Merge pull request #218 from wang-sw/dev-1
对rf-python3.6.py进行整理,并调整了模型参数
This commit is contained in:
commit
dbb788f453
|
@ -2,8 +2,8 @@
|
|||
# coding: utf-8
|
||||
'''
|
||||
Created on 2018-05-14
|
||||
Update on 2018-05-14
|
||||
Author: 平淡的天
|
||||
Update on 2018-05-19
|
||||
Author: 平淡的天/wang-sw
|
||||
Github: https://github.com/apachecn/kaggle
|
||||
'''
|
||||
import os.path
|
||||
|
@ -11,50 +11,156 @@ from sklearn.ensemble import RandomForestClassifier
|
|||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.decomposition import PCA
|
||||
import pandas as pd
|
||||
# from sklearn.grid_search import GridSearchCV
|
||||
import numpy as np
|
||||
# from sklearn.model_selection import GridSearchCV
|
||||
# from numpy import arange
|
||||
# from lightgbm import LGBMClassifier
|
||||
data_dir = \
|
||||
r'/Users/wuyanxue/Documents/GitHub/datasets/getting-started/digit-recognizer/'
|
||||
import os.path
|
||||
import time
|
||||
|
||||
train_data = pd.read_csv(os.path.join(data_dir, 'input/train.csv'))
|
||||
test_data = pd.read_csv(os.path.join(data_dir, 'input/test.csv'))
|
||||
data = pd.concat([train_data, test_data], axis=0).reset_index(drop=True)
|
||||
data.drop(['label'], axis=1, inplace=True)
|
||||
label = train_data.label
|
||||
# 数据路径
|
||||
data_dir = '/media/wsw/B634091A3408DF6D/data/kaggle/datasets/getting-started/digit-recognizer/'
|
||||
|
||||
pca = PCA(n_components=100, random_state=34)
|
||||
data_pca = pca.fit_transform(data)
|
||||
# 加载数据
|
||||
def opencsv():
|
||||
# 使用 pandas 打开
|
||||
train_data = pd.read_csv(os.path.join(data_dir, 'input/train.csv'))
|
||||
test_data = pd.read_csv(os.path.join(data_dir, 'input/test.csv'))
|
||||
data = pd.concat([train_data, test_data], axis=0).reset_index(drop=True)
|
||||
data.drop(['label'], axis=1, inplace=True)
|
||||
label = train_data.label
|
||||
return train_data,test_data,data, label
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
data_pca[0:len(train_data)], label, test_size=0.1, random_state=34)
|
||||
# 数据预处理-降维 PCA主成成分分析
|
||||
def dRPCA(data, COMPONENT_NUM=100):
|
||||
print('dimensionality reduction...')
|
||||
data = np.array(data)
|
||||
'''
|
||||
使用说明:https://www.cnblogs.com/pinard/p/6243025.html
|
||||
n_components>=1
|
||||
n_components=NUM 设置占特征数量
|
||||
0 < n_components < 1
|
||||
n_components=0.99 设置阈值总方差占比
|
||||
'''
|
||||
pca = PCA(n_components=COMPONENT_NUM, random_state=34)
|
||||
data_pca = pca.fit_transform(data)
|
||||
|
||||
clf = RandomForestClassifier(
|
||||
n_estimators=100,
|
||||
max_depth=20,
|
||||
min_samples_split=20,
|
||||
min_samples_leaf=1,
|
||||
random_state=34)
|
||||
# clf=LGBMClassifier(num_leaves=63, max_depth=7, n_estimators=80, n_jobs=20)
|
||||
# param_test1 = {'n_estimators':arange(10,150,10),'max_depth':arange(1,11,1)}
|
||||
# gsearch1 = GridSearchCV(estimator = clf, param_grid = param_test1, scoring='accuracy',iid=False,cv=5)
|
||||
# gsearch1.fit(Xtrain,xtest)
|
||||
# print(gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_)
|
||||
# pca 方差大小、方差占比、特征数量
|
||||
print(pca.explained_variance_, '\n', pca.explained_variance_ratio_, '\n',
|
||||
pca.n_components_)
|
||||
print(sum(pca.explained_variance_ratio_))
|
||||
storeModel(data_pca, os.path.join(data_dir, 'output/Result_sklearn_rf.pcaData'))
|
||||
return data_pca
|
||||
|
||||
clf.fit(X_train, y_train)
|
||||
y_predict = clf.predict(X_test)
|
||||
|
||||
zeroLable = y_test - y_predict
|
||||
rightCount = 0
|
||||
for i in range(len(zeroLable)):
|
||||
if list(zeroLable)[i] == 0:
|
||||
rightCount += 1
|
||||
print('the right rate is:', float(rightCount) / len(zeroLable))
|
||||
# 训练模型
|
||||
def trainModel(X_train, y_train):
|
||||
print('Train RF...')
