mirror of https://github.com/microsoft/autogen.git
349 lines
13 KiB
Python
349 lines
13 KiB
Python
import asyncio
|
|
from typing import Annotated, Any, AsyncGenerator, List, Tuple
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
from autogen_core.base import CancellationToken
|
|
from autogen_core.components import Image
|
|
from autogen_core.components.models import (
|
|
AssistantMessage,
|
|
CreateResult,
|
|
FunctionExecutionResult,
|
|
FunctionExecutionResultMessage,
|
|
LLMMessage,
|
|
RequestUsage,
|
|
SystemMessage,
|
|
UserMessage,
|
|
)
|
|
from autogen_core.components.tools import BaseTool, FunctionTool
|
|
from autogen_ext.models import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient
|
|
from autogen_ext.models._openai._model_info import resolve_model
|
|
from autogen_ext.models._openai._openai_client import calculate_vision_tokens, convert_tools
|
|
from openai.resources.chat.completions import AsyncCompletions
|
|
from openai.types.chat.chat_completion import ChatCompletion, Choice
|
|
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk, ChoiceDelta
|
|
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
|
|
from openai.types.chat.chat_completion_message import ChatCompletionMessage
|
|
from openai.types.completion_usage import CompletionUsage
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class MyResult(BaseModel):
|
|
result: str = Field(description="The other description.")
|
|
|
|
|
|
class MyArgs(BaseModel):
|
|
query: str = Field(description="The description.")
|
|
|
|
|
|
class MockChunkDefinition(BaseModel):
|
|
# defining elements for diffentiating mocking chunks
|
|
chunk_choice: ChunkChoice
|
|
usage: CompletionUsage | None
|
|
|
|
|
|
async def _mock_create_stream(*args: Any, **kwargs: Any) -> AsyncGenerator[ChatCompletionChunk, None]:
|
|
model = resolve_model(kwargs.get("model", "gpt-4o"))
|
|
mock_chunks_content = ["Hello", " Another Hello", " Yet Another Hello"]
|
|
|
|
# The openai api implementations (OpenAI and Litellm) stream chunks of tokens
|
|
# with content as string, and then at the end a token with stop set and finally if
|
|
# usage requested with `"stream_options": {"include_usage": True}` a chunk with the usage data
|
|
mock_chunks = [
|
|
# generate the list of mock chunk content
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=mock_chunk_content,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=None,
|
|
)
|
|
for mock_chunk_content in mock_chunks_content
|
|
] + [
|
|
# generate the stop chunk
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason="stop",
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=None,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=None,
|
|
)
|
|
]
|
|
# generate the usage chunk if configured
|
|
if kwargs.get("stream_options", {}).get("include_usage") is True:
|
|
mock_chunks = mock_chunks + [
|
|
# ---- API differences
|
|
# OPENAI API does NOT create a choice
|
|
# LITELLM (proxy) DOES create a choice
|
|
# Not simulating all the API options, just implementing the LITELLM variant
|
|
MockChunkDefinition(
|
|
chunk_choice=ChunkChoice(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=ChoiceDelta(
|
|
content=None,
|
|
role="assistant",
|
|
),
|
|
),
|
|
usage=CompletionUsage(prompt_tokens=3, completion_tokens=3, total_tokens=6),
|
|
)
|
|
]
|
|
elif kwargs.get("stream_options", {}).get("include_usage") is False:
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
for mock_chunk in mock_chunks:
|
|
await asyncio.sleep(0.1)
|
|
yield ChatCompletionChunk(
|
|
id="id",
|
|
choices=[mock_chunk.chunk_choice],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion.chunk",
|
|
usage=mock_chunk.usage,
|
|
)
|
|
|
|
|
|
async def _mock_create(*args: Any, **kwargs: Any) -> ChatCompletion | AsyncGenerator[ChatCompletionChunk, None]:
|
|
stream = kwargs.get("stream", False)
|
|
model = resolve_model(kwargs.get("model", "gpt-4o"))
|
|
if not stream:
|
|
await asyncio.sleep(0.1)
|
|
return ChatCompletion(
|
|
id="id",
|
|
choices=[
|
|
Choice(finish_reason="stop", index=0, message=ChatCompletionMessage(content="Hello", role="assistant"))
|
|
],
|
|
created=0,
|
|
model=model,
|
|
object="chat.completion",
|
|
usage=CompletionUsage(prompt_tokens=0, completion_tokens=0, total_tokens=0),
|
|
)
|
|
else:
|
|
return _mock_create_stream(*args, **kwargs)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client() -> None:
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
assert client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_azure_openai_chat_completion_client() -> None:
|
|
client = AzureOpenAIChatCompletionClient(
|
|
azure_deployment="gpt-4o-1",
|
|
model="gpt-4o",
|
|
api_key="api_key",
|
|
api_version="2020-08-04",
|
|
azure_endpoint="https://dummy.com",
|
|
model_capabilities={"vision": True, "function_calling": True, "json_output": True},
|
|
)
|
|
assert client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
result = await client.create(messages=[UserMessage(content="Hello", source="user")])
|
|
assert result.content == "Hello"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_with_usage(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage not the default of the OPENAI API and must be explicitly set
|
|
extra_create_args={"stream_options": {"include_usage": True}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=3, completion_tokens=3)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_no_usage_default(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage not the default of the OPENAI APIis ,
