+/-0 is obviously foldable. Other non-special, non-subnormal
values are also probably OK. For denormal values, check
the calling function's denormal mode. For now, don't fold
denormals to the input for IEEE mode because as far as I know
the langref is still pretending LLVM's float isn't IEEE.
Also folds undef to 0, although NaN may make more sense. Skips
folding nans and infinities, although it should be OK to fold those
in a future change.
Follow-up to 7f1262a322. That patch avoided removing the
call, but it still allowed the constant-folded result. This
makes the behavior consistent with 1-arg libm folding: if the
call potentially raises an exception, then we just bail out.
It seems likely that there are other corner-cases like this,
but the tests are incomplete, so we have lived with these
discrepancies for a long time. This was untested before the
the constant folding was expanded in D127964.
These may raise an error (set errno) as discussed in the post-commit
comments for D127964, so we can't fold away the call and potentially
alter that behavior.
From the opengroup specifications, atan2 may fail if the result
underflows and atan may fail if the argument is subnormal, but
we assume that does not happen and eliminate the calls if we
can constant fold the result at compile-time.
Differential Revision: https://reviews.llvm.org/D127964
Given a poison constant as input, the dyn_cast to a ConstantInt would
fail so we would fall through to the generic code that attempts to fold
each element of the input vectors. The inputs to these intrinsics are
not vectors though, leading to a compile time crash. Instead bail out
properly for poison values by returning nullptr. This doesn't try to
define what poison means for these intrinsics.
Fixes#56945
Check that the operation actually folded before trying to flush
denormals. A minor variation of the pr33453 test exposed this
with the FP binops marked as undesirable.
This removes creation of udiv/sdiv/urem/srem constant expressions,
in preparation for their removal. I've added a
ConstantExpr::isDesirableBinOp() predicate to determine whether
an expression should be created for a certain operator.
With this patch, div/rem expressions can still be created through
explicit IR/bitcode, forbidding them entirely will be the next step.
Differential Revision: https://reviews.llvm.org/D128820
This operation is fallible, but ConstantFoldConstantImpl() is not.
If we fail to fold, we should simply return the original expression.
I don't think this can cause any issues right now, but it becomes
a problem if once make ConstantFoldInstOperandsImpl() not create a
constant expression for everything it possibly could.
Handle denormal constant input for fcmp instructions based on the
denormal handling mode.
Reviewed By: spatel, dcandler
Differential Revision: https://reviews.llvm.org/D128647
In preparation for the removal in D128719, this stops creating
insertvalue constant expressions (well, unless they are directly
used in LLVM IR).
Differential Revision: https://reviews.llvm.org/D128792
This allows all constant folding to happen through a single
function, without requiring special handling for loads at each
call-site.
This may not be NFC because some callers currently don't do that
special handling.
Support compares in ConstantFoldInstOperands(), instead of
forcing the use of ConstantFoldCompareInstOperands(). Also handle
insertvalue (extractvalue was already handled).
This removes a footgun, where many uses of ConstantFoldInstOperands()
need a separate check for compares beforehand. It's particularly
insidious if called on a constant expression, because it doesn't
fail in that case, but will just not do DL-dependent folding.
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
Remove the known limitation of the library function call folders to only
work with top-level arrays of characters (as per the TODO comment in
the code) and allows them to also fold calls involving subobjects of
constant aggregates such as member arrays.
Depending on the environment, a floating point instruction should
treat denormal inputs as zero, and/or flush a denormal output to zero.
Denormals are not currently accounted for when an instruction gets
folded to a constant, which can lead to differences in output between
a folded and a unfolded instruction when running on the target. The
denormal handling mode can be set by the function level attribute
denormal-fp-math, which this patch uses to determine whether any
denormal inputs to or outputs from folding should be zero, and that
the sign is set appropriately.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D116952
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
This adds fptosi_sat and fptoui_sat to the list of trivially
vectorizable functions, mainly so that the loop vectorizer can vectorize
the instruction. Marking them as trivially vectorizable also allows them
to be SLP vectorized, and Scalarized.
The signature of a fptosi_sat requires two type overrides
(@llvm.fptosi.sat.v2i32.v2f32), unlike other intrinsics that often only
take a single. This patch alters hasVectorInstrinsicOverloadedScalarOpd
to isVectorIntrinsicWithOverloadTypeAtArg, so that it can mark the first
operand of the intrinsic as a overloaded (but not scalar) operand.
