When expanding IR atomics to target-specific atomics, copy all
!pcsections Metadata to expanded atomics automatically.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130885
IIUC, the conversion part is not part of atomic operations and fences should be put around converted atomic operations.
This also fixes atomic load of floating point values which requires fence on PowerPC.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D127609
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
This adds support for pointer types for `atomic xchg` and let us write
instructions such as `atomicrmw xchg i64** %0, i64* %1 seq_cst`. This
is similar to the patch for allowing atomicrmw xchg on floating point
types: https://reviews.llvm.org/D52416.
Differential Revision: https://reviews.llvm.org/D124728
Currently for atomic load, store, and rmw instructions, as long as the
operand is floating-point value, they are casted to integer. Nowadays many
targets can actually support part of atomic operations with floating-point
operands. For example, NVPTX supports atomic load and store of floating-point
values. This patch adds a series interface functions `shouldCastAtomicXXXInIR`,
and the default implementations are same as what we currently do. Later for
targets can have their specialization.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125652
Currently LowerAtomics exists as a separate pass which blindly
replaces all atomics. Add a new lowering strategy option to eliminate
the atomics which the target can control on a per-instruction level.
Use the same enum as the other atomic instructions for consistency, in
preparation for addition of another strategy.
Introduce a new "Expand" option, since the store expansion does not
use cmpxchg. Alternatively, the existing CmpXChg strategy could be
renamed to Expand.
Fixes llvm-clang-x86_64-expensive-checks-debian failure with 2f497ec3.
expandAtomicStore always modifies the function, so make sure we set
MadeChange unconditionally. Not sure how nobody else has stumbled over
this before.
When generating a all-one mask value whose bitwidth is larger than 64, signed extension should be used rather then zero extension.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D120865
Produce remarks when atomic instructions are expanded into hardware instructions
in SIISelLowering.cpp. Currently, these remarks are only emitted for atomic fadd
instructions.
Differential Revision: https://reviews.llvm.org/D108150
This patch uses AtomicExpandPass to implement quadword lock free atomic operations. It adopts the method introduced in https://reviews.llvm.org/D47882, which expand atomic operations post RA to avoid spilling that might prevent LL/SC progress.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D103614
If we're not emitting separate fences for the success/failure cases, we
need to pass the merged ordering to the target so it can emit the
correct instructions.
For the PowerPC testcase, we end up with extra fences, but that seems
like an improvement over missing fences. If someone wants to improve
that, the PowerPC backed could be taught to emit the fences after isel,
instead of depending on fences emitted by AtomicExpand.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33332 .
Differential Revision: https://reviews.llvm.org/D103342
Follow the same strategy used for atomic loads/stores by converting the operands to equally-sized integer types.
This change prevents the atomic expansion pass from generating illegal LL/SC pairs when targeting AArch64: `expand-atomicrmw-xchg-fp.ll` would previously instantiate intrinsics such as `llvm.aarch64.ldaxr.p0f32` that cannot be lowered.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D103232
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
I recently modified this pass to better support CHERI-RISC-V and while
doing so I noticed that this pass was calling M->getOrInsertFunction()
with the result of TLI->getLibcallName(RTLibType). However, AMDGPU fills
the libcalls array with nullptr, so this creates an anonymous function
instead. This patch changes expandAtomicOpToLibcall to return false in
case the libcall does not exist and changes the assert() in the callees to
a report_fatal_error() instead.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D88800
In cases where the alignment of the datatype is smaller than
expected by the instruction, the address is aligned. The aligned
address is used for the load, but wasn't used for the store
conditional, which resulted in a run-time alignment exception.
This is a followup on D78403.
I'm unsure about `getAtomicOpAlign` overloads that take `AtomicRMWInst` and `AtomicCmpXchgInst`, shouldn't `getAlign` provide the correct answer already?
Differential Revision: https://reviews.llvm.org/D81369
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
In preparation for supporting ILP32 on AArch64, this modifies the SelectionDAG
builder code so that pointers are allowed to have a larger type when "live" in
the DAG compared to memory.
Pointers get zero-extended whenever they are loaded, and truncated prior to
stores. In addition, a few not quite so obvious locations need updating:
* A GEP that has not been marked inbounds needs to enforce the IR-documented
2s-complement wrapping at the memory pointer size. Inbounds GEPs are
undefined if they overflow the address space, so no additional operations
are needed.
* Signed comparisons would give incorrect results if performed on the
zero-extended values.
This shouldn't affect CodeGen for now, but will become active when the AArch64
ILP32 support is committed.
llvm-svn: 359676
Add tests for wider atomic loads and stores. In the process, fix a crasher where we appearently handled unorder stores, but not loads, when lowering to cmpxchg idioms.
llvm-svn: 356482