pytorch3d/tests/test_render_multigpu.py

218 lines
7.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
import torch.nn as nn
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.renderer import (
AlphaCompositor,
BlendParams,
HardGouraudShader,
Materials,
MeshRasterizer,
MeshRenderer,
PointLights,
PointsRasterizationSettings,
PointsRasterizer,
PointsRenderer,
RasterizationSettings,
SoftPhongShader,
TexturesVertex,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere
# Set the number of GPUS you want to test with
NUM_GPUS = 3
GPU_LIST = list({get_random_cuda_device() for _ in range(NUM_GPUS)})
print("GPUs: %s" % ", ".join(GPU_LIST))
class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
def _check_mesh_renderer_props_on_device(self, renderer, device):
"""
Helper function to check that all the properties of the mesh
renderer have been moved to the correct device.
"""
# Cameras
self.assertEqual(renderer.rasterizer.cameras.device, device)
self.assertEqual(renderer.rasterizer.cameras.R.device, device)
self.assertEqual(renderer.rasterizer.cameras.T.device, device)
self.assertEqual(renderer.shader.cameras.device, device)
self.assertEqual(renderer.shader.cameras.R.device, device)
self.assertEqual(renderer.shader.cameras.T.device, device)
# Lights and Materials
self.assertEqual(renderer.shader.lights.device, device)
self.assertEqual(renderer.shader.lights.ambient_color.device, device)
self.assertEqual(renderer.shader.materials.device, device)
self.assertEqual(renderer.shader.materials.ambient_color.device, device)
def test_mesh_renderer_to(self):
"""
Test moving all the tensors in the mesh renderer to a new device.
"""
device1 = torch.device("cpu")
R, T = look_at_view_transform(1500, 0.0, 0.0)
# Init shader settings
materials = Materials(device=device1)
lights = PointLights(device=device1)
lights.location = torch.tensor([0.0, 0.0, +1000.0], device=device1)[None]
raster_settings = RasterizationSettings(
image_size=256, blur_radius=0.0, faces_per_pixel=1
)
cameras = FoVPerspectiveCameras(
device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
blend_params = BlendParams(
1e-4,
1e-4,
background_color=torch.zeros(3, dtype=torch.float32, device=device1),
)
shader = SoftPhongShader(
lights=lights,
cameras=cameras,
materials=materials,
blend_params=blend_params,
)
renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)
mesh = ico_sphere(2, device1)
verts_padded = mesh.verts_padded()
textures = TexturesVertex(
verts_features=torch.ones_like(verts_padded, device=device1)
)
mesh.textures = textures
self._check_mesh_renderer_props_on_device(renderer, device1)
# Test rendering on cpu
output_images = renderer(mesh)
self.assertEqual(output_images.device, device1)
# Move renderer and mesh to another device and re render
# This also tests that background_color is correctly moved to
# the new device
device2 = torch.device("cuda:0")
renderer = renderer.to(device2)
mesh = mesh.to(device2)
self._check_mesh_renderer_props_on_device(renderer, device2)
output_images = renderer(mesh)
self.assertEqual(output_images.device, device2)
def test_render_meshes(self):
test = self
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
mesh = ico_sphere(3)
self.register_buffer("faces", mesh.faces_padded())
self.renderer = self.init_render()
def init_render(self):
cameras = FoVPerspectiveCameras()
raster_settings = RasterizationSettings(
image_size=128, blur_radius=0.0, faces_per_pixel=1
)
lights = PointLights(
ambient_color=((1.0, 1.0, 1.0),),
diffuse_color=((0, 0.0, 0),),
specular_color=((0.0, 0, 0),),
location=((0.0, 0.0, 1e5),),
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras, raster_settings=raster_settings
),
shader=HardGouraudShader(cameras=cameras, lights=lights),
)
return renderer
def forward(self, verts, texs):
batch_size = verts.size(0)
self.renderer = self.renderer.to(verts.device)
tex = TexturesVertex(verts_features=texs)
faces = self.faces.expand(batch_size, -1, -1).to(verts.device)
mesh = Meshes(verts, faces, tex).to(verts.device)
test._check_mesh_renderer_props_on_device(self.renderer, verts.device)
img_render = self.renderer(mesh)
return img_render[:, :, :, :3]
# DataParallel requires every input tensor be provided
# on the first device in its device_ids list.
verts = ico_sphere(3).verts_padded()
texs = verts.new_ones(verts.shape)
model = Model()
model.to(GPU_LIST[0])
model = nn.DataParallel(model, device_ids=GPU_LIST)
# Test a few iterations
for _ in range(100):
model(verts, texs)
class TestRenderPointssMultiGPU(TestCaseMixin, unittest.TestCase):
def _check_points_renderer_props_on_device(self, renderer, device):
"""
Helper function to check that all the properties have
been moved to the correct device.
"""
# Cameras
self.assertEqual(renderer.rasterizer.cameras.device, device)
self.assertEqual(renderer.rasterizer.cameras.R.device, device)
self.assertEqual(renderer.rasterizer.cameras.T.device, device)
def test_points_renderer_to(self):
"""
Test moving all the tensors in the points renderer to a new device.
"""
device1 = torch.device("cpu")
R, T = look_at_view_transform(1500, 0.0, 0.0)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=0.001, points_per_pixel=1
)
cameras = FoVPerspectiveCameras(
device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor())
mesh = ico_sphere(2, device1)
verts_padded = mesh.verts_padded()
pointclouds = Pointclouds(
points=verts_padded, features=torch.randn_like(verts_padded)
)
self._check_points_renderer_props_on_device(renderer, device1)
# Test rendering on cpu
output_images = renderer(pointclouds)
self.assertEqual(output_images.device, device1)
# Move renderer and pointclouds to another device and re render
device2 = torch.device("cuda:0")
renderer = renderer.to(device2)
pointclouds = pointclouds.to(device2)
self._check_points_renderer_props_on_device(renderer, device2)
output_images = renderer(pointclouds)
self.assertEqual(output_images.device, device2)