Commit Graph

292 Commits

Author SHA1 Message Date
Fangrui Song f4c16c4473 [MC] llvm::Optional => std::optional
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
2022-12-04 21:36:08 +00:00
Kazu Hirata aadaaface2 [llvm] Use std::nullopt instead of None (NFC)
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated.  The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.

This is part of an effort to migrate from llvm::Optional to
std::optional:

https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
2022-12-02 21:11:44 -08:00
Guillaume Chatelet 702126aec5 [NFC] Add helper method to ensure min alignment on MCSection
Follow up on D138653.

Differential Revision: https://reviews.llvm.org/D138686
2022-11-28 10:00:34 +00:00
Guillaume Chatelet 6c09ea3fdd [Alignment][NFC] Use Align in MCStreamer::emitValueToAlignment
Differential Revision: https://reviews.llvm.org/D138674
2022-11-24 16:09:44 +00:00
Guillaume Chatelet 4f17734175 [Alignment][NFC] Use Align in MCStreamer::emitCodeAlignment
This patch makes code less readable but it will clean itself after all functions are converted.

Differential Revision: https://reviews.llvm.org/D138665
2022-11-24 14:51:46 +00:00
Guillaume Chatelet 99089b490d [Alignment][NFC] Use Align in MCStreamer::emitBundleAlignMode
Summary:

Reviewers: courbet

Subscribers:
2022-11-24 14:35:01 +00:00
Guillaume Chatelet e647b4f519 [reland][Alignment][NFC] Use the Align type in MCSection
Differential Revision: https://reviews.llvm.org/D138653
2022-11-24 13:19:18 +00:00
Guillaume Chatelet 3467f9c7d6 Revert D138653 [Alignment][NFC] Use the Align type in MCSection"
This breaks the bolt project.
This reverts commit 409f0dc4a4.
2022-11-24 12:42:30 +00:00
Guillaume Chatelet 409f0dc4a4 [Alignment][NFC] Use the Align type in MCSection
Differential Revision: https://reviews.llvm.org/D138653
2022-11-24 12:32:58 +00:00
Fangrui Song d8162a7196 [MC] .addrsig_sym: ignore unregistered symbols
.addrsig_sym forces registering the symbol regardless whether it is otherwise
registered. This creates an undefined symbol which is inconvenient/undesired:

* `extern int x; void f() { (void)x; }` has inconsistent behavior whether `x` is emitted as an undefined symbol.
  `-O0 -faddrsig` makes `x` undefined while other -O levels and -fno-addrsig eliminate the symbol.
* In ThinLTO, after a non-prevailing linkonce_odr definition is converted to available_externally, and then a declaration,
  the addrsig code emits a symbol while the symbol is otherwise unseen.

D135427 fixed a bug that a non-prevailing `__cxx_global_var_init` was
incorrectly retained. However, the IR declaration causes an undesired
`.addrsig_sym __cxx_global_var_init`. This can be addressed in a way similar
to D101512 (`isTransitiveUsedByMetadataOnly`) but the increased
`OutStreamer->emitAddrsigSym(getSymbol(&GV));` complexity makes me nervous.
Just ignoring unregistered symbols circumvents the problem.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D135642
2022-10-11 15:07:14 -07:00
spupyrev eecd41aa09 Revert "Rebase: [Facebook] [MC] Introduce NeverAlign fragment type"
This reverts commit 6d0528636a.
2022-07-11 09:50:47 -07:00
Rafael Auler 6d0528636a Rebase: [Facebook] [MC] Introduce NeverAlign fragment type
Summary:
Introduce NeverAlign fragment type.

The intended usage of this fragment is to insert it before a pair of
macro-op fusion eligible instructions. NeverAlign fragment ensures that
the next fragment (first instruction in the pair) does not end at a
given alignment boundary by emitting a minimal size nop if necessary.

In effect, it ensures that a pair of macro-fusible instructions is not
split by a given alignment boundary, which is a precondition for
macro-op fusion in modern Intel Cores (64B = cache line size, see Intel
Architecture Optimization Reference Manual, 2.3.2.1 Legacy Decode
Pipeline: Macro-Fusion).

This patch introduces functionality used by BOLT when emitting code with
MacroFusion alignment already in place.

