R-sharp/docs/documents/math/bootstrap.1

79 lines
2.3 KiB
Groff

.\" man page create by R# package system.
.TH MATH 2 2000-Jan "bootstrap" "bootstrap"
.SH NAME
bootstrap \- Non-Parametric Bootstrapping
.SH SYNOPSIS
\fIbootstrap(\fBx\fR as any,
\fBnboot\fR as integer,
\fBtheta\fR as any = \fB<NULL>\fR,
\fBfunc\fR as any = \fB<NULL>\fR,
...,
[\fB<Environment>\fR]);\fR
.SH DESCRIPTION
.PP
Non-Parametric Bootstrapping
See Efron and Tibshirani (1993) for details on this function.
.PP
.SH OPTIONS
.PP
\fBx\fB \fR\- a vector or a dataframe that containing the data.
To bootstrap more complex data structures (e.g. bivariate data)
see the last example below..
.PP
.PP
\fBnboot\fB \fR\- The number of bootstrap samples desired..
.PP
.PP
\fBtheta\fB \fR\- function to be bootstrapped. Takes x as an
argument, and may take additional arguments (see below and last
example)..
.PP
.PP
\fBfunc\fB \fR\- (optional) argument specifying the functional
the distribution of thetahat that is desired. If func is
specified, the jackknife after-bootstrap estimate of its standard
error is also returned. See example below..
.PP
.PP
\fBargs\fB \fR\- any additional arguments to be passed to theta.
.PP
.PP
\fBenv\fB \fR\- -.
.PP
.SH VALUE
.PP
list with the following components:
1. thetastar the nboot bootstrap values Of theta
2. func.thetastar the functional func Of the bootstrap distribution Of thetastar, If func was specified
3. jack.boot.val the jackknife-after-bootstrap values For func, If func was specified
4. jack.boot.se the jackknife-after-bootstrap standard Error estimate Of func, If func was specified
5. call the deparsed call
and this function will returns the bootstrap data collection if the
**`theta`** function is not specificed.
.PP
.SH DETAILS
.PP
Efron, B. and Tibshirani, R. (1986). The bootstrap method for
standard errors, confidence intervals, and other measures of
statistical accuracy. Statistical Science, Vol 1., No. 1, pp 1-35.
Efron, B. (1992) Jackknife-after-bootstrap standard errors And
influence functions. J. Roy. Stat. Soc. B, vol 54, pages 83-127
Efron, B. And Tibshirani, R. (1993) An Introduction to the
Bootstrap. Chapman And Hall, New York, London.
.PP
.SH SEE ALSO
math
.SH FILES
.PP
Rlapack.dll
.PP
.SH AUTHOR
Written by \fBxie.guigang@live.com\fR
.SH COPYRIGHT
GPL3