The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.
I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.
We chose the canonical type as i64 arbitrarily. We might consider changing this to something else in the future if we have cause.
Differential Revision: https://reviews.llvm.org/D115387
Drop changes to consecutive-ptr-uniforms.ll since that test checks boths IR output and debug messages. I'd missed this in the original commit, and Florian pointed it out in post-commit review.
Original commit message:
These are the ones my first round of scripting couldn't handle that required a bit of manual messaging. This should be the last batch in llvm-check.
This reverts commit bbba86764a.
This reverts commit bbfaf0b170.
Post commit review noted a case where my manual update lost intentional check lines. Given I've abandoned the motivating patch, I'm just reverting the autogen prep.
For the simple copy loop (see test case) vectorizer selects VF equal to 32 while the loop is known to have 17 iterations only. Such behavior makes no sense to me since such vector loop will never be executed. The only case we may want to select VF large than TC is masked vectoriztion. So I haven't touched that case.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D114528
Given a MLA reduction from two different types (say i8 and i16), we were
previously failing to find the reduction pattern, often making us chose
the lower vector factor. This improves that by using the largest of the
two extension types, allowing us to use the larger VF as the type of the
reduction.
As per https://godbolt.org/z/KP549EEYM the backend handles this
valiantly, leading to better performance.
Differential Revision: https://reviews.llvm.org/D115432
This patch simplifies handling of redundant induction casts, by
removing dead cast instructions after initial VPlan construction.
This has the following benefits:
1. fixes a crash
(see @test_optimized_cast_induction_feeding_first_order_recurrence)
2. Simplifies VPWidenIntOrFpInduction to a single-def recipes
3. Retires recordVectorLoopValueForInductionCast.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115112
This patch adds on an overhead cost for gathers and scatters, which
is a rough estimate based on performance investigations I have
performed on SVE hardware for various micro-benchmarks.
Differential Revision: https://reviews.llvm.org/D115143
I've added some tests that were previously missing for the gather-scatter costs
being calculated by the vectorizer for AArch64:
Transforms/LoopVectorize/AArch64/sve-gather-scatter-cost.ll
The costs are sometimes different to the ones in
Analysis/CostModel/AArch64/sve-gather.ll
because the vectorizer also adds on the address computation cost.
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D113294
If the condition of a select is a compare, pass its predicate to
TTI::getCmpSelInstrCost to get a more accurate cost value instead
of passing BAD_ICMP_PREDICATE.
I noticed that the commit message from D90070 had a comment about the
vectorized select predicate possibly being composed of other compares with
different predicate values, but I wasn't able to construct an example
where this was an actual issue. If this is an issue, I guess we could
add another check that the block isn't predicated for any reason.
Reviewed By: dmgreen, fhahn
Differential Revision: https://reviews.llvm.org/D114646
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.
This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.
The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.
Differential Revision: https://reviews.llvm.org/D114449
We ask `TTI.getAddressComputationCost()` about the cost of computing vector address,
and then multiply it by the vector width. This doesn't make any sense,
it implies that we'd do a vector GEP and then scalarize the vector of pointers,
but there is no such thing in the vectorized IR, we perform scalar GEP's.
This is *especially* bad on X86, and was effectively prohibiting any scalarized
vectorization of gathers/scatters, because `X86TTIImpl::getAddressComputationCost()`
says that cost of vector address computation is `10` as compared to `1` for scalar.
The computed costs are similar to the ones with D111222+D111220,
but we end up without masked memory intrinsics that we'd then have to
expand later on, without much luck. (D111363)
Differential Revision: https://reviews.llvm.org/D111460
collectLoopScalars should only add non-uniform nodes to the list if they
are used by a load/store instruction that is marked as CM_Scalarize.
Before this patch, the LV incorrectly marked pointer induction variables
as 'scalar' when they required to be widened by something else,
such as a compare instruction, and weren't used by a node marked as
'CM_Scalarize'. This case is covered by sve-widen-phi.ll.
This change also allows removing some code where the LV tried to
widen the PHI nodes with a stepvector, even though it was marked as
'scalarAfterVectorization'. Now that this code is more careful about
marking instructions that need widening as 'scalar', this code has
become redundant.
