This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
The bug was introduced when the AddressRange class was no longer able to modify the End address directly and the entire range of the .text address range that contained the trailing empty symbol was replaced. There was no unit test for this, so it wasn't caught. I fixed the bug and added a unit test for it.
The effects of this bug are serious as the AddressOffsetSize in the header would be incorrectly calculated and an invalid GSYM would be created.
Differential Revision: https://reviews.llvm.org/D127811
llvm-gsymutil has an implementation of AddressRange and AddressRanges
classes. That implementation might be reused in other parts of llvm.
This patch moves AddressRange and AddressRanges classes into llvm/ADT.
Differential Revision: https://reviews.llvm.org/D124350
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/DebugInfo/DWARF/DWARFContext.h no longer includes:
- "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
- "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
- "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
- "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
- "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
- "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
- "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
- "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
- "llvm/DebugInfo/DWARF/DWARFSection.h"
- "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
- "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
Plus llvm/Support/Errc.h not included by a bunch of llvm/DebugInfo/DWARF/DWARF*.h files
Preprocessed lines to build llvm on my setup:
after: 1065629059
before: 1066621848
Which is a great diff!
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119723
The convert only worked on CUs in main binary.
If it's a skeleton CU it will now use the DWO CU
when invoking handleDie.
Test Plan:
llvm-lit
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D118521
These were detected by the new -Wauto-by-value-copy (D114989) warning, these by-value
constant copies need only be references.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D114990
Since we might end up using multiple threads when logging information in the DWARFTransformer, the handleDie() method must use the supplied stream named "OS" when logging warnings and errors. When we use multiple threads, we log to a thread specific stream buffer and then use a mutex to ensure our output doesn't overlap when we emit warnings and errors after a thread is done.
Differential Revision: https://reviews.llvm.org/D109401
When a function has no line table, but does have debug info (DW_TAG_subprogram), we fall back to creating a line table with a single line entry that has the start address of the function and the source file and line of the function declaration. The bug in this code was that we might have a DW_TAG_subprogram that uses a DW_AT_specification or DW_AT_abstract_origin that points to another DIE, and that DIE might be in another compile unit. The bug was we were grabbing the file index value from the DIE, and that index could be from the other DIE in another compile unit that has its own and compleltely different file table, so we might be using a file index from one compile unit with the file table from another. This was causing a crash in llvm-gsymuil when run against dSYM files. dsymutil, the Apple DWARF linker, will often unique types and can end up with more absolute references across different compile units.
The fix is to use the DWARFDie::getDeclFile(...) accessor as it does fetch this information correctly.
Differential Revision: https://reviews.llvm.org/D108497
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528
Symbol tables can have symbols with no size in mach-o files that were failing to get combined into a single entry. This resulted in many duplicate entries for the same address and made gsym files larger.
Differential Revision: https://reviews.llvm.org/D105068
There doesn't seem to be a need to support recursive locking,
and a recursive mutex is unnecessarily inefficient.
Differential Revision: https://reviews.llvm.org/D102486
Do the single hash calculation before acquiring the lock, to reduce
lock contention. If Copy is true, and the string was not yet contained
in the StringStorage, use the new address from StringStorage, but
reuse the hash we already calculated.
Differential Revision: https://reviews.llvm.org/D102484
The algorithm removing duplicates from the Funcs list used to have
amortized quadratic time complexity because it was potentially
removing each entry using std::vector::erase individually. This
patch is now using a erase-remove idiom with an adapted
removeIfBinary algorithm.
Probably this was made under the assumption that these removals are
rare, but there are cases where the case of duplicate entries is
occurring frequently. In these cases, the actual runtime was very
poor, taking hours to process a single binary of around 1 GiB size
including debug info. Another factor contributing to that is the
frequent output of the warning, which is now removed.
It seems this is particularly an issue with GCC-compiled binaries,
rather than clang-built binaries.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D102219
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Summary:
In D77860, we have changed `getSymbolFlags()` return type to `Expected<uint32_t>`.
This change helps bubble the error further up the stack.
Reviewers: jhenderson, grimar, JDevlieghere, MaskRay
Reviewed By: jhenderson
Subscribers: hiraditya, MaskRay, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79075
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Fixed memory sanitizer bot bugs as well.
Differential Revision: https://reviews.llvm.org/D75390
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Also fixed an issue where strings for files in the file table could be added in opposite order due to parameters to function calls not having a strong ordering, which caused tests to fail. Added new arch specfic directories so when targets are not enabled, we continue to function just fine.
