As stated in
https://discourse.llvm.org/t/rfc-llc-add-expandlargeintfpconvert-pass-for-fp-int-conversion-of-large-bitint/65528,
this implementation is very similar to ExpandLargeDivRem, which expands
‘fptoui .. to’, ‘fptosi .. to’, ‘uitofp .. to’, ‘sitofp .. to’ instructions
with a bitwidth above a threshold into auto-generated functions. This is
useful for targets like x86_64 that cannot lower fp convertions with more
than 128 bits. The expanded nodes are referring from the IR generated by
`compiler-rt/lib/builtins/floattidf.c`, `compiler-rt/lib/builtins/fixdfti.c`,
and etc.
Corner cases:
1. For fp16: as there is no related builtins added in compliler-rt. So I
mainly utilized the fp32 <-> fp16 lib calls to implement.
2. For fp80: as this pass is soft fp emulation and no fp80 instructions can
help in this problem. I recommend users to deprecate this usage. For now, the
implementation uses fp128 as the temporary conversion type and inserts
fptrunc/ext at top/end of the function.
3. For bf16: as clang FE currently doesn't support bf16 algorithm operations
(convert to int, float, +, -, *, ...), this patch doesn't consider bf16 for
now.
4. For unsigned FPToI: since both default hardware behaviors and libgcc are
ignoring "returns 0 for negative input" spec. This pass follows this old way
to ignore unsigned FPToI. See this example:
https://gcc.godbolt.org/z/bnv3jqW1M
The end-to-end tests are uploaded at https://reviews.llvm.org/D138261
Reviewed By: LuoYuanke, mgehre-amd
Differential Revision: https://reviews.llvm.org/D137241
This patch is an alternative of D100091. It solved the problems in `f80` type lowering.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D137946
A target can return if a misaligned access is 'fast' as defined
by the target or not. In reality there can be different levels
of 'fast' and 'slow'. This patch changes the boolean 'Fast'
argument of the allowsMisalignedMemoryAccesses family of functions
to an unsigned representing its speed.
A target can still define it as it wants and the direct translation
of the current code uses 0 and 1 for current false and true. This
makes the change an NFC.
Subsequent patch will start using an actual value of speed in
the load/store vectorizer to compare if a vectorized access going
to be not just fast, but not slower than before.
Differential Revision: https://reviews.llvm.org/D124217
I want to default all VP operations to Expand. These 2 were blocking
because VE doesn't support them and the tests were expecting them
to fail a specific way. Using Expand caused them to fail differently.
Seemed better to emulate them using operations that are supported.
@simoll mentioned on Discord that VE has some expansion downstream. Not
sure if its done like this or in the VE target.
Reviewed By: frasercrmck, efocht
Differential Revision: https://reviews.llvm.org/D133514
Also remove new-pass-manager version of ExpandLargeDivRem because there is no way
yet to access TargetLowering in the new pass manager.
Differential Revision: https://reviews.llvm.org/D133691
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
The main difference is that this preserves intermediate rounding steps,
which the other route doesn't. This aligns bfloat16 more with half
floats, which use this path on most targets.
I didn't understand what the difference was between these softening
approaches when I first added bfloat lowerings, would be nice if we only
had one of them.
Based on @pengfei 's D131502
Differential Revision: https://reviews.llvm.org/D133207
TragetLowering had two last InstructionCost related `getTypeLegalizationCost()`
and `getScalingFactorCost()` members, but all other costs are processed in TTI.
E.g. it is not comfortable to use other TTI members in these two functions
overrided in a target.
Minor refactoring: `getTypeLegalizationCost()` now doesn't need DataLayout
parameter - it was always passed from TTI.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D117723
This adds similar heuristics to G_GLOBAL_VALUE, querying the cost of
materializing a specific constant in code size. Doing so prevents us from
sinking constants which require multiple instructions to generate into
use blocks.