|
|
# it can be explicitly set
|
|
# or just not declared which is the default
|
|
# extra_create_args={"stream_options": {"include_usage": False}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=0, completion_tokens=0)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_no_usage_explicit(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
chunks: List[str | CreateResult] = []
|
|
async for chunk in client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")],
|
|
# include_usage is not the default of the OPENAI API ,
|
|
# it can be explicitly set
|
|
# or just not declared which is the default
|
|
extra_create_args={"stream_options": {"include_usage": False}},
|
|
):
|
|
chunks.append(chunk)
|
|
assert chunks[0] == "Hello"
|
|
assert chunks[1] == " Another Hello"
|
|
assert chunks[2] == " Yet Another Hello"
|
|
assert isinstance(chunks[-1], CreateResult)
|
|
assert chunks[-1].content == "Hello Another Hello Yet Another Hello"
|
|
assert chunks[-1].usage == RequestUsage(prompt_tokens=0, completion_tokens=0)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_cancel(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
cancellation_token = CancellationToken()
|
|
task = asyncio.create_task(
|
|
client.create(messages=[UserMessage(content="Hello", source="user")], cancellation_token=cancellation_token)
|
|
)
|
|
cancellation_token.cancel()
|
|
with pytest.raises(asyncio.CancelledError):
|
|
await task
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_create_stream_cancel(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
monkeypatch.setattr(AsyncCompletions, "create", _mock_create)
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
cancellation_token = CancellationToken()
|
|
stream = client.create_stream(
|
|
messages=[UserMessage(content="Hello", source="user")], cancellation_token=cancellation_token
|
|
)
|
|
assert await anext(stream)
|
|
cancellation_token.cancel()
|
|
with pytest.raises(asyncio.CancelledError):
|
|
async for _ in stream:
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_chat_completion_client_count_tokens(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
client = OpenAIChatCompletionClient(model="gpt-4o", api_key="api_key")
|
|
messages: List[LLMMessage] = [
|
|
SystemMessage(content="Hello"),
|
|
UserMessage(content="Hello", source="user"),
|
|
AssistantMessage(content="Hello", source="assistant"),
|
|
UserMessage(
|
|
content=[
|
|
"str1",
|
|
Image.from_base64(
|
|
"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAADElEQVR4nGP4z8AAAAMBAQDJ/pLvAAAAAElFTkSuQmCC"
|
|
),
|
|
],
|
|
source="user",
|
|
),
|
|
FunctionExecutionResultMessage(content=[FunctionExecutionResult(content="Hello", call_id="1")]),
|
|
]
|
|
|
|
def tool1(test: str, test2: str) -> str:
|
|
return test + test2
|
|
|
|
def tool2(test1: int, test2: List[int]) -> str:
|
|
return str(test1) + str(test2)
|
|
|
|
tools = [FunctionTool(tool1, description="example tool 1"), FunctionTool(tool2, description="example tool 2")]
|
|
|
|
mockcalculate_vision_tokens = MagicMock()
|
|
monkeypatch.setattr(
|
|
"autogen_ext.models._openai._openai_client.calculate_vision_tokens", mockcalculate_vision_tokens
|
|
)
|
|
|
|
num_tokens = client.count_tokens(messages, tools=tools)
|
|
assert num_tokens
|
|
|
|
# Check that calculate_vision_tokens was called
|
|
mockcalculate_vision_tokens.assert_called_once()
|
|
|
|
remaining_tokens = client.remaining_tokens(messages, tools=tools)
|
|
assert remaining_tokens
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mock_size, expected_num_tokens",
|
|
[
|
|
((1, 1), 255),
|
|
((512, 512), 255),
|
|
((2048, 512), 765),
|
|
((2048, 2048), 765),
|
|
((512, 1024), 425),
|
|
],
|
|
)
|
|
def test_openai_count_image_tokens(mock_size: Tuple[int, int], expected_num_tokens: int) -> None:
|
|
# Step 1: Mock the Image class with only the 'image' attribute
|
|
mock_image_attr = MagicMock()
|
|
mock_image_attr.size = mock_size
|
|
|
|
mock_image = MagicMock()
|
|
mock_image.image = mock_image_attr
|
|
|
|
# Directly call calculate_vision_tokens and check the result
|
|
calculated_tokens = calculate_vision_tokens(mock_image, detail="auto")
|
|
assert calculated_tokens == expected_num_tokens
|
|
|
|
|
|
def test_convert_tools_accepts_both_func_tool_and_schema() -> None:
|
|
def my_function(arg: str, other: Annotated[int, "int arg"], nonrequired: int = 5) -> MyResult:
|
|
return MyResult(result="test")
|
|
|
|
tool = FunctionTool(my_function, description="Function tool.")
|
|
schema = tool.schema
|
|
|
|
converted_tool_schema = convert_tools([tool, schema])
|
|
|
|
assert len(converted_tool_schema) == 2
|
|
assert converted_tool_schema[0] == converted_tool_schema[1]
|
|
|
|
|
|
def test_convert_tools_accepts_both_tool_and_schema() -> None:
|
|
class MyTool(BaseTool[MyArgs, MyResult]):
|
|
def __init__(self) -> None:
|
|
super().__init__(
|
|
args_type=MyArgs,
|
|
return_type=MyResult,
|
|
name="TestTool",
|
|
description="Description of test tool.",
|
|
)
|
|
|
|
async def run(self, args: MyArgs, cancellation_token: CancellationToken) -> MyResult:
|
|
return MyResult(result="value")
|
|
|
|
tool = MyTool()
|
|
schema = tool.schema
|
|
|
|
converted_tool_schema = convert_tools([tool, schema])
|
|
|
|
assert len(converted_tool_schema) == 2
|
|
assert converted_tool_schema[0] == converted_tool_schema[1]
|