autogen/notebook/tune_pytorch.ipynb

396 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pytorch model tuning example on CIFAR10\n",
"This notebook uses flaml to tune a pytorch model on CIFAR10. It is modified based on [this example](https://docs.ray.io/en/master/tune/examples/cifar10_pytorch.html).\n",
"\n",
"**Requirements.** This notebook requires:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install torchvision flaml[blendsearch,ray]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Network Specification"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim\n",
"from torch.utils.data import random_split\n",
"import torchvision\n",
"import torchvision.transforms as transforms\n",
"\n",
"\n",
"class Net(nn.Module):\n",
"\n",
" def __init__(self, l1=120, l2=84):\n",
" super(Net, self).__init__()\n",
" self.conv1 = nn.Conv2d(3, 6, 5)\n",
" self.pool = nn.MaxPool2d(2, 2)\n",
" self.conv2 = nn.Conv2d(6, 16, 5)\n",
" self.fc1 = nn.Linear(16 * 5 * 5, l1)\n",
" self.fc2 = nn.Linear(l1, l2)\n",
" self.fc3 = nn.Linear(l2, 10)\n",
"\n",
" def forward(self, x):\n",
" x = self.pool(F.relu(self.conv1(x)))\n",
" x = self.pool(F.relu(self.conv2(x)))\n",
" x = x.view(-1, 16 * 5 * 5)\n",
" x = F.relu(self.fc1(x))\n",
" x = F.relu(self.fc2(x))\n",
" x = self.fc3(x)\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def load_data(data_dir=\"data\"):\n",
" transform = transforms.Compose([\n",
" transforms.ToTensor(),\n",
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
" ])\n",
"\n",
" trainset = torchvision.datasets.CIFAR10(\n",
" root=data_dir, train=True, download=True, transform=transform)\n",
"\n",
" testset = torchvision.datasets.CIFAR10(\n",
" root=data_dir, train=False, download=True, transform=transform)\n",
"\n",
" return trainset, testset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from ray import tune\n",
"\n",
"def train_cifar(config, checkpoint_dir=None, data_dir=None):\n",
" if \"l1\" not in config:\n",
" logger.warning(config)\n",
" net = Net(2**config[\"l1\"], 2**config[\"l2\"])\n",
"\n",
" device = \"cpu\"\n",
" if torch.cuda.is_available():\n",
" device = \"cuda:0\"\n",
" if torch.cuda.device_count() > 1:\n",
" net = nn.DataParallel(net)\n",
" net.to(device)\n",
"\n",
" criterion = nn.CrossEntropyLoss()\n",
" optimizer = optim.SGD(net.parameters(), lr=config[\"lr\"], momentum=0.9)\n",
"\n",
" # The `checkpoint_dir` parameter gets passed by Ray Tune when a checkpoint\n",
" # should be restored.\n",
" if checkpoint_dir:\n",
" checkpoint = os.path.join(checkpoint_dir, \"checkpoint\")\n",
" model_state, optimizer_state = torch.load(checkpoint)\n",
" net.load_state_dict(model_state)\n",
" optimizer.load_state_dict(optimizer_state)\n",
"\n",
" trainset, testset = load_data(data_dir)\n",
"\n",
" test_abs = int(len(trainset) * 0.8)\n",
" train_subset, val_subset = random_split(\n",
" trainset, [test_abs, len(trainset) - test_abs])\n",
"\n",
" trainloader = torch.utils.data.DataLoader(\n",
" train_subset,\n",
" batch_size=int(2**config[\"batch_size\"]),\n",
" shuffle=True,\n",
" num_workers=4)\n",
" valloader = torch.utils.data.DataLoader(\n",
" val_subset,\n",
" batch_size=int(2**config[\"batch_size\"]),\n",
" shuffle=True,\n",
" num_workers=4)\n",
"\n",
" for epoch in range(int(round(config[\"num_epochs\"]))): # loop over the dataset multiple times\n",
" running_loss = 0.0\n",
" epoch_steps = 0\n",
" for i, data in enumerate(trainloader, 0):\n",
" # get the inputs; data is a list of [inputs, labels]\n",
" inputs, labels = data\n",
" inputs, labels = inputs.to(device), labels.to(device)\n",
"\n",
" # zero the parameter gradients\n",
" optimizer.zero_grad()\n",
"\n",
" # forward + backward + optimize\n",
" outputs = net(inputs)\n",
" loss = criterion(outputs, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" # print statistics\n",
" running_loss += loss.item()\n",
" epoch_steps += 1\n",
" if i % 2000 == 1999: # print every 2000 mini-batches\n",
" print(\"[%d, %5d] loss: %.3f\" % (epoch + 1, i + 1,\n",
" running_loss / epoch_steps))\n",
" running_loss = 0.0\n",
"\n",
" # Validation loss\n",
" val_loss = 0.0\n",
" val_steps = 0\n",
" total = 0\n",
" correct = 0\n",
" for i, data in enumerate(valloader, 0):\n",
" with torch.no_grad():\n",
" inputs, labels = data\n",
" inputs, labels = inputs.to(device), labels.to(device)\n",
"\n",
" outputs = net(inputs)\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" total += labels.size(0)\n",
