This patch changes return type of tryCandidate from void to bool:
1. Methods in some targets already follow this convention.
2. This would help if some target wants to re-use generic code.
3. It looks more intuitive if these try-method returns the same type.
We may need to change return type of them from bool to some enum
further, to make it less confusing.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D103951
Pseudo probe are currently given a slot index like other regular instructions. This affects register pressure and lifetime weight computation because of enlarged lifetime length with pseudo probe instructions. As a consequence, program could get different code generated w/ and w/o pseudo probes. I'm closing the gap by excluding pseudo probes from stack index and downstream register allocation related passes.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100334
When the ProcResGroup has BufferSize=0,
1. if there is a subunit in the list of write resources for the
scheduling class, do not attempt to schedule the ProcResGroup.
2. if there is not a subunit in the list of write resources for the
scheduling class, choose a subunit to use instead of the ProcResGroup.
3. having both the ProcResGroup and any of its subunits in the resources
implied by a InstRW is not supported.
Used to model parallel uses from a pool of resources.
Differential Revision: https://reviews.llvm.org/D98976
This is being recommitted to try and address the MSVC complaint.
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D90159
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Differential Revision: https://reviews.llvm.org/D90159
We have added a new load/store cluster algorithm in D85517. However, AArch64 see
some compiling deg with the new algorithm as the IsReachable() is not cheap if
the DAG is complex. O(M+N) See https://bugs.llvm.org/show_bug.cgi?id=47966
So, this patch added a heuristic to switch to old cluster algorithm if the DAG is too complex.
Reviewed By: Owen Anderson
Differential Revision: https://reviews.llvm.org/D90144
This reverts commit 0345d88de6.
Google internal backend uses EntrySU, we are looking into removing
dependency on it.
Differential Revision: https://reviews.llvm.org/D88018
Before calling target hook to determine if two loads/stores are clusterable,
we put them into different groups to avoid fake cluster due to dependency.
For now, we are putting the loads/stores into the same group if they have
the same predecessor. We assume that, if two loads/stores have the same
predecessor, it is likely that, they didn't have dependency for each other.
However, one SUnit might have several predecessors and for now, we just
pick up the first predecessor that has non-data/non-artificial dependency,
which is too arbitrary. And we are struggling to fix it.
So, I am proposing some better implementation.
1. Collect all the loads/stores that has memory info first to reduce the complexity.
2. Sort these loads/stores so that we can stop the seeking as early as possible.
3. For each load/store, seeking for the first non-dependency instruction with the
sorted order, and check if they can cluster or not.
Reviewed By: Jay Foad
Differential Revision: https://reviews.llvm.org/D85517
If it is load cluster, we don't need to create the dependency edges(SUb->reg) from SUb to SUa
as they both depend on the base register "reg"
+-------+
+----> reg |
| +---+---+
| ^
| |
| |
| |
| +---+---+
| | SUa | Load 0(reg)
| +---+---+
| ^
| |
| |
| +---+---+
+----+ SUb | Load 4(reg)
+-------+
But if it is store cluster, we need to create it as follow shows to avoid the instruction store
depend on scheduled in-between SUb and SUa.
+-------+
+----> reg |
| +---+---+
| ^
| | Missing +-------+
| | +-------------------->+ y |
| | | +---+---+
| +---+-+-+ ^
| | SUa | Store x 0(reg) |
| +---+---+ |
| ^ |
| | +------------------------+
| | |
| +---+--++
+----+ SUb | Store y 4(reg)
+-------+
Reviewed By: evandro, arsenm, rampitec, foad, fhahn
Differential Revision: https://reviews.llvm.org/D72031
Store Addr and Store Addr+8 are clusterable pair. They have memory(ctrl) dependency on different loads.
Current implementation will put these two stores into different group and miss to cluster them.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D84139
tryLatency compares two sched candidates. For the top zone it prefers
the one with lesser depth, but only if that depth is greater than the
total latency of the instructions we've already scheduled -- otherwise
its latency would be hidden and there would be no stall.
