mirror of https://github.com/microsoft/autogen.git
129 lines
5.5 KiB
Python
129 lines
5.5 KiB
Python
import argparse
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional, List
|
|
from flaml.automl.task.task import NLG_TASKS
|
|
|
|
try:
|
|
from transformers import TrainingArguments
|
|
except ImportError:
|
|
TrainingArguments = object
|
|
|
|
|
|
@dataclass
|
|
class TrainingArgumentsForAuto(TrainingArguments):
|
|
"""FLAML custom TrainingArguments.
|
|
|
|
Args:
|
|
task (str): the task name for NLP tasks, e.g., seq-classification, token-classification
|
|
output_dir (str): data root directory for outputing the log, etc.
|
|
model_path (str, optional, defaults to "facebook/muppet-roberta-base"): A string,
|
|
the path of the language model file, either a path from huggingface
|
|
model card huggingface.co/models, or a local path for the model.
|
|
fp16 (bool, optional, defaults to "False"): A bool, whether to use FP16.
|
|
max_seq_length (int, optional, defaults to 128): An integer, the max length of the sequence.
|
|
For token classification task, this argument will be ineffective.
|
|
pad_to_max_length (bool, optional, defaults to "False"):
|
|
whether to pad all samples to model maximum sentence length.
|
|
If False, will pad the samples dynamically when batching to the maximum length in the batch.
|
|
per_device_eval_batch_size (int, optional, defaults to 1): An integer, the per gpu evaluation batch size.
|
|
label_list (List[str], optional, defaults to None): A list of string, the string list of the label names.
|
|
When the task is sequence labeling/token classification, there are two formats of the labels:
|
|
(1) The token labels, i.e., [B-PER, I-PER, B-LOC]; (2) Id labels. For (2), need to pass the label_list (e.g., [B-PER, I-PER, B-LOC])
|
|
to convert the Id to token labels when computing the metric with metric_loss_score.
|
|
See the example in [a simple token classification example](/docs/Examples/AutoML-NLP#a-simple-token-classification-example).
|
|
"""
|
|
|
|
task: str = field(default="seq-classification")
|
|
|
|
output_dir: str = field(default="data/output/", metadata={"help": "data dir"})
|
|
|
|
model_path: str = field(
|
|
default="facebook/muppet-roberta-base",
|
|
metadata={
|
|
"help": "model path for HPO natural language understanding tasks, default is set to facebook/muppet-roberta-base"
|
|
},
|
|
)
|
|
|
|
fp16: bool = field(default=True, metadata={"help": "whether to use the FP16 mode"})
|
|
|
|
max_seq_length: int = field(default=128, metadata={"help": "max seq length"})
|
|
|
|
label_all_tokens: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "For NER task, whether to set the extra tokenized labels to the same label (instead of -100)"
|
|
},
|
|
)
|
|
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to pad all samples to model maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. "
|
|
},
|
|
)
|
|
|
|
per_device_eval_batch_size: int = field(
|
|
default=1,
|
|
metadata={"help": "per gpu evaluation batch size"},
|
|
)
|
|
|
|
label_list: Optional[List[str]] = field(default=None, metadata={"help": "The string list of the label names. "})
|
|
|
|
eval_steps: int = field(default=500, metadata={"help": "Run an evaluation every X steps."})
|
|
|
|
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
|
|
|
|
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
|
|
|
|
@staticmethod
|
|
def load_args_from_console():
|
|
from dataclasses import fields
|
|
|
|
arg_parser = argparse.ArgumentParser()
|
|
for each_field in fields(TrainingArgumentsForAuto):
|
|
print(each_field)
|
|
arg_parser.add_argument(
|
|
"--" + each_field.name,
|
|
type=each_field.type,
|
|
help=each_field.metadata["help"],
|
|
required=each_field.metadata["required"] if "required" in each_field.metadata else False,
|
|
choices=each_field.metadata["choices"] if "choices" in each_field.metadata else None,
|
|
default=each_field.default,
|
|
)
|
|
console_args, unknown = arg_parser.parse_known_args()
|
|
return console_args
|
|
|
|
|
|
@dataclass
|
|
class Seq2SeqTrainingArgumentsForAuto(TrainingArgumentsForAuto):
|
|
model_path: str = field(
|
|
default="t5-small",
|
|
metadata={"help": "model path for HPO natural language generation tasks, default is set to t5-small"},
|
|
)
|
|
|
|
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to use SortishSampler or not."})
|
|
predict_with_generate: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."},
|
|
)
|
|
generation_max_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
|
|
"to the `max_length` value of the model configuration."
|
|
},
|
|
)
|
|
generation_num_beams: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
|
|
"to the `num_beams` value of the model configuration."
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
super().__post_init__()
|
|
if self.task in NLG_TASKS:
|
|
self.model_path = "t5-small"
|