autogen/test/automl/test_notebook_example.py

182 lines
6.4 KiB
Python

import sys
from openml.exceptions import OpenMLServerException
from requests.exceptions import ChunkedEncodingError, SSLError
from minio.error import ServerError
def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
from flaml.automl.data import load_openml_dataset
import urllib3
performance_check_budget = 600
if (
sys.platform == "darwin"
and budget < performance_check_budget
and dataset_format == "dataframe"
and "3.9" in sys.version
):
budget = performance_check_budget # revise the buget on macos
if budget == performance_check_budget:
budget = None
max_iter = 60
else:
max_iter = None
try:
X_train, X_test, y_train, y_test = load_openml_dataset(
dataset_id=1169, data_dir="test/", dataset_format=dataset_format
)
except (
OpenMLServerException,
ChunkedEncodingError,
urllib3.exceptions.ReadTimeoutError,
SSLError,
ServerError,
Exception,
) as e:
print(e)
return
""" import AutoML class from flaml package """
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"max_iter": max_iter, # maximum number of iterations
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
"task": "classification", # task type
"log_file_name": "airlines_experiment.log", # flaml log file
"seed": 7654321, # random seed
"hpo_method": hpo_method,
"log_type": "all",
"estimator_list": [
"lgbm",
"xgboost",
"xgb_limitdepth",
"rf",
"extra_tree",
], # list of ML learners
"eval_method": "holdout",
}
"""The main flaml automl API"""
automl.fit(X_train=X_train, y_train=y_train, **settings)
""" retrieve best config and best learner """
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
print("Training duration of best run: {0:.4g} s".format(automl.best_config_train_time))
print(automl.model.estimator)
print(automl.best_config_per_estimator)
print("time taken to find best model:", automl.time_to_find_best_model)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
print("Predicted labels", y_pred)
print("True labels", y_test)
y_pred_proba = automl.predict_proba(X_test)[:, 1]
""" compute different metric values on testing dataset """
from flaml.automl.ml import sklearn_metric_loss_score
accuracy = 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test)
print("accuracy", "=", accuracy)
print("roc_auc", "=", 1 - sklearn_metric_loss_score("roc_auc", y_pred_proba, y_test))
print("log_loss", "=", sklearn_metric_loss_score("log_loss", y_pred_proba, y_test))
if budget is None:
assert accuracy >= 0.669, "the accuracy of flaml should be larger than 0.67"
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=6)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
print(automl.feature_names_in_)
print(automl.feature_importances_)
if budget is not None:
automl.fit(X_train=X_train, y_train=y_train, ensemble=True, **settings)
def test_automl_array():
test_automl(5, "array", "bs")
def _test_nobudget():
# needs large RAM to run this test
test_automl(-1)
def test_mlflow():
# subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
import mlflow
from flaml.automl.data import load_openml_task
try:
X_train, X_test, y_train, y_test = load_openml_task(task_id=7592, data_dir="test/")
except (OpenMLServerException, ChunkedEncodingError, SSLError, ServerError, Exception) as e:
print(e)
return
""" import AutoML class from flaml package """
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": 5, # total running time in seconds
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
"estimator_list": ["lgbm", "rf", "xgboost"], # list of ML learners
"task": "classification", # task type
"sample": False, # whether to subsample training data
"log_file_name": "adult.log", # flaml log file
"learner_selector": "roundrobin",
}
mlflow.set_experiment("flaml")
with mlflow.start_run() as run:
automl.fit(X_train=X_train, y_train=y_train, **settings)
mlflow.sklearn.log_model(automl, "automl")
loaded_model = mlflow.pyfunc.load_model(f"{run.info.artifact_uri}/automl")
print(loaded_model.predict(X_test))
automl._mem_thres = 0
print(automl.trainable(automl.points_to_evaluate[0]))
settings["use_ray"] = True
try:
with mlflow.start_run() as run:
automl.fit(X_train=X_train, y_train=y_train, **settings)
mlflow.sklearn.log_model(automl, "automl")
automl = mlflow.sklearn.load_model(f"{run.info.artifact_uri}/automl")
print(automl.predict_proba(X_test))
except ImportError:
pass
def test_mlflow_iris():
from sklearn.datasets import load_iris
import mlflow
from flaml import AutoML
with mlflow.start_run():
automl = AutoML()
automl_settings = {
"time_budget": 2, # in seconds
"metric": "accuracy",
"task": "classification",
"log_file_name": "iris.log",
}
X_train, y_train = load_iris(return_X_y=True)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
# subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "mlflow"])
if __name__ == "__main__":
test_automl(600)