mirror of https://github.com/microsoft/autogen.git
78 lines
2.6 KiB
Python
78 lines
2.6 KiB
Python
from flaml.automl.data import load_openml_dataset
|
|
from flaml import AutoML
|
|
from flaml.tune.spark.utils import check_spark
|
|
import os
|
|
import pytest
|
|
|
|
spark_available, _ = check_spark()
|
|
skip_spark = not spark_available
|
|
|
|
pytestmark = pytest.mark.skipif(skip_spark, reason="Spark is not installed. Skip all spark tests.")
|
|
|
|
os.environ["FLAML_MAX_CONCURRENT"] = "2"
|
|
|
|
|
|
def base_automl(n_concurrent_trials=1, use_ray=False, use_spark=False, verbose=0):
|
|
from minio.error import ServerError
|
|
|
|
try:
|
|
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
|
|
except (ServerError, Exception):
|
|
from sklearn.datasets import fetch_california_housing
|
|
|
|
X_train, y_train = fetch_california_housing(return_X_y=True)
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": 3, # total running time in seconds
|
|
"metric": "r2", # primary metrics for regression can be chosen from: ['mae','mse','r2','rmse','mape']
|
|
"estimator_list": ["lgbm", "rf", "xgboost"], # list of ML learners
|
|
"task": "regression", # task type
|
|
"log_file_name": "houses_experiment.log", # flaml log file
|
|
"seed": 7654321, # random seed
|
|
"n_concurrent_trials": n_concurrent_trials, # the maximum number of concurrent learners
|
|
"use_ray": use_ray, # whether to use Ray for distributed training
|
|
"use_spark": use_spark, # whether to use Spark for distributed training
|
|
"verbose": verbose,
|
|
}
|
|
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
|
|
print("Training duration of best run: {0:.4g} s".format(automl.best_config_train_time))
|
|
|
|
|
|
def test_both_ray_spark():
|
|
with pytest.raises(ValueError):
|
|
base_automl(n_concurrent_trials=2, use_ray=True, use_spark=True)
|
|
|
|
|
|
def test_verboses():
|
|
for verbose in [1, 3, 5]:
|
|
base_automl(verbose=verbose)
|
|
|
|
|
|
def test_import_error():
|
|
from importlib import reload
|
|
import flaml.tune.spark.utils as utils
|
|
|
|
reload(utils)
|
|
utils._have_spark = False
|
|
spark_available, spark_error_msg = utils.check_spark()
|
|
assert not spark_available
|
|
assert isinstance(spark_error_msg, ImportError)
|
|
|
|
reload(utils)
|
|
utils._spark_major_minor_version = (1, 1)
|
|
spark_available, spark_error_msg = utils.check_spark()
|
|
assert not spark_available
|
|
assert isinstance(spark_error_msg, ImportError)
|
|
|
|
reload(utils)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
base_automl()
|
|
test_import_error()
|