pytorch3d/tests/test_struct_utils.py

227 lines
8.5 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import TestCaseMixin
from pytorch3d.structures import utils as struct_utils
class TestStructUtils(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(43)
def _check_list_to_padded_slices(self, x, x_padded, ndim):
N = len(x)
for i in range(N):
slices = [i]
for dim in range(ndim):
if x[i].nelement() == 0 and x[i].ndim == 1:
slice_ = slice(0, 0, 1)
else:
slice_ = slice(0, x[i].shape[dim], 1)
slices.append(slice_)
if x[i].nelement() == 0 and x[i].ndim == 1:
x_correct = x[i].new_zeros(*[[0] * ndim])
else:
x_correct = x[i]
self.assertClose(x_padded[slices], x_correct)
def test_list_to_padded(self):
device = torch.device("cuda:0")
N = 5
K = 20
for ndim in [1, 2, 3, 4]:
x = []
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
# set 0th element to an empty 1D tensor
x[0] = torch.tensor([], dtype=x[0].dtype, device=device)
# set 1st element to an empty tensor with correct number of dims
x[1] = x[1].new_zeros(*[[0] * ndim])
pad_size = [K] * ndim
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
for dim in range(ndim):
self.assertEqual(x_padded.shape[dim + 1], K)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for no pad size (defaults to max dimension)
x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False)
max_sizes = (
max(
(0 if (y.nelement() == 0 and y.ndim == 1) else y.shape[dim])
for y in x
)
for dim in range(ndim)
)
for dim, max_size in enumerate(max_sizes):
self.assertEqual(x_padded.shape[dim + 1], max_size)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for equisized
x = [torch.rand((K, *([10] * (ndim - 1))), device=device) for _ in range(N)]
x_padded = struct_utils.list_to_padded(x, equisized=True)
self.assertClose(x_padded, torch.stack(x, 0))
# catch ValueError for invalid dimensions
with self.assertRaisesRegex(ValueError, "Pad size must"):
pad_size = [K] * (ndim + 1)
struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
# invalid input tensor dimensions
x = []
ndim = 3
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
pad_size = [K] * 2
with self.assertRaisesRegex(ValueError, "Pad size must"):
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
def test_padded_to_list(self):
device = torch.device("cuda:0")
N = 5
K = 20
ndim = 2
for ndim in (2, 3, 4):
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
x_list = struct_utils.padded_to_list(x)
for i in range(N):
self.assertClose(x_list[i], x[i])
split_size = torch.randint(1, K, size=(N, ndim)).unbind(0)
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
slices = [i]
for dim in range(ndim):
slices.append(slice(0, split_size[i][dim], 1))
self.assertClose(x_list[i], x[slices])
# split size is a list of ints
split_size = [int(z) for z in torch.randint(1, K, size=(N,)).unbind(0)]
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
self.assertClose(x_list[i], x[i][: split_size[i]])
def test_padded_to_packed(self):
device = torch.device("cuda:0")
N = 5
K = 20
ndim = 2
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
# Case 1: no split_size or pad_value provided
# Check output is just the flattened input.
x_packed = struct_utils.padded_to_packed(x)
self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2]))
self.assertClose(x_packed, x.reshape(-1, K))
# Case 2: pad_value is provided.
# Check each section of the packed tensor matches the
# corresponding unpadded elements of the padded tensor.
# Check that only rows where all the values are padded
# are removed in the conversion to packed.
pad_value = -1
x_list = []
split_size = []
for _ in range(N):
dim = torch.randint(K, size=(1,)).item()
# Add some random values in the input which are the same as the pad_value.
# These should not be filtered out.
x_list.append(
torch.randint(low=pad_value, high=10, size=(dim, K), device=device)
)
split_size.append(dim)
x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value)
x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value)
curr = 0
for i in range(N):
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
self.assertClose(torch.cat(x_list), x_packed)
curr += split_size[i]
# Case 3: split_size is provided.
# Check each section of the packed tensor matches the corresponding
# unpadded elements.
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
curr = 0
for i in range(N):
self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i])
self.assertClose(torch.cat(x_list), x_packed)
curr += split_size[i]
# Case 4: split_size of the wrong shape is provided.
# Raise an error.
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
with self.assertRaisesRegex(ValueError, "1-dimensional"):
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist()
with self.assertRaisesRegex(
ValueError, "same length as inputs first dimension"
):
x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size)
# Case 5: both pad_value and split_size are provided.
# Raise an error.
with self.assertRaisesRegex(ValueError, "Only one of"):
x_packed = struct_utils.padded_to_packed(
x_padded, split_size=split_size, pad_value=-1
)
# Case 6: Input has more than 3 dims.
# Raise an error.
with self.assertRaisesRegex(ValueError, "Supports only"):
x = torch.rand((N, K, K, K, K), device=device)
split_size = torch.randint(1, K, size=(N,)).tolist()
struct_utils.padded_to_packed(x, split_size=split_size)
def test_list_to_packed(self):
device = torch.device("cuda:0")
N = 5
K = 20
x, x_dims = [], []
dim2 = torch.randint(K, size=(1,)).item()
for _ in range(N):
dim1 = torch.randint(K, size=(1,)).item()
x_dims.append(dim1)
x.append(torch.rand([dim1, dim2], device=device))
out = struct_utils.list_to_packed(x)
x_packed = out[0]
num_items = out[1]
item_packed_first_idx = out[2]
item_packed_to_list_idx = out[3]
cur = 0
for i in range(N):
self.assertTrue(num_items[i] == x_dims[i])
self.assertTrue(item_packed_first_idx[i] == cur)
self.assertTrue(item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all())
self.assertClose(x_packed[cur : cur + x_dims[i]], x[i])
cur += x_dims[i]