" correct += (predicted == labels).sum().item()\n",
"\n",
" loss = criterion(outputs, labels)\n",
" val_loss += loss.cpu().numpy()\n",
" val_steps += 1\n",
"\n",
" # Here we save a checkpoint. It is automatically registered with\n",
" # Ray Tune and will potentially be passed as the `checkpoint_dir`\n",
" # parameter in future iterations.\n",
" with tune.checkpoint_dir(step=epoch) as checkpoint_dir:\n",
" path = os.path.join(checkpoint_dir, \"checkpoint\")\n",
" torch.save(\n",
" (net.state_dict(), optimizer.state_dict()), path)\n",
"\n",
" tune.report(loss=(val_loss / val_steps), accuracy=correct / total)\n",
" print(\"Finished Training\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Accuracy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def _test_accuracy(net, device=\"cpu\"):\n",
" trainset, testset = load_data()\n",
"\n",
" testloader = torch.utils.data.DataLoader(\n",
" testset, batch_size=4, shuffle=False, num_workers=2)\n",
"\n",
" correct = 0\n",
" total = 0\n",
" with torch.no_grad():\n",
" for data in testloader:\n",
" images, labels = data\n",
" images, labels = images.to(device), labels.to(device)\n",
" outputs = net(images)\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" total += labels.size(0)\n",
" correct += (predicted == labels).sum().item()\n",
"\n",
" return correct / total"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hyperparameter Optimization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import flaml\n",
"import os\n",
"\n",
"data_dir = os.path.abspath(\"data\")\n",
"load_data(data_dir) # Download data for all trials before starting the run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Search space"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max_num_epoch = 100\n",
"config = {\n",
" \"l1\": tune.randint(2, 9), # log transformed with base 2\n",
" \"l2\": tune.randint(2, 9), # log transformed with base 2\n",
" \"lr\": tune.loguniform(1e-4, 1e-1),\n",
" \"num_epochs\": tune.loguniform(1, max_num_epoch),\n",
" \"batch_size\": tune.randint(1, 5) # log transformed with base 2\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_budget_s = 3600 # time budget in seconds\n",
"gpus_per_trial = 0.5 # number of gpus for each trial; 0.5 means two training jobs can share one gpu\n",
"num_samples = 500 # maximal number of trials\n",
"np.random.seed(7654321)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Launch the tuning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"start_time = time.time()\n",
"result = flaml.tune.run(\n",
" tune.with_parameters(train_cifar, data_dir=data_dir),\n",
" config=config,\n",
" metric=\"loss\",\n",
" mode=\"min\",\n",
" low_cost_partial_config={\"num_epochs\": 1},\n",
" max_resource=max_num_epoch,\n",
" min_resource=1,\n",
" scheduler=\"asha\", # need to use tune.report to report intermediate results in train_cifar \n",
" resources_per_trial={\"cpu\": 1, \"gpu\": gpus_per_trial},\n",
" local_dir='logs/',\n",
" num_samples=num_samples,\n",
" time_budget_s=time_budget_s,\n",
" use_ray=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"#trials={len(result.trials)}\")\n",
"print(f\"time={time.time()-start_time}\")\n",
"best_trial = result.get_best_trial(\"loss\", \"min\", \"all\")\n",
"print(\"Best trial config: {}\".format(best_trial.config))\n",
"print(\"Best trial final validation loss: {}\".format(\n",
" best_trial.metric_analysis[\"loss\"][\"min\"]))\n",
"print(\"Best trial final validation accuracy: {}\".format(\n",
" best_trial.metric_analysis[\"accuracy\"][\"max\"]))\n",
"\n",
"best_trained_model = Net(2**best_trial.config[\"l1\"],\n",
" 2**best_trial.config[\"l2\"])\n",
"device = \"cpu\"\n",
"if torch.cuda.is_available():\n",
" device = \"cuda:0\"\n",
" if gpus_per_trial > 1:\n",
" best_trained_model = nn.DataParallel(best_trained_model)\n",
"best_trained_model.to(device)\n",
"\n",
"checkpoint_value = (\n",
" getattr(best_trial.checkpoint, \"dir_or_data\", None)\n",
" or best_trial.checkpoint.value\n",
")\n",
"checkpoint_path = os.path.join(checkpoint_value, \"checkpoint\")\n",
"\n",
"model_state, optimizer_state = torch.load(checkpoint_path)\n",
"best_trained_model.load_state_dict(model_state)\n",
"\n",
"test_acc = _test_accuracy(best_trained_model, device)\n",
"print(\"Best trial test set accuracy: {}\".format(test_acc))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.0 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
},
"metadata": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}