Code size savings on CTMark -Os:
Program size.__text
before after diff
ClamAV/clamscan 381940.00 382052.00 0.0%
lencod/lencod 428408.00 428428.00 0.0%
SPASS/SPASS 411868.00 411876.00 0.0%
kimwitu++/kc 449944.00 449944.00 0.0%
Bullet/bullet 463588.00 463556.00 -0.0%
sqlite3/sqlite3 284696.00 284668.00 -0.0%
consumer-typeset/consumer-typeset 414492.00 414424.00 -0.0%
7zip/7zip-benchmark 595244.00 594972.00 -0.0%
mafft/pairlocalalign 247512.00 247368.00 -0.1%
tramp3d-v4/tramp3d-v4 372884.00 372044.00 -0.2%
Geomean difference -0.0%
Differential Revision: https://reviews.llvm.org/D130554
This is modeled after the half-precision fp support. Two new nodes are
introduced for casting from and to bf16. Since casting from bf16 is a
simple operation I opted to always directly lower it to integer
arithmetic. The other way round is more complicated if you want to
preserve IEEE semantics, so it's handled by a new __truncsfbf2
compiler-rt builtin.
This is of course very bare bones, but sufficient to get a semi-softened
fadd on x86.
Possible future improvements:
- Targets with bf16 conversion instructions can now make fp_to_bf16 legal
- The software conversion to bf16 can be replaced by a trivial
implementation under fast math.
Differential Revision: https://reviews.llvm.org/D126953
Adds MVT::v128i2, MVT::v64i4, and implied MVT::i2, MVT::i4.
Keeps MVT::i2, MVT::i4 lowering actions as expand, which should be
removed once targets set this explicitly.
Adjusts 11 lit tests to reflect slightly different behavior during
DAG combine.
Differential Revision: https://reviews.llvm.org/D125247
Adds MVT::v128i2, MVT::v64i4, and implied MVT::i2, MVT::i4.
Keeps MVT::i2, MVT::i4 lowering actions as `expand`, which should be
removed once targets set this explicitly.
Adjusts 11 lit tests to reflect slightly different behavior during
DAG combine.
Differential Revision: https://reviews.llvm.org/D125247
This adds a `TargetLoweringBase::getSwitchConditionType` callback to
give targets a chance to control the type used in
`CodeGenPrepare::optimizeSwitchInst`.
Implement callback for X86 to avoid i8 and i16 types where possible as
they often incur extra zero-extensions.
This is NFC for non-X86 targets.
Differential Revision: https://reviews.llvm.org/D124894
This change introduces a new intrinsic, `llvm.is.fpclass`, which checks
if the provided floating-point number belongs to any of the the specified
value classes. The intrinsic implements the checks made by C standard
library functions `isnan`, `isinf`, `isfinite`, `isnormal`, `issubnormal`,
`issignaling` and corresponding IEEE-754 operations.
The primary motivation for this intrinsic is the support of strict FP
mode. In this mode using compare instructions or other FP operations is
not possible, because if the value is a signaling NaN, floating-point
exception `Invalid` is raised, but the aforementioned functions must
never raise exceptions.
Currently there are two solutions for this problem, both are
implemented partially. One of them is using integer operations to
implement the check. It was implemented in https://reviews.llvm.org/D95948
for `isnan`. It solves the problem of exceptions, but offers one
solution for all targets, although some can do the check in more
efficient way.
The other, implemented in https://reviews.llvm.org/D96568, introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects a target
specific code into IR to implement `isnan` and some other functions. It is
convenient for targets that have dedicated instruction to determine FP data
class. However using target-specific intrinsic complicates analysis and can
prevent some optimizations.
A special intrinsic for value class checks allows representing data class
tests with enough flexibility. During IR transformations it represents the
check in target-independent way and saves it from undesired transformations.
In the instruction selector it allows efficient lowering depending on the
used target and mode.
This implementation is an extended variant of `llvm.isnan` introduced
in https://reviews.llvm.org/D104854. It is limited to minimal intrinsic
support. Target-specific treatment will be implemented in separate
patches.
Differential Revision: https://reviews.llvm.org/D112025
This patch is similar to D122557, adding an `ArrayRef` version for `setOperationAction`, `setLoadExtAction`, `setCondCodeAction`, `setLibcallName`.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D123467
If the "reciprocal-estimates" attribute is present and it doesn't
contain "all", "none", or "default", we previously crashed on f16
operations.
This patch addes an 'h' suffix' to prevent the crash.
I've added simple tests that just enable the estimate for all
vec-sqrt and one test case that explicitly tests the new 'h' suffix
to override the default steps.
There may be some frontend change needed to, but I haven't checked
that yet.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D120158
If the "reciprocal-estimates" attribute is present and it doesn't
contain "all", "none", or "default", we previously crashed on f16
operations.