|
||||
clf = RandomForestClassifier(
|
||||
n_estimators=140,
|
||||
max_depth=20,
|
||||
min_samples_split=2,
|
||||
min_samples_leaf=1,
|
||||
random_state=34)
|
||||
clf.fit(X_train, y_train) # 训练rf
|
||||
|
||||
result = clf.predict(data_pca[len(train_data):])
|
||||
# clf=LGBMClassifier(num_leaves=63, max_depth=7, n_estimators=80, n_jobs=20)
|
||||
|
||||
n, _ = test_data.shape
|
||||
with open(os.path.join(data_dir, 'output/Result_sklearn_RF.csv'), 'w') as fw:
|
||||
fw.write('{},{}\n'.format('ImageId', 'Label'))
|
||||
for i in range(1, n + 1):
|
||||
fw.write('{},{}\n'.format(i, result[i - 1]))
|
||||
# param_test1 = {'n_estimators':arange(10,150,10),'max_depth':arange(1,21,1)}
|
||||
# gsearch1 = GridSearchCV(estimator = clf, param_grid = param_test1, scoring='accuracy',iid=False,cv=5)
|
||||
# gsearch1.fit(X_train, y_train)
|
||||
# print(gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_)
|
||||
# clf=gsearch1.best_estimator_
|
||||
|
||||
return clf
|
||||
|
||||
|
||||
# 计算准确率
|
||||
def printAccuracy(y_test ,y_predict):
|
||||
zeroLable = y_test - y_predict
|
||||
rightCount = 0
|
||||
for i in range(len(zeroLable)):
|
||||
if list(zeroLable)[i] == 0:
|
||||
rightCount += 1
|
||||
print('the right rate is:', float(rightCount) / len(zeroLable))
|
||||
|
||||
# 存储模型
|
||||
def storeModel(model, filename):
|
||||
import pickle
|
||||
with open(filename, 'wb') as fw:
|
||||
pickle.dump(model, fw)
|
||||
|
||||
# 加载模型
|
||||
def getModel(filename):
|
||||
import pickle
|
||||
fr = open(filename, 'rb')
|
||||
return pickle.load(fr)
|
||||
|
||||
# 结果输出保存
|
||||
def saveResult(result, csvName):
|
||||
i = 0
|
||||
fw = open(csvName, 'w')
|
||||
with open(os.path.join(data_dir, 'output/sample_submission.csv')
|
||||
) as pred_file:
|
||||
fw.write('{},{}\n'.format('ImageId', 'Label'))
|
||||
for line in pred_file.readlines()[1:]:
|
||||
splits = line.strip().split(',')
|
||||
fw.write('{},{}\n'.format(splits[0], result[i]))
|
||||
i += 1
|
||||
fw.close()
|
||||
print('Result saved successfully...')
|
||||
|
||||
|
||||
def trainRF():
|
||||
start_time = time.time()
|
||||
# 加载数据
|
||||
train_data, test_data, data, label = opencsv()
|
||||
print("load data finish")
|
||||
stop_time_l = time.time()
|
||||
print('load data time used:%f s' % (stop_time_l - start_time))
|
||||
|
||||
startTime = time.time()
|
||||
# 模型训练 (数据预处理-降维)
|
||||
data_pca = dRPCA(data,100)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
data_pca[0:len(train_data)], label, test_size=0.1, random_state=34)
|
||||
|
||||
rfClf = trainModel(X_train, y_train)
|
||||
|
||||
# 保存结果
|
||||
storeModel(data_pca[len(train_data):], os.path.join(data_dir, 'output/Result_sklearn_rf.pcaPreData'))
|
||||
storeModel(rfClf, os.path.join(data_dir, 'output/Result_sklearn_rf.model'))
|
||||
|
||||
# 模型准确率
|
||||
y_predict = rfClf.predict(X_test)
|
||||
printAccuracy(y_test, y_predict)
|
||||
|
||||
print("finish!")
|
||||
stopTime = time.time()
|
||||
print('TrainModel store time used:%f s' % (stopTime - startTime))
|
||||
|
||||
|
||||
def preRF():
|
||||
startTime = time.time()
|
||||
# 加载模型和数据
|
||||
clf=getModel(os.path.join(data_dir, 'output/Result_sklearn_rf.model'))
|
||||
pcaPreData = getModel(os.path.join(data_dir, 'output/Result_sklearn_rf.pcaPreData'))
|
||||
|
||||
# 结果预测
|
||||
result = clf.predict(pcaPreData)
|
||||
|
||||
# 结果的输出
|
||||
saveResult(result,os.path.join(data_dir, 'output/Result_sklearn_rf.csv'))
|
||||
print("finish!")
|
||||
stopTime = time.time()
|
||||
print('PreModel load time used:%f s' % (stopTime - startTime))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# 训练并保存模型
|
||||
trainRF()
|
||||
|
||||
# 加载预测数据集
|
||||
preRF()
|
||||
|
|
Loading…
Reference in New Issue