The use case is different from BoundaryAlign and instruction bundling:
- BoundaryAlign can be extended to perform the desired alignment for the
first instruction in the macro-op fusion pair (D101817). However, this
approach has higher overhead due to reliance on relaxation as
BoundaryAlign requires in the general case - see
https://reviews.llvm.org/D97982#2710638.
- Instruction bundling: the intent of NeverAlign fragment is to prevent
the first instruction in a pair ending at a given alignment boundary, by
inserting at most one minimum size nop. It's OK if either instruction
crosses the cache line. Padding both instructions using bundles to not
cross the alignment boundary would result in excessive padding. There's
no straightforward way to request instruction bundling to avoid a given
end alignment for the first instruction in the bundle.

LLVM: https://reviews.llvm.org/D97982

Manual rebase conflict history:
https://phabricator.intern.facebook.com/D30142613

Test Plan: sandcastle

Reviewers: #llvm-bolt

Subscribers: phabricatorlinter

Differential Revision: https://phabricator.intern.facebook.com/D31361547
2022-07-11 09:31:52 -07:00
Kazu Hirata e0e687a615 [llvm] Don't use Optional::hasValue (NFC) 2022-06-20 10:38:12 -07:00
Guillaume Chatelet 412c788ab0 [NFC][Alignment] Use Align in MCAlignFragment 2022-06-15 12:31:00 +00:00
Fangrui Song adf4142f76 [MC] De-capitalize SwitchSection. NFC
Add SwitchSection to return switchSection. The API will be removed soon.
2022-06-10 22:50:55 -07:00
serge-sans-paille ef736a1c39 Cleanup LLVMMC headers
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:

llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h

Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after:  1049293745

Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.

Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
2022-02-09 11:09:17 +01:00
Kazu Hirata 3a3cb929ab [llvm] Use = default (NFC) 2022-02-06 22:18:35 -08:00
luxufan d606e23305 [MC] Support constant offset for symbol PendingFixup
This patch add support relocation offset of sym+constant(like `foo+4`) form for pending fixup.

In the past, llvm-mc ignored the constant in sym+constant form, for `foo+4`, `4` would be ignored. And test case
```
.text
  ret
  nop
  nop
  .reloc foo+4, R_RISCV_32, 6

.data
.globl foo
foo:
  .word 0
  .word 0
  .word 0
```
when run `llvm-mc -filetype=obj -triple=riscv64 %s | llvm-readobj -r`
The output is
```
Relocations [
  Section (3) .rela.text {
    0x0 R_RISCV_32 - 0x6
  }
]
```

After applying this patch, the output is
```
Relocations [
  Section (3) .rela.text {
    0x4 R_RISCV_32 - 0x6
  }
]
```

Differential Revision: https://reviews.llvm.org/D117316
2022-01-26 13:50:23 +08:00
luxufan 08b29b175b [MC] Put the Pending Fixups into location symbol's fragment
Differential Revision: https://reviews.llvm.org/D117317
2022-01-26 11:21:56 +08:00
Sami Tolvanen 9a74c753fe [ThinLTO][MC] Use conditional assignments for promotion aliases
Inline assembly refererences to static functions with ThinLTO+CFI were
fixed in D104058 by creating aliases for promoted functions. Creating
the aliases unconditionally resulted in an unexpected size increase in
a Chrome helper binary:

https://bugs.chromium.org/p/chromium/issues/detail?id=1261715

This is caused by the compiler being unable to drop unused code now
referenced by the alias in module-level inline assembly. This change
adds a .set_conditional assembly extension, which emits an assignment
only if the target symbol is also emitted, avoiding phantom references
to functions that could have otherwise been dropped.

This is an alternative to the solution proposed in D112761.

Reviewed By: pcc, nickdesaulniers, MaskRay

Differential Revision: https://reviews.llvm.org/D113613
2021-12-10 12:21:37 -08:00
Peter Smith e63455d5e0 [MC] Use local MCSubtargetInfo in writeNops
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.

On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.

For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.

This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.

I've attempted to take into account the in tree experimental backends.

Differential Revision: https://reviews.llvm.org/D45962
2021-09-07 15:46:19 +01:00
Peter Smith 5e71839f77 [MC] Add MCSubtargetInfo to MCAlignFragment
In preparation for passing the MCSubtargetInfo (STI) through to writeNops
so that it can use the STI in operation at the time, we need to record the
STI in operation when a MCAlignFragment may write nops as padding. The
STI is currently unused, a further patch will pass it through to
writeNops.