This patch addes an 'h' suffix' to prevent the crash.
I've added simple tests that just enable the estimate for all
vec-sqrt and one test case that explicitly tests the new 'h' suffix
to override the default steps.
There may be some frontend change needed to, but I haven't checked
that yet.
Differential Revision: https://reviews.llvm.org/D120158
This ports the aarch64 combines for HADD and RHADD over to DAG combine,
so that they can be used in more architectures (notably MVE in a
followup patch). They are renamed to AVGFLOOR and AVGCEIL in the
process, to avoid confusion with instructions such as X86 hadd. The code
was also rewritten slightly to remove the AArch64 idiosyncrasies.
The general pattern for a AVGFLOORS is
%xe = sext i8 %x to i32
%ye = sext i8 %y to i32
%a = add i32 %xe, %ye
%r = lshr i32 %a, 1
%t = trunc i32 %r to i8
An AVGFLOORU is equivalent with zext. Because of the truncate
lshr==ashr, as the top bits are not demanded. An AVGCEIL also includes
an extra rounding, so includes an extra add of 1.
Differential Revision: https://reviews.llvm.org/D106237
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
The current AsmPrinter has support to emit the "Max Skip" operand
(the 3rd of .p2align), however has no support for it to actually be specified.
Adding MaxBytesForAlignment to MachineBasicBlock provides this capability on a
per-block basis. Leaving the value as default (0) causes no observable differences
in behaviour.
Differential Revision: https://reviews.llvm.org/D114590
When getTypeConversion returns TypeScalarizeScalableVector we were
sometimes returning a non-simple type from getTypeLegalizationCost.
However, many callers depend upon this being a simple type and will
crash if not. This patch changes getTypeLegalizationCost to ensure
that we always a return sensible simple VT. If the vector type
contains unusual integer types, e.g. <vscale x 2 x i3>, then we just
set the type to MVT::i64 as a reasonable default.
A test has been added here that demonstrates the vectoriser can
correctly calculate the cost of vectorising a "zext i3 to i64"
instruction with a VF=vscale x 1:
Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll
Differential Revision: https://reviews.llvm.org/D113777
This symbol is defined in libc.so so it is definitely not DSO-Local.
Marking it as such causes problems on some platforms (such as PowerPC).
Differential revision: https://reviews.llvm.org/D109090
getShiftAmountTyForConstant is a special helper that changes the
shift amount to i32 if the type chosen by
TargetLowering::getShiftAmountTy can't represent all possible values.
This is needed to satisfy an assert in SelectionDAG::getNode.
It requires additional consideration to know when this helper should be used.
I'm not sure that we are always using it when we should.
This patch merges the getShiftAmountTyForConstant handling into
TargetLowering::getShiftAmountTy so we don't need to think about it
anymore.
Technically this may slightly increase compile times since the majority
of callers of getShiftAmountTy won't need this. Hopefully, this isn't
an issue in practice.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D112469
Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)
TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.
While the end result of discussion may lead back to the current design,
it may also not lead to the current design.
Therefore i take it upon myself
to revert the tree back to last known good state.
This reverts commit 4c4093e6e3.
This reverts commit 0a2b1ba33a.
This reverts commit d9873711cb.
This reverts commit 791006fb8c.
This reverts commit c22b64ef66.
This reverts commit 72ebcd3198.
This reverts commit 5fa6039a5f.
This reverts commit 9efda541bf.
This reverts commit 94d3ff09cf.
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
This is recommit of the patch 16ff91ebcc,
reverted in 0c28a7c990 because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
to `lib/CodeGen/CommandFlags.cpp`. It can replace
-x86-experimental-pref-loop-alignment=.
The loop alignment is only used by MachineBlockPlacement.
The implementation uses a new `llvm::TargetOptions` for now, as
an IR function attribute/module flags metadata may be overkill.
This is the llvm part of D106701.
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
This adds handling for two cases:
1. A scalable vector where the element type is promoted.
2. A scalable vector where the element count is odd (or more generally,
not divisble by the element count of the part type).
(Some element types still don't work; for example, <vscale x 2 x i128>,
or <vscale x 2 x fp128>.)
Differential Revision: https://reviews.llvm.org/D105591
Reland of 31859f896.
This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D104797