The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.
This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.
This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:
```
sw.bb sw.bb
/ | \ / | \
case1 case2 case3 case1 case2 case3
\ | / / | \
latch.bb latch.2 latch.3 latch.1
br sw.bb / | \
sw.bb.2 sw.bb.3 sw.bb.1
br case2 br case3 br case1
```
Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99205
When hoisting/moving calls to locations, we strip unknown metadata. Such calls are usually marked `speculatable`, i.e. they are guaranteed to not cause undefined behaviour when run anywhere. So, we should strip attributes that can cause immediate undefined behaviour if those attributes are not valid in the context where the call is moved to.
This patch introduces such an API and uses it in relevant passes. See
updated tests.
Fix for PR50744.
Reviewed By: nikic, jdoerfert, lebedev.ri
Differential Revision: https://reviews.llvm.org/D104641
This reapplies commit 76f3ffb2b2 that was
reverted due to buildbot failures.
- Update lit tests with REQUIRES condition.
- Abandon salvage attempt if SCEVUnknown::getValue() returns nullptr.
Differential Revision: https://reviews.llvm.org/D105207
This patch extends salvaging of debuginfo in the Loop Strength Reduction
(LSR) pass by translating Scalar Evaluations (SCEV) into DIExpressions.
The method is as follows:
- Cache dbg.value intrinsics that are salvageable.
- Obtain a loop Induction Variable (IV) from ScalarExpressionExpander or
the loop header.
- Translate the IV SCEV into an expression that recovers the current
loop iteration count. Combine this with the dbg.value's location
op SCEV to create a DIExpression that salvages the value.
Review by: jmorse
Differential Revision: https://reviews.llvm.org/D105207
Replace pattern-matching with existing SCEV and Loop APIs as a more
robust way of identifying the loop increment and trip count. Also
rename 'Limit' as 'TripCount' to be consistent with terminology.
Differential Revision: https://reviews.llvm.org/D106580
Apparently this fails to line up the types -- try to sidestep the
issue entirely by writing the code in a more reasonable way: Walk
over the operands and perform a set lookup, rather than walking
over the set and performing an operand scan.
Separate out the BCECmp part from BCECmpBlock, which just stores
the comparison atoms without the branch instruction. At the same
time switch the code to return Optional<> rather than objects in
invalid state and partially constructed objects.
This adjusts mayHaveSideEffect() to return true for !willReturn()
instructions. Just like other side-effects, non-willreturn calls
(aka "divergence") cannot be removed and cannot be reordered relative
to other side effects. This fixes a number of bugs where
non-willreturn calls are either incorrectly dropped or moved. In
particular, it also fixes the last open problem in
https://bugs.llvm.org/show_bug.cgi?id=50511.
I performed a cursory review of all current mayHaveSideEffect()
uses, which convinced me that these are indeed the desired default
semantics. Places that do not want to consider non-willreturn as a
sideeffect generally do not want mayHaveSideEffect() semantics at
all. I identified two such cases, which are addressed by D106591
and D106742. Finally, there is a use in SCEV for which we don't
really have an appropriate API right now -- what it wants is
basically "would this be considered forward progress". I've just
spelled out the previous semantics there.
Differential Revision: https://reviews.llvm.org/D106749
The check for sinking instructions past the load + cmp sequence
currently checks for side-effects, which includes writing to memory
and unwinding. However, I don't believe we care about sinking the
instructions past an unwind (as they don't have any side-effects
themselves).
Differential Revision: https://reviews.llvm.org/D106591
We should only add the fake lowering entry for the matrix remark if the
transpose is not lowered on its own. `MapVector::insert` is used to insert
the entry during proper lowering which does not overwrite the fake entry in
the map.
We actually had test coverage for this but the reference output code was
wrong; it was storing undef rather than the transposed column.
Also add an assert that would have caught this.
Differential Revision: https://reviews.llvm.org/D106457
The purpose of patch is to learn Loop idiom recognition pass how to recognize simple memmove patterns
in similar way like GCC: https://godbolt.org/z/fh95e83od
LoopIdiomRecognize already has machinery for memset and memcpy recognition, patch tries to extend exisiting capabilities with minimal effort.
Differential Revision: https://reviews.llvm.org/D104464
Make getLatchCmpInst non-static and use it in LoopFlatten as a more
robust way of identifying the compare.
Differential Revision: https://reviews.llvm.org/D106256
The patch does not depend on the availability of the library functions for
memcpy/memset as it operates on LLVM intrinsics. The optimizations are useful
on the targets that have these functions disabled (e.g. NVPTX & AMDGPU).