There are many places that can create an MCAlignFragment, in most cases
we can find out the STI in operation at the time. In a few places this
isn't possible as we are in initialisation or finalisation, or are
emitting constant pools. When possible I've tried to find the most
appropriate existing fragment to obtain the STI from, when none is
available use the per module STI.

For constant pools we don't actually need to use EmitCodeAlign as the
constant pools are data anyway so falling through into it via an
executable NOP is no better than falling through into data padding.

This is a prerequisite for D45962 which uses the STI to emit the
appropriate NOP for the STI. Which can differ per fragment.

Note that involves an interface change to InitSections. It is now
called initSections and requires a SubtargetInfo as a parameter.

Differential Revision: https://reviews.llvm.org/D45961
2021-09-07 15:46:19 +01:00
Jinsong Ji 28fb69e00a [AIX] Emit version string in .file directive
AIX .file directive support including compiler version string.
https://www.ibm.com/docs/en/aix/7.2?topic=ops-file-pseudo-op

This patch adds the support so that it will be easier to identify build
compiler in objects.

Reviewed By: #powerpc, shchenz

Differential Revision: https://reviews.llvm.org/D105743
2021-07-12 17:03:52 +00:00
Saleem Abdulrasool bbea64250f RISCV: adjust handling of relocation emission for RISCV
This re-architects the RISCV relocation handling to bring the
implementation closer in line with the implementation in binutils.  We
would previously aggressively resolve the relocation.  With this
restructuring, we always will emit a paired relocation for any symbolic
difference of the type of S±T[±C] where S and T are labels and C is a
constant.

GAS has a special target hook controlled by `RELOC_EXPANSION_POSSIBLE`
which indicates that a fixup may be expanded into multiple relocations.
This is used by the RISCV backend to always emit a paired relocation -
either ADD[WIDTH] + SUB[WIDTH] for text relocations or SET[WIDTH] +
SUB[WIDTH] for a debug info relocation.  Irrespective of whether linker
relaxation support is enabled, symbolic difference is always emitted as
a paired relocation.

This change also sinks the target specific behaviour down into the
target specific area rather than exposing it to the shared relocation
handling.  In the process, we also sink the "special" handling for debug
information down into the RISCV target.  Although this improves the path
for the other targets, this is not necessarily entirely ideal either.
The changes in the debug info emission could be done through another
type of hook as this functionality would be required by any other target
which wishes to do linker relaxation.  However, as there are no other
targets in LLVM which currently do this, this is a reasonable thing to
do until such time as the code needs to be shared.

Improve the handling of the relocation (and add a reduced test case from
the Linux kernel) to ensure that we handle complex expressions for
symbolic difference.  This ensures that we correct relocate symbols with
the adddends normalized and associated with the addition portion of the
paired relocation.

This change also addresses some review comments from Alex Bradbury about
the relocations meant for use in the DWARF CFA being named incorrectly
(using ADD6 instead of SET6) in the original change which introduced the
relocation type.

This resolves the issues with the symbolic difference emission
sufficiently to enable building the Linux kernel with clang+IAS+lld
(without linker relaxation).

Resolves PR50153, PR50156!
Fixes: ClangBuiltLinux/linux#1023, ClangBuiltLinux/linux#1143

Reviewed By: nickdesaulniers, maskray

Differential Revision: https://reviews.llvm.org/D103539
2021-06-17 08:20:02 -07:00
Chen Zheng 87bbf3d1f8 [XCOFF][DebugInfo] support DWARF for XCOFF for assembly output.
Reviewed By: jasonliu

Differential Revision: https://reviews.llvm.org/D95518
2021-03-04 21:07:52 -05:00
Fangrui Song d9a0c40bce [MC] Split MCContext::createTempSymbol, default AlwaysAddSuffix to true, and add comments
CanBeUnnamed is rarely false. Splitting to a createNamedTempSymbol makes the
intention clearer and matches the direction of reverted r240130 (to drop the
unneeded parameters).

