This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This is very useful when you want to parse IR even if
its invalid (e.g. bytecode). It's also useful if you don't
want to pay the cost of verification in certain situations.
Differential Revision: https://reviews.llvm.org/D134847
This is necessary/useful for building generic tooling that can roundtrip external
resources without needing to explicitly handle them. For example, this allows
for viewing the resources encoded within a bytecode file without having to
explicitly know how to process them (e.g. making it easier to interact with a
reproducer encoded in bytecode).
Differential Revision: https://reviews.llvm.org/D133460
This commit adds support for interacting with a (valid) bytecode file in the same
way as .mlir. This allows editing, using all of the traditional LSP features, etc. but
still using bytecode as the on-disk serialization format. Loading a bytecode file this
way will fail if the bytecode is invalid, and saving will fail if the edited .mlir is invalid.
Differential Revision: https://reviews.llvm.org/D132970
This attribute is technical debt from the early stages of MLIR, before
ElementsAttr was an interface and when it was more difficult for
dialects to define their own types of attributes. At present it isn't
used at all in tree (aside from being convenient for eliding other
ElementsAttr), and has had little to no evolution in the past three years.
Differential Revision: https://reviews.llvm.org/D129917
This attributes is intended cover the current set of use cases that abuse
DenseElementsAttr, e.g. when the data is large. Using resources for large
data is one of the major reasons why they were added; e.g. they can be
deallocated mid-compilation, they support a wide variety of data origins
(e.g, heap allocated, mmap'd, etc.), they can support mutation, etc.
I considered at length not having a builtin variant of this, and instead
having multiple versions of this attribute for dialects that are interested,
but they all boiled down to the exact same attribute definition. Given the
generality of this attribute, it feels more aligned to keep it next to DenseArrayAttr
(given that DenseArrayAttr covers the "small" case, and DenseResourcesElementsAttr
covers the "large" case). The underlying infra used to build this attribute is
general, and having a builtin attribute doesn't preclude users from defining
their own when it makes sense (they can even share a blob manager with the
builtin dialect to avoid data duplication).
Differential Revision: https://reviews.llvm.org/D130022
The current Parser library is solely focused on providing API for
the textual MLIR format, but MLIR will soon also provide a binary
format. This commit renames the current Parser library to AsmParser to
better correspond to what the library is actually intended for. A new
Parser library is added which will act as a unified parser interface
between both text and binary formats. Most parser clients are
unaffected, given that the unified interface is essentially the same as
the current interface. Only clients that rely on utilizing the
AsmParserState, or those that want to parse Attributes/Types need to be
updated to point to the AsmParser library.
Differential Revision: https://reviews.llvm.org/D129605
This allows for automatically inserting expected checks for parser and verifier
diagnostics, which simplifies the workflow when building new dialect
constructs or extending existing ones.
Differential Revision: https://reviews.llvm.org/D130152
This required changing a bit of how attributes/types are parsed. A new
`KeywordSwitch` class was added to AsmParser that provides a StringSwitch
like API for parsing keywords with a set of potential matches. It intends to
both provide a cleaner API, and enable injection for code completion. This
required changing the API of `generated(Attr|Type)Parser` to handle the
parsing of the keyword, instead of having the user do it. Most upstream
dialects use the autogenerated handling and didn't require a direct update.
Differential Revision: https://reviews.llvm.org/D129267
This commit adds code completion results to the MLIR LSP when
parsing keywords. Keyword support is currently limited to the
case where the expected keyword is provided, but a followup will
work on expanding the set of keyword cases we handle (e.g. to
allow capturing attribute/type mnemonics).
Differential Revision: https://reviews.llvm.org/D129184
This commit adds code completion results to the MLIR LSP using
a new code completion context in the MLIR parser. This commit
adds initial completion for dialect, operation, SSA value, and
block names.
Differential Revision: https://reviews.llvm.org/D129183
This follows the same general structure of the MLIR and PDLL language
servers. This commits adds the basic functionality for setting up the server,
and initially only supports providing diagnostics. Followon commits will
build out more comprehensive behavior.
Realistically this should eventually live in llvm/, but building in MLIR is an easier
initial step given that:
* All of the necessary LSP functionality is already here
* It allows for proving out useful language features (e.g. compilation databases)
without affecting wider scale tablegen users
* MLIR has a vscode extension that can immediately take advantage of it
Differential Revision: https://reviews.llvm.org/D125440
SourceMgr generally uses 1-based locations, whereas the LSP is zero based.
This commit corrects this conversion and also enhances the conversion from SMLoc
to SMRange to support string tokens.
