autogen/flaml/automl/nlp/huggingface/training_args.py

129 lines
5.5 KiB
Python

import argparse
from dataclasses import dataclass, field
from typing import Optional, List
from flaml.automl.task.task import NLG_TASKS
try:
from transformers import TrainingArguments
except ImportError:
TrainingArguments = object
@dataclass
class TrainingArgumentsForAuto(TrainingArguments):
"""FLAML custom TrainingArguments.
Args:
task (str): the task name for NLP tasks, e.g., seq-classification, token-classification
output_dir (str): data root directory for outputing the log, etc.
model_path (str, optional, defaults to "facebook/muppet-roberta-base"): A string,
the path of the language model file, either a path from huggingface
model card huggingface.co/models, or a local path for the model.
fp16 (bool, optional, defaults to "False"): A bool, whether to use FP16.
max_seq_length (int, optional, defaults to 128): An integer, the max length of the sequence.
For token classification task, this argument will be ineffective.
pad_to_max_length (bool, optional, defaults to "False"):
whether to pad all samples to model maximum sentence length.
If False, will pad the samples dynamically when batching to the maximum length in the batch.
per_device_eval_batch_size (int, optional, defaults to 1): An integer, the per gpu evaluation batch size.
label_list (List[str], optional, defaults to None): A list of string, the string list of the label names.
When the task is sequence labeling/token classification, there are two formats of the labels:
(1) The token labels, i.e., [B-PER, I-PER, B-LOC]; (2) Id labels. For (2), need to pass the label_list (e.g., [B-PER, I-PER, B-LOC])
to convert the Id to token labels when computing the metric with metric_loss_score.
See the example in [a simple token classification example](/docs/Examples/AutoML-NLP#a-simple-token-classification-example).
"""
task: str = field(default="seq-classification")
output_dir: str = field(default="data/output/", metadata={"help": "data dir"})
model_path: str = field(
default="facebook/muppet-roberta-base",
metadata={
"help": "model path for HPO natural language understanding tasks, default is set to facebook/muppet-roberta-base"
},
)
fp16: bool = field(default=True, metadata={"help": "whether to use the FP16 mode"})
max_seq_length: int = field(default=128, metadata={"help": "max seq length"})
label_all_tokens: bool = field(
default=False,
metadata={
"help": "For NER task, whether to set the extra tokenized labels to the same label (instead of -100)"
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. "
},
)
per_device_eval_batch_size: int = field(
default=1,
metadata={"help": "per gpu evaluation batch size"},
)
label_list: Optional[List[str]] = field(default=None, metadata={"help": "The string list of the label names. "})
eval_steps: int = field(default=500, metadata={"help": "Run an evaluation every X steps."})
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
@staticmethod
def load_args_from_console():
from dataclasses import fields
arg_parser = argparse.ArgumentParser()
for each_field in fields(TrainingArgumentsForAuto):
print(each_field)
arg_parser.add_argument(
"--" + each_field.name,
type=each_field.type,
help=each_field.metadata["help"],
required=each_field.metadata["required"] if "required" in each_field.metadata else False,
choices=each_field.metadata["choices"] if "choices" in each_field.metadata else None,
default=each_field.default,
)
console_args, unknown = arg_parser.parse_known_args()
return console_args
@dataclass
class Seq2SeqTrainingArgumentsForAuto(TrainingArgumentsForAuto):
model_path: str = field(
default="t5-small",
metadata={"help": "model path for HPO natural language generation tasks, default is set to t5-small"},
)
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to use SortishSampler or not."})
predict_with_generate: bool = field(
default=True,
metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."},
)
generation_max_length: Optional[int] = field(
default=None,
metadata={
"help": "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
},
)
generation_num_beams: Optional[int] = field(
default=None,
metadata={
"help": "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
},
)
def __post_init__(self):
super().__post_init__()
if self.task in NLG_TASKS:
self.model_path = "t5-small"