - fix Wshadow warnings. NFCI. 2020-11-18 09:59:31 +00:00
Arthur Eubanks d9cbceb041 [CGSCC][Inliner] Handle new non-trivial edges in updateCGAndAnalysisManagerForPass
Previously the inliner did a bit of a hack by adding ref edges for all
new edges introduced by performing an inline before calling
updateCGAndAnalysisManagerForPass(). This was because
updateCGAndAnalysisManagerForPass() didn't handle new non-trivial call
edges.

This adds handling of non-trivial call edges to
updateCGAndAnalysisManagerForPass().  The inliner called
updateCGAndAnalysisManagerForFunctionPass() since it was handling adding
newly introduced edges (so updateCGAndAnalysisManagerForPass() would
only have to handle promotion), but now it needs to call
updateCGAndAnalysisManagerForCGSCCPass() since
updateCGAndAnalysisManagerForPass() is now handling the new call edges
and function passes cannot add new edges.

We follow the previous path of adding trivial ref edges then letting promotion
handle changing the ref edges to call edges and the CGSCC updates. So
this still does not allow adding call edges that result in an addition
of a non-trivial ref edge.

This is in preparation for better detecting devirtualization. Previously
since the inliner itself would add ref edges,
updateCGAndAnalysisManagerForPass() would think that promotion and thus
devirtualization had happened after any sort of inlining.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D91046
2020-11-11 13:43:49 -08:00
Arthur Eubanks 5668eda864 Revert "[CGSCC] Detect devirtualization in more cases"
This reverts commit 3024fe5b55.

Causes major compile time regressions:
https://llvm-compile-time-tracker.com/compare.php?from=3b8d8954bf2c192502d757019b9fe434864068e9&to=3024fe5b55ed72633915f613bd5e2826583c396f&stat=instructions
2020-10-23 09:53:52 -07:00
Arthur Eubanks 3024fe5b55 [CGSCC] Detect devirtualization in more cases
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.

This fixes some tests testing this exact behavior in the legacy PM.

This piggybacks off of updateCGAndAnalysisManagerForPass()'s detection
of promoted ref to call edges.

This supercedes one of the previous mechanisms to detect
devirtualization by keeping track of potentially promoted call
instructions via WeakTrackingVHs.

There is one more existing way of detecting devirtualization, by
checking if the number of indirect calls has decreased and the number of
direct calls has increased in a function. It handles cases where calls
to functions without definitions are promoted, and some tests rely on
that. LazyCallGraph doesn't track edges to functions without
definitions so this part can't be removed in this change.

check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D89587
2020-10-22 19:44:22 -07:00
Arthur Eubanks faf5210420 [CGSCC] Add -abort-on-max-devirt-iterations-reached option
Aborts if we hit the max devirtualization iteration.
Will be useful for testing that changes to devirtualization don't cause
devirtualization to repeat passes more times than necessary.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D89519
2020-10-16 12:34:52 -07:00
Arthur Eubanks 6b1ce83a12 [NewPM][CGSCC] Handle newly added functions in updateCGAndAnalysisManagerForPass
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.

However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.

This also fixes an issue I was seeing with newly created functions not
having passes run on them.

Ran check-llvm with expensive checks.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D87798
2020-09-23 15:22:18 -07:00
Yevgeny Rouban 18bc400f97 [NewPM][PassInstrumentation] Add PreservedAnalyses parameter to AfterPass* callbacks
Both AfterPass and AfterPassInvalidated pass instrumentation
callbacks get additional parameter of type PreservedAnalyses.
This patch was created by @fedor.sergeev. I have just slightly
changed it.

Reviewers: fedor.sergeev

Differential Revision: https://reviews.llvm.org/D81555
2020-08-21 16:10:42 +07:00
Yuanfang Chen 555cf42f38 [NewPM][PassInstrument] Add PrintPass callback to StandardInstrumentations
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.

Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)

This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.

This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.