Unfortunately it only tests the depth of one of the candidates. This can
lead to situations where the TopDepthReduce heuristic does not kick in,
but a lower priority heuristic chooses the other candidate, whose depth
*is* greater than the already scheduled latency, which causes a stall.
The fix is to apply the heuristic if the depth of *either* candidate is
greater than the already scheduled latency.
All this also applies to the BotHeightReduce heuristic in the bottom
zone.
Differential Revision: https://reviews.llvm.org/D72392
If a resource can be held for multiple cycles in the schedule model
then an instruction can be placed into the available queue, another
instruction can be scheduled, but the first will not be taken back out if
the two instructions hazard. To fix this make sure that we update the
available queue even on the first MOp of a cycle, pushing available
instructions back into the pending queue if they now conflict.
This happens with some downstream schedules we have around MVE
instruction scheduling where we use ResourceCycles=[2] to show the
instruction executing over two beats. Apparently the test changes here
are OK too.
Differential Revision: https://reviews.llvm.org/D76909
Summary:
While clustering mem ops, AMDGPU target needs to consider number of clustered bytes
to decide on max number of mem ops that can be clustered. This patch adds support to pass
number of clustered bytes to target mem ops clustering logic.
Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar
Reviewed By: foad
Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80545
Summary:
Clean-up code around mem ops clustering logic. This patch cleans up code within
the function clusterNeighboringMemOps(). It is WIP, and this patch is a first cut.
Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar
Reviewed By: foad
Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80119
Summary:
Make GenericScheduler compute SchedDFSResult on initialization if
the policy is set. This makes it possible to create classes
that extend GenericScheduler and rely on the results of SchedDFSResult,
e.g. to perform subtree scheduling.
NFC unless the policy is set.
Subscribers: MatzeB, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78432
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.
This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.
In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.
Reviewers: rovka, efriedma, kristof.beyls
Reviewed By: efriedma
Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72758
Summary:
BaseMemOpClusterMutation::apply forms store chains by looking for
control (i.e. non-data) dependencies from one mem op to another.
In the test case, clusterNeighboringMemOps successfully clusters the
loads, and then adds artificial edges to the loads' successors as
described in the comment:
// Copy successor edges from SUa to SUb. Interleaving computation
// dependent on SUa can prevent load combining due to register reuse.
The effect of this is that *data* dependencies from one load to a store
are copied as *artificial* dependencies from a different load to the
same store.
Then when BaseMemOpClusterMutation::apply looks at the stores, it finds
that some of them have a control dependency on a previous load, which
breaks the chains and means that the stores are not all considered part
of the same chain and won't all be clustered.
The fix is to only consider non-artificial control dependencies when
forming chains.
Subscribers: MatzeB, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71717
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Scheduler sends NumLoads argument into shouldClusterMemOps()
one less the actual cluster length. So for 2 instructions
it will pass just 1. Correct this number.
This is NFC for in tree targets.
Differential Revision: https://reviews.llvm.org/D73292
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.
The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.
The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
get sorted next to each other, and
- shouldClusterMemOps knows what they mean.
One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.
Differential Revision: https://reviews.llvm.org/D71655
Summary:
Mem op clustering adds a weak edge in the DAG between two loads or
stores that should be clustered, but the direction of this edge is
pretty arbitrary (it depends on the sort order of MemOpInfo, which
represents the operands of a load or store). This often means that two
loads or stores will get reordered even if they would naturally have
been scheduled together anyway, which leads to test case churn and goes
against the scheduler's "do no harm" philosophy.
The fix makes sure that the direction of the edge always matches the
original code order of the instructions.
Reviewers: atrick, MatzeB, arsenm, rampitec, t.p.northover
Subscribers: jvesely, wdng, nhaehnle, kristof.beyls, hiraditya, javed.absar, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72706
Current implementation of BaseMemOpsClusterMutation is a little bit
obscure. This patch directly uses a map from store chain ID to set of
memory instrs to make it simpler, so that future improvements are easier
to read, update and review.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D72070
This patch moves `InPQueue` into function arguments instead of template
arguments of `releaseNode`, which is a cleaner approach.
Differential Revision: https://reviews.llvm.org/D72125
The 'SchedBoundary::releaseNode' is merely invoked for releasing the Top/Bottom root nodes.
