218 lines
7.9 KiB
Python
218 lines
7.9 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from common_testing import TestCaseMixin, get_random_cuda_device
|
|
from pytorch3d.renderer import (
|
|
AlphaCompositor,
|
|
BlendParams,
|
|
HardGouraudShader,
|
|
Materials,
|
|
MeshRasterizer,
|
|
MeshRenderer,
|
|
PointLights,
|
|
PointsRasterizationSettings,
|
|
PointsRasterizer,
|
|
PointsRenderer,
|
|
RasterizationSettings,
|
|
SoftPhongShader,
|
|
TexturesVertex,
|
|
)
|
|
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
|
|
from pytorch3d.structures import Meshes, Pointclouds
|
|
from pytorch3d.utils.ico_sphere import ico_sphere
|
|
|
|
|
|
# Set the number of GPUS you want to test with
|
|
NUM_GPUS = 3
|
|
GPU_LIST = list({get_random_cuda_device() for _ in range(NUM_GPUS)})
|
|
print("GPUs: %s" % ", ".join(GPU_LIST))
|
|
|
|
|
|
class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
|
|
def _check_mesh_renderer_props_on_device(self, renderer, device):
|
|
"""
|
|
Helper function to check that all the properties of the mesh
|
|
renderer have been moved to the correct device.
|
|
"""
|
|
# Cameras
|
|
self.assertEqual(renderer.rasterizer.cameras.device, device)
|
|
self.assertEqual(renderer.rasterizer.cameras.R.device, device)
|
|
self.assertEqual(renderer.rasterizer.cameras.T.device, device)
|
|
self.assertEqual(renderer.shader.cameras.device, device)
|
|
self.assertEqual(renderer.shader.cameras.R.device, device)
|
|
self.assertEqual(renderer.shader.cameras.T.device, device)
|
|
|
|
# Lights and Materials
|
|
self.assertEqual(renderer.shader.lights.device, device)
|
|
self.assertEqual(renderer.shader.lights.ambient_color.device, device)
|
|
self.assertEqual(renderer.shader.materials.device, device)
|
|
self.assertEqual(renderer.shader.materials.ambient_color.device, device)
|
|
|
|
def test_mesh_renderer_to(self):
|
|
"""
|
|
Test moving all the tensors in the mesh renderer to a new device.
|
|
"""
|
|
|
|
device1 = torch.device("cpu")
|
|
|
|
R, T = look_at_view_transform(1500, 0.0, 0.0)
|
|
|
|
# Init shader settings
|
|
materials = Materials(device=device1)
|
|
lights = PointLights(device=device1)
|
|
lights.location = torch.tensor([0.0, 0.0, +1000.0], device=device1)[None]
|
|
|
|
raster_settings = RasterizationSettings(
|
|
image_size=256, blur_radius=0.0, faces_per_pixel=1
|
|
)
|
|
cameras = FoVPerspectiveCameras(
|
|
device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
|
|
)
|
|
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
|
|
|
|
blend_params = BlendParams(
|
|
1e-4,
|
|
1e-4,
|
|
background_color=torch.zeros(3, dtype=torch.float32, device=device1),
|
|
)
|
|
|
|
shader = SoftPhongShader(
|
|
lights=lights,
|
|
cameras=cameras,
|
|
materials=materials,
|
|
blend_params=blend_params,
|
|
)
|
|
renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
|
|
|
|
mesh = ico_sphere(2, device1)
|
|
verts_padded = mesh.verts_padded()
|
|
textures = TexturesVertex(
|
|
verts_features=torch.ones_like(verts_padded, device=device1)
|
|
)
|
|
mesh.textures = textures
|
|
self._check_mesh_renderer_props_on_device(renderer, device1)
|
|
|
|
# Test rendering on cpu
|
|
output_images = renderer(mesh)
|
|
self.assertEqual(output_images.device, device1)
|
|
|
|
# Move renderer and mesh to another device and re render
|
|
# This also tests that background_color is correctly moved to
|
|
# the new device
|
|
device2 = torch.device("cuda:0")
|
|
renderer = renderer.to(device2)
|
|
mesh = mesh.to(device2)
|
|