Differential Revision: https://reviews.llvm.org/D104801
This patch adds a new pass called LNICM which is a LoopNest version of LICM and a test case to show how LNICM works.
Basically, LNICM only hoists invariants out of loop nest (not a loop) to keep/make perfect loop nest. This enables later optimizations that require perfect loop nest.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D104180
Replace code which identifies induction phi with helper function
getInductionVariable to improve robustness.
Differential Revision: https://reviews.llvm.org/D106045
We already know that we need to check whether lcssa
phis are supported in inner loop exit block or in
outer loop exit block, and we have logic to check
them already. Presumably the inner loop latch does
not have lcssa phis and there is no code that deals
with lcssa phis in the inner loop latch. However,
that assumption is not true, when we have loops
with more than two-level nesting. This patch adds
checks for lcssa phis in the inner latch.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102300
This patch addresses assertion failure in case when the only found formula for LSR
is `1*reg => reg` which was supposed to be an impossible situation, however there
is a test that shows it is possible.
In this case, we can use scale register with scale of 1 as the missing base register.
Reviewed By: huihuiz, reames
Differential Revision: https://reviews.llvm.org/D105009
To help with debugging non-trivial unswitching issues.
Don't care about the legacy pass, nobody is using it.
If a pass's string params are empty (e.g. "simple-loop-unswitch"), don't
default to the empty constructor for the pass params. We should still
let the parser take care of it in case the parser has its own defaults.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D105933
Make sure getMinusSCEV() didn't return a pointer. The following check
would never succeed if it was a pointer, anyway, but calling
getMulExpr() on a pointer SCEV now asserts.
This new test demonstrates a case where a base ptr is generated
twice for the same value: the first one is generated while
the gc.get.pointer.base() is inlined, the second is generated
for the statepoint. This happens because the methods
inlineGetBaseAndOffset() and insertParsePoints() do not share
their defining value cache used by the findBasePointer() method.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D103240
This patch adds support for hoisting the division and maybe the
remainder for control flow graphs like this.
```
PredBB
| \
| Rem
| /
Div
```
If we have DivRem we'll hoist both to PredBB. If not we'll just
hoist Div and expand Rem using the Div.
This improves our codegen for something like this
```
__uint128_t udivmodti4(__uint128_t dividend, __uint128_t divisor, __uint128_t *remainder) {
if (remainder != 0)
*remainder = dividend % divisor;
return dividend / divisor;
}
```
Reviewed By: spatel, lebedev.ri
Differential Revision: https://reviews.llvm.org/D87555
Rules:
1. SCEVUnknown is a pointer if and only if the LLVM IR value is a
pointer.
2. SCEVPtrToInt is never a pointer.
3. If any other SCEV expression has no pointer operands, the result is
an integer.
4. If a SCEVAddExpr has exactly one pointer operand, the result is a
pointer.
5. If a SCEVAddRecExpr's first operand is a pointer, and it has no other
pointer operands, the result is a pointer.
6. If every operand of a SCEVMinMaxExpr is a pointer, the result is a
pointer.
7. Otherwise, the SCEV expression is invalid.
I'm not sure how useful rule 6 is in practice. If we exclude it, we can
guarantee that ScalarEvolution::getPointerBase always returns a
SCEVUnknown, which might be a helpful property. Anyway, I'll leave that
for a followup.
This is basically mop-up at this point; all the changes with significant
functional effects have landed. Some of the remaining changes could be
split off, but I don't see much point.
Differential Revision: https://reviews.llvm.org/D105510
Added check for switch-terminated blocks in loops.
Now if a block is terminated with a switch, we try to find out which of the
cases is taken on 1st iteration and mark corresponding edge from the block
to the case successor as live.
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D105688
Reviewed By: nikic, mkazantsev
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.
This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.
I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D105627
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.
There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.
The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.
As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base. This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.
This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes). The resulting changes
seem okay to me, but suggestions welcome. As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.
I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.
Recommitting with fix to MemoryDepChecker::isDependent.
Differential Revision: https://reviews.llvm.org/D104806
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.
There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.
The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.
As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base. This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.
This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes). The resulting changes
seem okay to me, but suggestions welcome. As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.
I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.
Differential Revision: https://reviews.llvm.org/D104806
If the store address does not dominate the matrix multiply, try to hoist
address computation instructions without side-effects and/or memory
reads before the multiply, to allow fusion.
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D105193
With 'for' loop there is is a single place where 'Current' is adjusted. It helps to avoid copy paste and makes a bit easy to understand overall loop controll flow.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D101044