autogen/flaml/automl/nlp/huggingface/trainer.py

91 lines
3.0 KiB
Python

import os
try:
from transformers import Seq2SeqTrainer
except ImportError:
Seq2SeqTrainer = object
class TrainerForAuto(Seq2SeqTrainer):
def predict(
self,
test_dataset,
ignore_keys=None,
metric_key_prefix=None,
max_length=None,
num_beams=None,
):
if getattr(self, "_is_seq2seq", None):
return super().predict(
test_dataset,
ignore_keys,
metric_key_prefix=metric_key_prefix,
max_length=max_length,
num_beams=num_beams,
)
else:
return super(Seq2SeqTrainer, self).predict(test_dataset, ignore_keys, metric_key_prefix)
def prediction_step(
self,
model,
inputs,
prediction_loss_only,
ignore_keys,
):
if getattr(self, "_is_seq2seq", None):
return super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
else:
return super(Seq2SeqTrainer, self).prediction_step(model, inputs, prediction_loss_only, ignore_keys)
def log(self, logs) -> None:
if getattr(self, "_is_seq2seq", None):
super().log(logs)
else:
super(Seq2SeqTrainer, self).log(logs)
if not hasattr(self, "intermediate_results"):
self.intermediate_results = {}
epoch_num = logs.get("epoch", None)
if epoch_num:
self.intermediate_results.setdefault(epoch_num, {})
self.intermediate_results[epoch_num].update(logs)
def evaluate(
self,
eval_dataset=None,
ignore_keys=None,
metric_key_prefix="eval",
):
"""Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path."""
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
ckpt_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
# TODO: if your task is seq2seq (i.e., SUMMARIZATION), uncomment the code below (add indentation before metrics = eval_dataset...
if getattr(self, "_is_seq2seq", None):
metrics = eval_dataset and super().evaluate(
eval_dataset,
ignore_keys,
metric_key_prefix,
max_length=self.args.generation_max_length,
num_beams=self.args.generation_num_beams,
)
else:
metrics = eval_dataset and super(Seq2SeqTrainer, self).evaluate(
eval_dataset,
ignore_keys,
metric_key_prefix,
)
if hasattr(self, "ckpt_to_global_step"):
self.ckpt_to_global_step[ckpt_dir] = self.state.global_step
if metrics:
self.ckpt_to_metric[ckpt_dir] = metrics
else:
self.ckpt_to_global_step = {ckpt_dir: self.state.global_step}
self.ckpt_to_metric = {ckpt_dir: metrics} if metrics else {}
return metrics