Differential Revision: https://reviews.llvm.org/D114373
In VPRecipeBuilder::handleReplication if we believe the instruction
is predicated we then proceed to create new VP region blocks even
when the load is uniform and only predicated due to tail-folding.
I have updated isPredicatedInst to avoid treating a uniform load as
predicated when tail-folding, which means we can do a single scalar
load and a vector splat of the value.
Tests added here:
Transforms/LoopVectorize/AArch64/tail-fold-uniform-memops.ll
Differential Revision: https://reviews.llvm.org/D112552
This patch updates the cost model for ordered reductions so that a call
to the llvm.fmuladd intrinsic is modelled as a normal fmul instruction
plus the cost of an ordered fadd reduction.
Differential Revision: https://reviews.llvm.org/D111630
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.
Differential Revision: https://reviews.llvm.org/D113125
This patch fixes PR52111. The problem is that LV propagates poison-generating flags (`nuw`/`nsw`, `exact`
and `inbounds`) in instructions that contribute to the address computation of widen loads/stores that are
guarded by a condition. It may happen that when the code is vectorized and the control flow within the loop
is linearized, these flags may lead to generating a poison value that is effectively used as the base address
of the widen load/store. The fix drops all the integer poison-generating flags from instructions that
contribute to the address computation of a widen load/store whose original instruction was in a basic block
that needed predication and is not predicated after vectorization.
Reviewed By: fhahn, spatel, nlopes
Differential Revision: https://reviews.llvm.org/D111846
A first step towards modeling preheader and exit blocks in VPlan as well.
Keeping the vector loop in a region allows for changing the VF as we
traverse region boundaries.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113182
checkOrderedReductions looks for Phi nodes which can be classified as in-order,
meaning they can be vectorised without unsafe math. In order to vectorise the
reduction it should also be classified as in-loop by getReductionOpChain, which
checks that the reduction has two uses.
In this patch, a similar check is added to checkOrderedReductions so that we
now return false if there are more than two uses of the FAdd instruction.
This fixes PR52515.
Reviewed By: fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D114002
This patch adds a reduced version of the test case from PR52024.
Together with 764d9aa979 the test causes a crash, because LV expands a
SCEV expression during code generation, when the dominator tree is not
up-to-date.
When getTypeConversion returns TypeScalarizeScalableVector we were
sometimes returning a non-simple type from getTypeLegalizationCost.
However, many callers depend upon this being a simple type and will
crash if not. This patch changes getTypeLegalizationCost to ensure
that we always a return sensible simple VT. If the vector type
contains unusual integer types, e.g. <vscale x 2 x i3>, then we just
set the type to MVT::i64 as a reasonable default.
A test has been added here that demonstrates the vectoriser can
correctly calculate the cost of vectorising a "zext i3 to i64"
instruction with a VF=vscale x 1:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113777
When asking how many parts are required for a scalable vector type
there are occasions when it cannot be computed. For example, <vscale x 1 x i3>
is one such vector for AArch64+SVE because at the moment no matter how we
promote the i3 type we never end up with a legal vector. This means
that getTypeConversion returns TypeScalarizeScalableVector as the
LegalizeKind, and then getTypeLegalizationCost returns an invalid cost.
This then causes BasicTTImpl::getNumberOfParts to dereference an invalid
cost, which triggers an assert. This patch changes getNumberOfParts to
return 0 for such cases, since the definition of getNumberOfParts in
TargetTransformInfo.h states that we can use a return value of 0 to represent
an unknown answer.
Currently, LoopVectorize.cpp is the only place where we need to check for
0 as a return value, because all other instances will not currently
ask for the number of parts for <vscale x 1 x iX> types.
In addition, I have changed the target-independent interface for
getNumberOfParts to return 1 and assume there is a single register
that can fit the type. The loop vectoriser has lots of tests that are
target-independent and they relied upon the 0 value to mean the
answer is known and that we are not scalarising the vector.
I have added tests here that show we correctly return an invalid cost
for VF=vscale x 1 when the loop contains unusual types such as i7:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113772
At the moment, computeRecurrenceType does not include any sign bits in
the maximum bit width. If the value can be negative, this means the sign
bit will be missing and the sext won't properly extend the value.
If the value can be negative, increment the bitwidth by one to make sure
there is at least one sign bit in the result value.
Note that the increment is also needed *if* the value is *known* to be
negative, as a sign bit needs to be preserved for the sext to work.