No behavior change.
2020-12-21 14:04:13 -08:00
Hongtao Yu 705a4c149d [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 17:29:28 -08:00
Mitch Phillips 7ead5f5aa3 Revert "[CSSPGO] Pseudo probe encoding and emission."
This reverts commit b035513c06.

Reason: Broke the ASan buildbots:
  http://lab.llvm.org:8011/#/builders/5/builds/2269
2020-12-10 15:53:39 -08:00
Hongtao Yu b035513c06 [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 09:50:08 -08:00
Jian Cai c6334db577 [X86] support .nops directive
Add support of .nops on X86. This addresses llvm.org/PR45788.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D82826
2020-08-03 11:50:56 -07:00
Stefan Pintilie e0a372ff10 [PowerPC] Extend .reloc directive on PowerPC
When the compiler generates a GOT indirect load it must generate two loads. One
that loads the address of the element from the GOT and a second to load the
actual element based on the address just loaded from the GOT. However, the
linker can optimize these two loads into one load if it knows that it is safe
to do so. The compiler can tell the linker that the optimization is safe
by using the R_PPC64_PCREL_OPT relocation.

This patch extends the .reloc directive to allow the following setup

  pld 3, vec@got@pcrel(0), 1
.Lpcrel1=.-8
      ... More instructions possible here ...
.reloc .Lpcrel1,R_PPC64_PCREL_OPT,.-.Lpcrel1
  lwa 3, 4(3)

Reviewers: nemanjai, lei, hfinkel, sfertile, efriedma, tstellar, grosbach, MaskRay

Reviewed By: nemanjai, MaskRay

Differential Revision: https://reviews.llvm.org/D79625
2020-07-22 04:25:54 -05:00
Fangrui Song b71ef0c50a [MC] Support .reloc sym+constant, *, *
For `.reloc offset, *, *`, currently offset can be a constant or symbol.
This patch makes it support any expression which can be folded to sym+constant.

Reviewed By: stefanp

Differential Revision: https://reviews.llvm.org/D83751
2020-07-14 13:44:00 -07:00
Shengchen Kan 99ac9ce701 [NFC] Clean up in MCObjectStreamer and X86AsmBackend 2020-05-09 12:50:44 +08:00
Alexandre Ganea fd773e8a51 Re-land [MC] Fix quadratic behavior in addPendingLabel
This was discovered when compiling large unity/blob/jumbo files.

Differential Revision: https://reviews.llvm.org/D78775
2020-04-26 10:39:42 -04:00
Alexandre Ganea 65fe71be48 Revert "[MC] Fix quadratic behavior in addPendingLabel()"
This reverts commit e98f73a629.
2020-04-24 16:43:10 -04:00
Alexandre Ganea e98f73a629 [MC] Fix quadratic behavior in addPendingLabel()
Differential Revision: https://reviews.llvm.org/D78775
2020-04-24 12:48:54 -04:00
Shengchen Kan c031378ce0 [MC][NFC] Use camelCase style for functions in MCObjectStreamer 2020-04-20 20:09:20 -07:00
Shengchen Kan 8bb059ab63 [MC][Bugfix] Remove redundant parameter for relaxInstruction
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
  1) The first argument's type is `const MCInst &`, the third
  argument's type is `MCInst &`, but they may be aliased to the same
  variable
  2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
  argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
  may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
  loop.

In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.

Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain

Reviewed By: Razer6, MaskRay, bcain

Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78364
2020-04-21 11:06:55 +08:00
Shengchen Kan f0019d4ff2 [MC][NFC] Use camelCase style for function EmitInstToData 2020-04-20 18:53:39 -07:00
Fangrui Song e13a8a1fc5 [MC][COFF][ELF] Reject instructions in IMAGE_SCN_CNT_UNINITIALIZED_DATA/SHT_NOBITS sections
For `.bss; nop`, MC inappropriately calls abort() (via report_fatal_error()) with a message
`cannot have fixups in virtual section!`
It is a bug to crash for invalid user input. Fix it by erroring out early in EmitInstToData().

Similarly, emitIntValue() in a virtual section (SHT_NOBITS in ELF) can crash with the mssage
`non-zero initializer found in section '.bss'` (see D4199)
It'd be nice to report the location but so many directives can call emitIntValue()
and it is difficult to track every location.
Note, COFF does not crash because MCAssembler::writeSectionData() is not
called for an IMAGE_SCN_CNT_UNINITIALIZED_DATA section.