Differential Revision: https://reviews.llvm.org/D75390
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Also fixed an issue where strings for files in the file table could be added in opposite order due to parameters to function calls not having a strong ordering, which caused tests to fail.
Differential Revision: https://reviews.llvm.org/D75390
Summary:
This patch creates the llvm-gsymutil binary that can convert object files to GSYM using the --convert <path> option. It can also dump and lookup addresses within GSYM files that have been saved to disk.
To dump a file:
llvm-gsymutil /path/to/a.gsym
To perform address lookups, like with atos, on GSYM files:
llvm-gsymutil --address 0x1000 --address 0x1100 /path/to/a.gsym
To convert a mach-o or ELF file, including any DWARF debug info contained within the object files:
llvm-gsymutil --convert /path/to/a.out --out-file /path/to/a.out.gsym
Conversion highlights:
- convert DWARF debug info in mach-o or ELF files to GSYM
- convert symbols in symbol table to GSYM and don't convert symbols that overlap with DWARF debug info
- extract UUID from object files
- extract .text (read + execute) section address ranges and filter out any DWARF or symbols that don't fall in those ranges.
- if .text sections are extracted, and if the last gsym::FunctionInfo object has no size, cap the size to the end of the section the function was contained in
Dumping GSYM files will dump all sections of the GSYM file in textual format.
Reviewers: labath, aadsm, serhiy.redko, jankratochvil, xiaobai, wallace, aprantl, JDevlieghere, jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74883
Summary:
The Offset provides the offset within the function in a SourceLocation struct. This allows us to show the byte offset within a function. We also track offsets within inline functions as well. Updated the lookup tests to verify the offset for functions and inline functions.
0x1000: main + 32 @ /tmp/main.cpp:45
Reviewers: labath, aadsm, serhiy.redko, jankratochvil, xiaobai, wallace, aprantl, JDevlieghere
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74680
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
Summary:
The DWARF transformer is added as a class so it can be unit tested fully.
The DWARF is converted to GSYM format and handles many special cases for functions:
- omit functions in compile units with 4 byte addresses whose address is UINT32_MAX (dead stripped)
- omit functions in compile units with 8 byte addresses whose address is UINT64_MAX (dead stripped)
- omit any functions whose high PC is <= low PC (dead stripped)
- StringTable builder doesn't copy strings, so we need to make backing copies of strings but only when needed. Many strings come from sections in object files and won't need to have backing copies, but some do.
- When a function doesn't have a mangled name, store the fully qualified name by creating a string by traversing the parent decl context DIEs and then. If we don't do this, we end up having cases where some function might appear in the GSYM as "erase" instead of "std::vector<int>::erase".
- omit any functions whose address isn't in the optional TextRanges member variable of DwarfTransformer. This allows object file to register address ranges that are known valid code ranges and can help omit functions that should have been dead stripped, but just had their low PC values set to zero. In this case we have many functions that all appear at address zero and can omit these functions by making sure they fall into good address ranges on the object file. Many compilers do this when the DWARF has a DW_AT_low_pc with a DW_FORM_addr, and a DW_AT_high_pc with a DW_FORM_data4 as the offset from the low PC. In this case the linker can't write the same address to both the high and low PC since there is only a relocation for the DW_AT_low_pc, so many linkers tend to just zero it out.
Reviewers: aprantl, dblaikie, probinson
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74450
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
GCC says:
.../llvm/lib/DebugInfo/GSYM/FunctionInfo.cpp:195:12:
error: ‘InfoType’ is not a class, namespace, or enumeration
case InfoType::EndOfList:
^
Presumably, GCC thinks InfoType is a variable here. Work around it by
using the name IT as is done above.
Summary:
Lookup functions are designed to not fully decode a FunctionInfo, LineTable or InlineInfo, they decode only what is needed into a LookupResult object. This allows lookups to avoid costly memory allocations and avoid parsing large amounts of information one a suitable match is found.
LookupResult objects contain the address that was looked up, the concrete function address range, the name of the concrete function, and a list of source locations. One for each inline function, and one for the concrete function. This allows one address to turn into multiple frames and improves the signal you get when symbolicating addresses in GSYM files.
Reviewers: labath, aprantl
Subscribers: mgorny, hiraditya, llvm-commits, lldb-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70993
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179