Differential Revision: https://reviews.llvm.org/D124584
This commits adds a basic language server for PDLL to enable providing
language features in IDEs such as VSCode. This initial commit only
adds support for tracking definitions, references, and diagnostics, but
followup commits will build upon this to provide more significant behavior.
In addition to the server, this commit also updates mlir-vscode to support
the PDLL language and invoke the server.
Differential Revision: https://reviews.llvm.org/D121541
This allows for sharing the implementation of key components across multiple
MLIR language servers. These will be used in a followup to help implement
a PDLL language server.
Differential Revision: https://reviews.llvm.org/D121540
BuiltinOps.h
These includes are going to be removed from BuiltinOps.h in a followup
when FuncOp is moved out of the Builtin dialect. This commit
pre-emptively adds those includes to simplify the patch moving FuncOp.
There is no reason for this file to be at the top-level, and
its current placement predates the Parser/ folder's existence.
Differential Revision: https://reviews.llvm.org/D121024
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).
I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:
* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.
* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.
* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern
Fixes#52917
Differential Revision: https://reviews.llvm.org/D117272
This struct was added and was intended to be used, but it was missed in the original patch.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D114041
A text file may be comprised of many different "chunks", when
the input file contains the `// -----` split markers. We don't
need to use a unique MLIRContext per chunk, as having
separate contexts is intended to allow for easy unloading of
unused data and all chunks have the same lifetime (tied to the
input file). This commit uses one context for the entire file,
greatly reducing memory consumption in certain situations (up
to 70%).
Differential Revision: https://reviews.llvm.org/D107488
This prevents an explosion of threads, given that each file gets its own context and thus its own thread pool. We don't really need a thread pool for the LSP contexts anyways, so it's better to just disable threading.
This allows for building an outline of the symbols and symbol tables within the IR. This allows for easy navigations to functions/modules and other symbol/symbol table operations within the IR.
Differential Revision: https://reviews.llvm.org/D103729
For now the hover simply shows the same information as hovering on the operation
name. If necessary this can be tweaked to something symbol specific later.
Differential Revision: https://reviews.llvm.org/D103728
This revision adds support for hover on region operations, by temporarily removing the regions during printing. This revision also tweaks the hover format for operations to include symbol information, now that FuncOp can be shown in the hover.
Differential Revision: https://reviews.llvm.org/D103727
This revision adds assembly state tracking for uses of symbols, allowing for go-to-definition and references support for SymbolRefAttrs.
Differential Revision: https://reviews.llvm.org/D103585
Currently the diagnostics reports the file:line:col, but some LSP
frontends require a non-empty range. Report either the range of an
identifier that starts at location, or a range of 1. Expose the id
location to range helper and reuse here.
Differential Revision: https://reviews.llvm.org/D103482
MLIR tools very commonly use `// -----` to split a file into distinct sub documents, that are processed separately. This revision adds support to mlir-lsp-server for splitting MLIR files based on this sigil, and processing them separately.
Differential Revision: https://reviews.llvm.org/D102660
The version is used by LSP clients to ignore stale diagnostics, and can be used in a followup to help verify incremental changes.
Differential Revision: https://reviews.llvm.org/D102644
This allows for diagnostics emitted during parsing/verification to be surfaced to the user by the language client, as opposed to just being emitted to the logs like they are now.
Differential Revision: https://reviews.llvm.org/D102293
This provides information when the user hovers over a part of the source .mlir file. This revision adds the following hover behavior:
* Operation:
- Shows the generic form.
* Operation Result:
- Shows the parent operation name, result number(s), and type(s).
* Block:
- Shows the parent operation name, block number, predecessors, and successors.
* Block Argument:
- Shows the parent operation name, parent block, argument number, and type.
Differential Revision: https://reviews.llvm.org/D101113
This commits adds a basic LSP server for MLIR that supports resolving references and definitions. Several components of the setup are simplified to keep the size of this commit down, and will be built out in later commits. A followup commit will add a vscode language client that communicates with this server, paving the way for better IDE experience when interfacing with MLIR files.
The structure of this tool is similar to mlir-opt and mlir-translate, i.e. the implementation is structured as a library that users can call into to implement entry points that contain the dialects/passes that they are interested in.
Note: This commit contains several files, namely those in `mlir-lsp-server/lsp`, that have been copied from the LSP code in clangd and adapted for use in MLIR. This copying was decided as the best initial path forward (discussed offline by several stake holders in MLIR and clangd) given the different needs of our MLIR server, and the one for clangd. If a strong desire/need for unification arises in the future, the existence of these files in mlir-lsp-server can be reconsidered.
Differential Revision: https://reviews.llvm.org/D100439