Note, GNU as' arm64 backend reports ``Error: attempt to store non-zero value in section `.bss'``
for a non-zero .inst but fails to do so for other instructions.
We simply reject all instructions, even if the encoding is all zeros.

The Mach-O counterpart is D48517 (see `test/MC/MachO/zerofill-text.s`)

Reviewed By: rnk, skan

Differential Revision: https://reviews.llvm.org/D78138
2020-04-15 21:02:47 -07:00
Shengchen Kan 5d73f79c54 [X86][MC] Make -x86-pad-max-prefix-size compatible with --mc-relax-all
Summary: We allow non-relaxable instructions emitted into relaxable Fragment when we prefix padding branch. So we need to check if the instruction need relaxation before relaxing it.  Without this patch, it currently triggers a `report_fatal_error` in `llvm::MCAsmBackend::relaxInstruction` when we prefix padding branch along with `--mc-relax-all`.

Reviewers: LuoYuanke, reames, MaskRay

Reviewed By: MaskRay

Subscribers: MaskRay, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77851
2020-04-11 11:30:15 +08:00
Shengchen Kan 916044d819 [X86][MC] Support enhanced relaxation for branch align
Summary:
Since D75300 has been landed, I want to support enhanced relaxation when we need to align branches and allow prefix padding. "Enhanced Relaxtion" means we allow an instruction that could not be traditionally relaxed to be emitted into RelaxableFragment so that we increase its length by adding prefixes for optimization.

The motivation is straightforward, RelaxFragment is mostly for relative jumps and we can not increase the length of jumps when we need to align them, so if we need to achieve D75300's purpose (reducing the bytes of nops) when need to align jumps, we have to make more instructions "relaxable".

Reviewers: reames, MaskRay, craig.topper, LuoYuanke, jyknight

Reviewed By: reames

Subscribers: hiraditya, llvm-commits, annita.zhang

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D76286
2020-04-08 19:08:19 +08:00
Shengchen Kan b1a7a245ec [NFC][MC] Rename alignBranches* to emitInstruction*
alignBranches is X86 specific, change the name in a
more general one since other target can do some state
chang before and after emitting the instruction.
2020-03-16 17:13:14 +08:00
Shengchen Kan 3a503ce663 [X86] Reduce the number of emitted fragments due to branch align
Summary:
Currently, a BoundaryAlign fragment may be inserted after the branch
that needs to be aligned to truncate the current fragment, this fragment is
unused at most of time. To avoid that, we can insert a new empty Data
fragment instead. Non-relaxable instruction is usually emitted into Data
fragment, so the inserted empty Data fragment will be reused at a high
possibility.

Reviewers: annita.zhang, reames, MaskRay, craig.topper, LuoYuanke, jyknight

Reviewed By: reames, LuoYuanke

Subscribers: llvm-commits, dexonsmith, hiraditya

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75438
2020-03-12 15:37:35 +08:00
Shengchen Kan 95fa5c4f24 [X86] Move the function getOrCreateBoundaryAlignFragment
MCObjectStreamer is more suitable to create fragments than
X86AsmBackend, for example, the function getOrCreateDataFragment is
defined in MCObjectStreamer.

Differential Revision: https://reviews.llvm.org/D75351
2020-02-29 15:11:16 +08:00
Fangrui Song 549b436beb [MC] De-capitalize MCStreamer::Emit{Bundle,Addrsig}* etc
So far, all non-COFF-related Emit* functions have been de-capitalized.
2020-02-15 09:11:48 -08:00
Fangrui Song 774971030d [MCStreamer] De-capitalize EmitValue EmitIntValue{,InHex} 2020-02-14 23:08:40 -08:00
Fangrui Song 6d2d589b06 [MC] De-capitalize another set of MCStreamer::Emit* functions
Emit{ValueTo,Code}Alignment Emit{DTP,TP,GP}* EmitSymbolValue etc
2020-02-14 19:26:52 -08:00
Fangrui Song a55daa1461 [MC] De-capitalize some MCStreamer::Emit* functions 2020-02-14 19:11:53 -08:00
Fangrui Song bcd24b2d43 [AsmPrinter][MCStreamer] De-capitalize EmitInstruction and EmitCFI* 2020-02-13 22:08:55 -08:00