pytorch3d/tests/test_raymarching.py

201 lines
6.6 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer import AbsorptionOnlyRaymarcher, EmissionAbsorptionRaymarcher
class TestRaymarching(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
@staticmethod
def _init_random_rays(
n_rays=10, n_pts_per_ray=9, device="cuda", dtype=torch.float32
):
"""
Generate a batch of ray points with features, densities, and z-coordinates
such that their EmissionAbsorption renderring results in
feature renders `features_gt`, depth renders `depths_gt`,
and opacity renders `opacities_gt`.
"""
# generate trivial ray z-coordinates of sampled points coinciding with
# each point's order along a ray.
rays_z = torch.arange(n_pts_per_ray, dtype=dtype, device=device)[None].repeat(
n_rays, 1
)
# generate ground truth depth values of the underlying surface.
depths_gt = torch.randint(
low=1, high=n_pts_per_ray + 2, size=(n_rays,)
).type_as(rays_z)
# compute ideal densities that are 0 before the surface and 1 after
# the corresponding ground truth depth value
rays_densities = (rays_z >= depths_gt[..., None]).type_as(rays_z)[..., None]
opacities_gt = (depths_gt < n_pts_per_ray).type_as(rays_z)
# generate random per-ray features
rays_features = torch.rand(
(n_rays, n_pts_per_ray, 3), device=rays_z.device, dtype=rays_z.dtype
)
# infer the expected feature render "features_gt"
gt_surface = ((rays_z - depths_gt[..., None]).abs() <= 1e-4).type_as(rays_z)
features_gt = (rays_features * gt_surface[..., None]).sum(dim=-2)
return (
rays_z,
rays_densities,
rays_features,
depths_gt,
features_gt,
opacities_gt,
)
@staticmethod
def raymarcher(
raymarcher_type=EmissionAbsorptionRaymarcher, n_rays=10, n_pts_per_ray=10
):
(
rays_z,
rays_densities,
rays_features,
depths_gt,
features_gt,
opacities_gt,
) = TestRaymarching._init_random_rays(
n_rays=n_rays, n_pts_per_ray=n_pts_per_ray
)
raymarcher = raymarcher_type()
def run_raymarcher():
raymarcher(
rays_densities=rays_densities,
rays_features=rays_features,
rays_z=rays_z,
)
torch.cuda.synchronize()
return run_raymarcher
def test_emission_absorption_inputs(self):
"""
Test the checks of validity of the inputs to `EmissionAbsorptionRaymarcher`.
"""
# init the EA raymarcher
raymarcher_ea = EmissionAbsorptionRaymarcher()
# bad ways of passing densities and features
# [rays_densities, rays_features, rays_z]
bad_inputs = [
[torch.rand(10, 5, 4), None],
[torch.Tensor(3)[0], torch.rand(10, 5, 4)],
[1.0, torch.rand(10, 5, 4)],
[torch.rand(10, 5, 4), 1.0],
[torch.rand(10, 5, 4), None],
[torch.rand(10, 5, 4), torch.rand(10, 5, 4)],
[torch.rand(10, 5, 4), torch.rand(10, 5, 4, 3)],
[torch.rand(10, 5, 4, 3), torch.rand(10, 5, 4, 3)],
]
for bad_input in bad_inputs:
with self.assertRaises(ValueError):
raymarcher_ea(*bad_input)
def test_absorption_only_inputs(self):
"""
Test the checks of validity of the inputs to `AbsorptionOnlyRaymarcher`.
"""
# init the AO raymarcher
raymarcher_ao = AbsorptionOnlyRaymarcher()
# bad ways of passing densities and features
# [rays_densities, rays_features, rays_z]
bad_inputs = [[torch.Tensor(3)[0]]]
for bad_input in bad_inputs:
with self.assertRaises(ValueError):
raymarcher_ao(*bad_input)
def test_emission_absorption(self):
"""
Test the EA raymarching algorithm.
"""
(
rays_z,
rays_densities,
rays_features,
depths_gt,
features_gt,
opacities_gt,
) = TestRaymarching._init_random_rays(
n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
)
# init the EA raymarcher
raymarcher_ea = EmissionAbsorptionRaymarcher()
# allow gradients for a differentiability check
rays_densities.requires_grad = True
rays_features.requires_grad = True
# render the features first and check with gt
data_render = raymarcher_ea(rays_densities, rays_features)
features_render, opacities_render = data_render[..., :-1], data_render[..., -1]
self.assertClose(opacities_render, opacities_gt)
self.assertClose(
features_render * opacities_render[..., None],
features_gt * opacities_gt[..., None],
)
# get the depth map by rendering the ray z components and check with gt
depths_render = raymarcher_ea(rays_densities, rays_z[..., None])[..., 0]
self.assertClose(depths_render * opacities_render, depths_gt * opacities_gt)
# check differentiability
loss = features_render.mean()
loss.backward()
for field in (rays_densities, rays_features):
self.assertTrue(torch.isfinite(field.grad.data).all())
def test_absorption_only(self):
"""
Test the AO raymarching algorithm.
"""
(
rays_z,
rays_densities,
rays_features,
depths_gt,
features_gt,
opacities_gt,
) = TestRaymarching._init_random_rays(
n_rays=1000, n_pts_per_ray=9, device=None, dtype=torch.float32
)
# init the AO raymarcher
raymarcher_ao = AbsorptionOnlyRaymarcher()
# allow gradients for a differentiability check
rays_densities.requires_grad = True
# render opacities, check with gt and check that returned features are None
opacities_render = raymarcher_ao(rays_densities)[..., 0]
self.assertClose(opacities_render, opacities_gt)
# check differentiability
loss = opacities_render.mean()
loss.backward()
self.assertTrue(torch.isfinite(rays_densities.grad.data).all())