mirror of https://github.com/microsoft/autogen.git
103 lines
3.1 KiB
Python
103 lines
3.1 KiB
Python
import os
|
|
|
|
import pytest
|
|
|
|
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
|
|
from autogen import ChatCompletion, config_list_from_json
|
|
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
|
|
|
|
try:
|
|
from qdrant_client import QdrantClient
|
|
from autogen.agentchat.contrib.qdrant_retrieve_user_proxy_agent import (
|
|
create_qdrant_from_dir,
|
|
QdrantRetrieveUserProxyAgent,
|
|
query_qdrant,
|
|
)
|
|
import fastembed
|
|
|
|
QDRANT_INSTALLED = True
|
|
except ImportError:
|
|
QDRANT_INSTALLED = False
|
|
|
|
test_dir = os.path.join(os.path.dirname(__file__), "..", "test_files")
|
|
|
|
|
|
@pytest.mark.skipif(not QDRANT_INSTALLED, reason="qdrant_client is not installed")
|
|
def test_retrievechat():
|
|
try:
|
|
import openai
|
|
except ImportError:
|
|
return
|
|
|
|
conversations = {}
|
|
ChatCompletion.start_logging(conversations)
|
|
|
|
config_list = config_list_from_json(
|
|
OAI_CONFIG_LIST,
|
|
file_location=KEY_LOC,
|
|
filter_dict={
|
|
"model": ["gpt-4", "gpt4", "gpt-4-32k", "gpt-4-32k-0314"],
|
|
},
|
|
)
|
|
|
|
assistant = RetrieveAssistantAgent(
|
|
name="assistant",
|
|
system_message="You are a helpful assistant.",
|
|
llm_config={
|
|
"request_timeout": 600,
|
|
"seed": 42,
|
|
"config_list": config_list,
|
|
},
|
|
)
|
|
|
|
client = QdrantClient(":memory:")
|
|
ragproxyagent = QdrantRetrieveUserProxyAgent(
|
|
name="ragproxyagent",
|
|
human_input_mode="NEVER",
|
|
max_consecutive_auto_reply=2,
|
|
retrieve_config={
|
|
"client": client,
|
|
"docs_path": "./website/docs",
|
|
"chunk_token_size": 2000,
|
|
},
|
|
)
|
|
|
|
assistant.reset()
|
|
|
|
code_problem = "How can I use FLAML to perform a classification task, set use_spark=True, train 30 seconds and force cancel jobs if time limit is reached."
|
|
ragproxyagent.initiate_chat(assistant, problem=code_problem, silent=True)
|
|
print(conversations)
|
|
|
|
|
|
@pytest.mark.skipif(not QDRANT_INSTALLED, reason="qdrant_client is not installed")
|
|
def test_qdrant_filter():
|
|
client = QdrantClient(":memory:")
|
|
create_qdrant_from_dir(dir_path="./website/docs", client=client, collection_name="autogen-docs")
|
|
results = query_qdrant(
|
|
query_texts=["How can I use AutoGen UserProxyAgent and AssistantAgent to do code generation?"],
|
|
n_results=4,
|
|
client=client,
|
|
collection_name="autogen-docs",
|
|
# Return only documents with "AutoGen" in the string
|
|
search_string="AutoGen",
|
|
)
|
|
assert len(results["ids"][0]) == 4
|
|
|
|
|
|
@pytest.mark.skipif(not QDRANT_INSTALLED, reason="qdrant_client is not installed")
|
|
def test_qdrant_search():
|
|
client = QdrantClient(":memory:")
|
|
create_qdrant_from_dir(test_dir, client=client)
|
|
|
|
assert client.get_collection("all-my-documents")
|
|
|
|
# Perform a semantic search without any filter
|
|
results = query_qdrant(["autogen"], client=client)
|
|
assert isinstance(results, dict) and any("autogen" in res[0].lower() for res in results.get("documents", []))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_retrievechat()
|
|
test_qdrant_filter()
|
|
test_qdrant_search()
|