Note that this at the moment prevents vectorization, because the
analysis computes i1 as type for the recurrence when looking through the
AND in lookThroughAnd.
Fixes PR51794, PR52485.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113056
This is one of those wonderful "in theory X doesn't matter, but in practice is does" changes. In this particular case, we shift the IVs inserted by the runtime unroller to clamp iteration count of the loops* from decrementing to incrementing.
Why does this matter? A couple of reasons:
* SCEV doesn't have a native subtract node. Instead, all subtracts (A - B) are represented as A + -1 * B and drops any flags invalidated by such. As a result, SCEV is slightly less good at reasoning about edge cases involving decrementing addrecs than incrementing ones. (You can see this in the inferred flags in some of the test cases.)
* Other parts of the optimizer produce incrementing IVs, and they're common in idiomatic source language. We do have support for reversing IVs, but in general if we produce one of each, the pair will persist surprisingly far through the optimizer before being coalesced. (You can see this looking at nearby phis in the test cases.)
Note that if the hardware prefers decrementing (i.e. zero tested) loops, LSR should convert back immediately before codegen.
* Mostly irrelevant detail: The main loop of the prolog case is handled independently and will simple use the original IV with a changed start value. We could in theory use this scheme for all iteration clamping, but that's a larger and more invasive change.
`collectElementTypesForWidening` collects the types of load, store and
reduction Phis in a loop. These types are later checked using
`isElementTypeLegalForScalableVector` to prevent vectorisation of
loops with instruction types that are unsupported.
This patch removes i1 from the list of types supported for scalable
vectors. This fixes an assert ("Cannot yet scalarize uniform stores") in
`setCostBasedWideningDecision` when we have a loop containing a uniform
i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D113680
Unfortunately sinking recipes for first-order recurrences relies on
the original position of recipes. So if a recipes needs to be sunk after
an optimized induction, it needs to stay in the original position, until
sinking is done. This is causing PR52460.
To fix the crash, keep the recipes in the original position until
sink-after is done.
Post-commit follow-up to c45045bfd0 to address PR52460.
This reverts commit 7cd273c339.
Several patches with tests fixes have been applied:
0cada82f0a "[Test] Remove incorrect test in GVN"
97cb13615d "[Test] Separate IndVars test into AArch64 and X86 parts"
985cc490f1 "[Test] Remove separated test in IndVars",
and test failures caused by 5ec2386 should be resolved now.
When creating a splat of 0 for scalable vectors we tend to create them
with using a combination of shufflevector and insertelement, i.e.
shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> poison, i32 0, i32 0),
<vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer)
However, for the case of a zero splat we can actually just replace the
above with zeroinitializer instead. This makes the IR a lot simpler and
easier to read. I have changed ConstantFoldShuffleVectorInstruction to
use zeroinitializer when creating a splat of integer 0 or FP +0.0 values.
Differential Revision: https://reviews.llvm.org/D113394
Changes VPReplicateRecipe to extract the last lane from an unconditional,
uniform store instruction. collectLoopUniforms will also add stores to
the list of uniform instructions where Legal->isUniformMemOp is true.
setCostBasedWideningDecision now sets the widening decision for
all uniform memory ops to Scalarize, where previously GatherScatter
may have been chosen for scalable stores.
This fixes an assert ("Cannot yet scalarize uniform stores") in
setCostBasedWideningDecision when we have a loop containing a
uniform i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: sdesmalen, david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D112725
This reapplies patch db289340c8.
The test failures on build with expensive checks caused by the patch happened due
to the fact that we sorted loop Phis in replaceCongruentIVs using llvm::sort,
which shuffles the given container if the expensive checks are enabled,
so equivalent Phis in the sorted vector had different mutual order from run
to run. replaceCongruentIVs tries to replace narrow Phis with truncations
of wide ones. In some test cases there were several Phis with the same
width, so if their order differs from run to run, the narrow Phis would
be replaced with a different Phi, depending on the shuffling result.
The patch ae14fae0ff fixed this issue by
replacing llvm::sort with llvm::stable_sort.
All phi-like recipes should be at the beginning of a VPBasicBlock with
no other recipes in between. Ensure that the recurrence-splicing recipe
is not added between phi-like recipes, but after them.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111301