Differential Revision: https://reviews.llvm.org/D124358
ConstantFolding currently converts "getelementptr i8, Ptr, (sub 0, V)"
to "inttoptr (sub (ptrtoint Ptr), V)". This transform is, taken by
itself, correct, but does came with two issues:
1. It unnecessarily broadens provenance by introducing an inttoptr.
We generally prefer not to introduce inttoptr during optimization.
2. For the case where V == ptrtoint Ptr, this folds to inttoptr 0,
which further folds to null. In that case provenance becomes
incorrect. This has been observed as a real-world miscompile with
rustc.
We should probably address that incorrect inttoptr 0 fold at some
point, but in either case we should also drop this inttoptr-introducing
fold. Instead, replace it with a fold rooted at
ptrtoint(getelementptr), which seems to cover the original
motivation for this fold (test2 in the changed file).
Differential Revision: https://reviews.llvm.org/D124677
The change fixes treatment of constrained compare intrinsics if
compared values are of vector type.
Differential revision: https://reviews.llvm.org/D110322
This patch fixes an invalid TypeSize->uint64_t implicit conversion in
FoldReinterpretLoadFromConst. If the size of the constant is scalable
we bail out of the optimisation for now.
Tests added here:
Transforms/InstCombine/load-store-forward.ll
Differential Revision: https://reviews.llvm.org/D120240
A more general enhancement needs to add tests and make sure
that intrinsics that return structs are correct. There are also
target-specific intrinsics, and I'm not sure what behavior is
expected for those.
A more general enhancement needs to add tests and make sure
that intrinsics that return structs are correct. There are also
target-specific intrinsics, and I'm not sure what behavior is
expected for those.
The change implements constant folding of ‘llvm.experimental.constrained.fcmp’
and ‘llvm.experimental.constrained.fcmps’ intrinsics.
Differential Revision: https://reviews.llvm.org/D110322
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
The behavior in Analysis (knownbits) implements poison semantics already,
and we expect the transforms (for example, in instcombine) derived from
those semantics, so this patch changes the LangRef and remaining code to
be consistent. This is one more step in removing "undef" from LLVM.
Without this, I think https://github.com/llvm/llvm-project/issues/53330
has a legitimate complaint because that report wants to allow subsequent
code to mask off bits, and that is allowed with undef values. The clang
builtins are not actually documented anywhere AFAICT, but we might want
to add that to remove more uncertainty.
Differential Revision: https://reviews.llvm.org/D117912
Peculiarly, the necessary code to handle pointers (including the
check for non-integral address spaces) is already in place,
because we were already allowing vectors of pointers here, just
not plain pointers.
Following up on 1470f94d71 (r63981173):
The result here (probably) depends on endianness. Don't bother
trying to handle this exotic case, just bail out.
The reinterpret load code will convert undef values into zero.
Check the uniform value case before it to produce a better result
for all-undef initializers.
However, the uniform value handling will return the uniform value
even if the access is out of bounds, while the reinterpret load
code will return undef. Add an explicit check to retain the
previous result in this case.
In particular, this also preserves undef when loading from padding,
rather than converting it to zero through a different codepath.
This is the remaining part of D115924.
There are a number of places that specially handle loads from a
uniform value where all the bits are the same (zero, one, undef,
poison), because we a) don't care about the load offset in that
case b) it bypasses casts that might not be legal generally but
do work with uniform values.
We had multiple implementations of this, with a different set of
supported values each time. This replaces two usages with a more
complete helper. Other usages will be replaced separately, because
they have larger impact.
This is part of D115924.
We can fold an equality or unsigned icmp between base+offset1 and
base+offset2 with inbounds offsets by comparing the offsets directly.
This replaces a pair of specialized folds that tried to reason
based on the GEP structure instead. One of those folds was plain
wrong (because it does not account for negative offsets), while
the other is unnecessarily complicated and limited (e.g. it will
fail with bitcasts involved).
The disadvantage of this change is that it requires data layout,
so the fold is no longer performed by datalayout-independent
constant folding. I don't think this is a loss in practice, but
it does regress the ConstantExprFold.ll test, which checks folding
without running any passes.
Differential Revision: https://reviews.llvm.org/D116332
This fixes the assertion failure reported at
https://reviews.llvm.org/D114889#3198921 with a straightforward
check, until the cleaner fix in D115924 can be reapplied.