However, 'SchedBoundary::releasePending' uses its same logic to check if the Pending queue
has any releasable SUnit.
It is possible to slightly modify the body of the two, allowing re-use of the former ('releaseNode')
in the latter.
Patch by Lorenzo Casalino <lorenzo.casalino93@gmail.com>
Reviewers: MatzeB, fhahn, atrick
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D65506
Summary:
r347747 added support for clustering mem ops with FI base operands
including support for fixed stack objects in shouldClusterFI, but
apparently this was never tested.
This patch fixes shouldClusterFI to work with scaled as well as
unscaled load/store instructions, and fixes the ordering of memory ops
in MemOpInfo::operator< to ensure that memory addresses always
increase, regardless of which direction the stack grows.
Subscribers: MatzeB, kristof.beyls, hiraditya, javed.absar, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71334
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This adds AA to Post-RA Machine Scheduling, allowing the pass more
freedom when handling memory operations.
My understanding is that this was just never done, not that it is
inherently incorrect to do so. The older PostRA List scheduler already
makes use of AA, it's just that the MI PostRA Scheduler was never taught
to use it.
Differential Revision: https://reviews.llvm.org/D69814
In the ARM backend, for historical reasons we have only some targets
using Machine Scheduling. The rest use the old list scheduler as they
are using itinaries and the list scheduler seems to produce better code
(and not crash running out of register on v6m codes). So whether to use
the MIScheduler or not is checked at runtime from the subtarget
features.
This is fine, except for post-ra scheduling. Whether to use the old
post-ra list scheduler or the post-ra machine schedule is decided as the
pass manager is set up, in arms case from a newly constructed subtarget.
Under some situations, like LTO, this won't include the correct cpu so
can pick the wrong option. This can have a surprising effect on
performance.
To fix that, this patch overrides targetSchedulesPostRAScheduling and
addPreSched2 in the ARM backend, adding _both_ post-ra schedulers and
picking at runtime which to execute. To pick between the two I've had to
add a enablePostRAMachineScheduler() method that normally returns
enableMachineScheduler() && enablePostRAScheduler(), which can be
overridden to enable just one of PostRAMachineScheduler vs
PostRAScheduler.
Thanks to David Penry for the identifying this problem.
Differential Revision: https://reviews.llvm.org/D69775
Summary:
PHIElimination modifies CFG and marks MachineDominatorTree as preserved. Therefore, it the CFG changes it should also update the MDT, when available. This patch teaches PHIElimination to recalculate MDT when necessary.
This fixes the `tailmerging_in_mbp.ll` test failure discovered after switching to generic DomTree verification algorithm in MachineDominators in D67976.
Reviewers: arsenm, hliao, alex-t, rampitec, vpykhtin, grosser
Reviewed By: rampitec
Subscribers: MatzeB, wdng, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68154
llvm-svn: 373377
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
When we call checkResourceLimit in bumpCycle or bumpNode, and we
know the resource count has just reached the limit (the equations
are equal). We should return true to mark that we are resource
limited for next schedule, or else we might continue to schedule
in favor of latency for 1 more schedule and create a schedule that
actually overbook the resource.
When we call checkResourceLimit to estimate the resource limite before
scheduling, we don't need to return true even if the equations are
equal, as it shouldn't limit the schedule for it .
Differential Revision: https://reviews.llvm.org/D62345
llvm-svn: 362805
This fix allows the scheduler to take into account the number of instances of
each ProcResource specified. Previously a declaration in a scheduler of
ProcResource<1> would be treated identically to a declaration of
ProcResource<2>. Now the hazard recognizer would report a hazard only after all
of the resource instances are busy.
Patch by Jackson Woodruff and Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D51160
llvm-svn: 360441
Summary:
The basic idea here is to make it possible to use
MachineInstr::mayAlias also when the MachineInstr
is const (or the "Other" MachineInstr is const).
The addition of const in MachineInstr::mayAlias
then rippled down to the need for adding const
in several other places, such as
TargetTransformInfo::getMemOperandWithOffset.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, MatzeB, arsenm, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60856
llvm-svn: 358744