self._check_mesh_renderer_props_on_device(renderer, device2)
|
|
output_images = renderer(mesh)
|
|
self.assertEqual(output_images.device, device2)
|
|
|
|
def test_render_meshes(self):
|
|
test = self
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
mesh = ico_sphere(3)
|
|
self.register_buffer("faces", mesh.faces_padded())
|
|
self.renderer = self.init_render()
|
|
|
|
def init_render(self):
|
|
|
|
cameras = FoVPerspectiveCameras()
|
|
raster_settings = RasterizationSettings(
|
|
image_size=128, blur_radius=0.0, faces_per_pixel=1
|
|
)
|
|
lights = PointLights(
|
|
ambient_color=((1.0, 1.0, 1.0),),
|
|
diffuse_color=((0, 0.0, 0),),
|
|
specular_color=((0.0, 0, 0),),
|
|
location=((0.0, 0.0, 1e5),),
|
|
)
|
|
renderer = MeshRenderer(
|
|
rasterizer=MeshRasterizer(
|
|
cameras=cameras, raster_settings=raster_settings
|
|
),
|
|
shader=HardGouraudShader(cameras=cameras, lights=lights),
|
|
)
|
|
return renderer
|
|
|
|
def forward(self, verts, texs):
|
|
batch_size = verts.size(0)
|
|
self.renderer = self.renderer.to(verts.device)
|
|
tex = TexturesVertex(verts_features=texs)
|
|
faces = self.faces.expand(batch_size, -1, -1).to(verts.device)
|
|
mesh = Meshes(verts, faces, tex).to(verts.device)
|
|
|
|
test._check_mesh_renderer_props_on_device(self.renderer, verts.device)
|
|
img_render = self.renderer(mesh)
|
|
return img_render[:, :, :, :3]
|
|
|
|
# DataParallel requires every input tensor be provided
|
|
# on the first device in its device_ids list.
|
|
verts = ico_sphere(3).verts_padded()
|
|
texs = verts.new_ones(verts.shape)
|
|
model = Model()
|
|
model.to(GPU_LIST[0])
|
|
model = nn.DataParallel(model, device_ids=GPU_LIST)
|
|
|
|
# Test a few iterations
|
|
for _ in range(100):
|
|
model(verts, texs)
|
|
|
|
|
|
class TestRenderPointssMultiGPU(TestCaseMixin, unittest.TestCase):
|
|
def _check_points_renderer_props_on_device(self, renderer, device):
|
|
"""
|
|
Helper function to check that all the properties have
|
|
been moved to the correct device.
|
|
"""
|
|
# Cameras
|
|
self.assertEqual(renderer.rasterizer.cameras.device, device)
|
|
self.assertEqual(renderer.rasterizer.cameras.R.device, device)
|
|
self.assertEqual(renderer.rasterizer.cameras.T.device, device)
|
|
|
|
def test_points_renderer_to(self):
|
|
"""
|
|
Test moving all the tensors in the points renderer to a new device.
|
|
"""
|
|
|
|
device1 = torch.device("cpu")
|
|
|
|
R, T = look_at_view_transform(1500, 0.0, 0.0)
|
|
|
|
raster_settings = PointsRasterizationSettings(
|
|
image_size=256, radius=0.001, points_per_pixel=1
|
|
)
|
|
cameras = FoVPerspectiveCameras(
|
|
device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
|
|
)
|
|
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
|
|
|
|
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor())
|
|
|
|
mesh = ico_sphere(2, device1)
|
|
verts_padded = mesh.verts_padded()
|
|
pointclouds = Pointclouds(
|
|
points=verts_padded, features=torch.randn_like(verts_padded)
|
|
)
|
|
self._check_points_renderer_props_on_device(renderer, device1)
|
|
|
|
# Test rendering on cpu
|
|
output_images = renderer(pointclouds)
|
|
self.assertEqual(output_images.device, device1)
|
|
|
|
# Move renderer and pointclouds to another device and re render
|
|
device2 = torch.device("cuda:0")
|
|
renderer = renderer.to(device2)
|
|
pointclouds = pointclouds.to(device2)
|
|
self._check_points_renderer_props_on_device(renderer, device2)
|
|
output_images = renderer(pointclouds)
|
|
self.assertEqual(output_images.device, device2)
|