The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)

Reviewed By: asbirlea, aeubanks

Differential Revision: https://reviews.llvm.org/D84774
2020-07-30 10:07:57 -07:00
Yuanfang Chen c4b1daed1d [NewPM] Move debugging log printing after PassInstrumentation before-pass-callbacks
For passes got skipped, this is confusing because the log said it is `running pass`
but it is skipped later.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D82511
2020-06-25 10:03:25 -07:00
Alina Sbirlea bd541b217f [NewPassManager] Add assertions when getting statefull cached analysis.
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.

Reviewers: chandlerc

Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72893
2020-05-13 12:38:38 -07:00
Mircea Trofin 447e2c3067 [llvm][NFC][CallSite] Remove Implementation uses of CallSite
Reviewers: dblaikie, davidxl, craig.topper

Subscribers: arsenm, dschuff, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78142
2020-04-14 14:49:47 -07:00
Andrew Monshizadeh c5a06019d2 Extend TimeTrace to LLVM's new pass manager
With the addition of the LLD time tracing it made sense to include coverage
for LLVM's various passes. Doing so ensures that ThinLTO is also covered
with a time trace.

Before:
{F11333974}

After:
{F11333928}

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D74516
2020-03-06 14:45:19 -08:00
Reid Kleckner 105642af5e Add PassManagerImpl.h to hide implementation details
ClangBuildAnalyzer results show that a lot of time is spent
instantiating AnalysisManager::getResultImpl across the code base:

**** Templates that took longest to instantiate:
 50445 ms: llvm::AnalysisManager<llvm::Function>::getResultImpl (412 times, avg 122 ms)
 47797 ms: llvm::AnalysisManager<llvm::Function>::getResult<llvm::TargetLibraryAnalysis> (389 times, avg 122 ms)
 46894 ms: std::tie<const unsigned long long, const bool> (2452 times, avg 19 ms)
 43851 ms: llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, 4096, 4096>::Allocate (3228 times, avg 13 ms)
 33911 ms: std::tie<const unsigned int, const unsigned int, const unsigned int, const unsigned int> (897 times, avg 37 ms)
 33854 ms: std::tie<const unsigned long long, const unsigned long long> (1897 times, avg 17 ms)
 27886 ms: std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string (11156 times, avg 2 ms)

I mentioned this result to @chandlerc, and he suggested this direction.

AnalysisManager is already explicitly instantiated, and getResultImpl
doesn't need to be inlined. Move the definition to an Impl header, and
include that header in files that explicitly instantiate
AnalysisManager. There are only four (real) IR units:
- function
- module
- loop
- cgscc

Looking at a specific transform (ArgumentPromotion.cpp), here are three
compilations before & after this change:

BEFORE:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 258.15MB
real: 0m6.297s
peak memory: 257.54MB
real: 0m5.906s
peak memory: 257.47MB
real: 0m6.219s

AFTER:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 235.35MB
real: 0m5.454s
peak memory: 234.72MB
real: 0m5.235s
peak memory: 234.39MB
real: 0m5.469s

The 20MB of memory saved seems real, and the time improvement seems like
it is there.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D73817
2020-02-03 11:15:55 -08:00
Martin Storsjö f867c8e81f [PM][CGSCC] Add parentheses to avoid a GCC warning. NFC.
This avoids a warning about "suggest parentheses around && within ||".
2020-02-03 09:55:02 +02:00
Johannes Doerfert 0137745308 [PM][CGSCC] Add a helper to update the call graph from SCC passes
With this patch new trivial edges can be added to an SCC in a CGSCC
pass via the updateCGAndAnalysisManagerForCGSCCPass method. It shares
almost all the code with the existing
updateCGAndAnalysisManagerForFunctionPass method but it implements the
first step towards the TODOs.

This was initially part of D70927.

Reviewed By: JonChesterfield

Differential Revision: https://reviews.llvm.org/D72025
2020-02-02 23:32:18 -06:00