mirror of https://github.com/microsoft/autogen.git
356 lines
14 KiB
Python
356 lines
14 KiB
Python
import os
|
|
from pathlib import Path
|
|
from typing import List, Literal, Union, Optional, Dict, Any, Type
|
|
from datetime import datetime
|
|
import json
|
|
from autogen_agentchat.task import MaxMessageTermination, TextMentionTermination, StopMessageTermination
|
|
import yaml
|
|
import logging
|
|
from packaging import version
|
|
|
|
from ..datamodel import (
|
|
TeamConfig, AgentConfig, ModelConfig, ToolConfig,
|
|
TeamTypes, AgentTypes, ModelTypes, ToolTypes,
|
|
ComponentType, ComponentConfig, ComponentConfigInput, TerminationConfig, TerminationTypes, Response
|
|
)
|
|
from autogen_agentchat.agents import AssistantAgent
|
|
from autogen_agentchat.teams import RoundRobinGroupChat, SelectorGroupChat
|
|
from autogen_ext.models import OpenAIChatCompletionClient
|
|
from autogen_core.components.tools import FunctionTool
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Type definitions for supported components
|
|
TeamComponent = Union[RoundRobinGroupChat, SelectorGroupChat]
|
|
AgentComponent = Union[AssistantAgent] # Will grow with more agent types
|
|
# Will grow with more model types
|
|
ModelComponent = Union[OpenAIChatCompletionClient]
|
|
ToolComponent = Union[FunctionTool] # Will grow with more tool types
|
|
TerminationComponent = Union[MaxMessageTermination,
|
|
StopMessageTermination, TextMentionTermination]
|
|
|
|
# Config type definitions
|
|
|
|
Component = Union[TeamComponent, AgentComponent, ModelComponent, ToolComponent]
|
|
|
|
|
|
ReturnType = Literal['object', 'dict', 'config']
|
|
Component = Union[RoundRobinGroupChat, SelectorGroupChat,
|
|
AssistantAgent, OpenAIChatCompletionClient, FunctionTool]
|
|
|
|
|
|
class ComponentFactory:
|
|
"""Creates and manages agent components with versioned configuration loading"""
|
|
|
|
SUPPORTED_VERSIONS = {
|
|
ComponentType.TEAM: ["1.0.0"],
|
|
ComponentType.AGENT: ["1.0.0"],
|
|
ComponentType.MODEL: ["1.0.0"],
|
|
ComponentType.TOOL: ["1.0.0"],
|
|
ComponentType.TERMINATION: ["1.0.0"]
|
|
}
|
|
|
|
def __init__(self):
|
|
self._model_cache: Dict[str, OpenAIChatCompletionClient] = {}
|
|
self._tool_cache: Dict[str, FunctionTool] = {}
|
|
self._last_cache_clear = datetime.now()
|
|
|
|
async def load(self, component: ComponentConfigInput, return_type: ReturnType = 'object') -> Union[Component, dict, ComponentConfig]:
|
|
"""
|
|
Universal loader for any component type
|
|
|
|
Args:
|
|
component: Component configuration (file path, dict, or ComponentConfig)
|
|
return_type: Type of return value ('object', 'dict', or 'config')
|
|
|
|
Returns:
|
|
Component instance, config dict, or ComponentConfig based on return_type
|
|
|
|
Raises:
|
|
ValueError: If component type is unknown or version unsupported
|
|
"""
|
|
try:
|
|
# Load and validate config
|
|
if isinstance(component, (str, Path)):
|
|
component_dict = await self._load_from_file(component)
|
|
config = self._dict_to_config(component_dict)
|
|
elif isinstance(component, dict):
|
|
config = self._dict_to_config(component)
|
|
else:
|
|
config = component
|
|
|
|
# Validate version
|
|
if not self._is_version_supported(config.component_type, config.version):
|
|
raise ValueError(
|
|
f"Unsupported version {config.version} for "
|
|
f"component type {config.component_type}. "
|
|
f"Supported versions: {self.SUPPORTED_VERSIONS[config.component_type]}"
|
|
)
|
|
|
|
# Return early if dict or config requested
|
|
if return_type == 'dict':
|
|
return config.model_dump()
|
|
elif return_type == 'config':
|
|
return config
|
|
|
|
# Otherwise create and return component instance
|
|
handlers = {
|
|
ComponentType.TEAM: self.load_team,
|
|
ComponentType.AGENT: self.load_agent,
|
|
ComponentType.MODEL: self.load_model,
|
|
ComponentType.TOOL: self.load_tool,
|
|
ComponentType.TERMINATION: self.load_termination
|
|
}
|
|
|
|
handler = handlers.get(config.component_type)
|
|
if not handler:
|
|
raise ValueError(
|
|
f"Unknown component type: {config.component_type}")
|
|
|
|
return await handler(config)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to load component: {str(e)}")
|
|
raise
|
|
|
|
async def load_directory(self, directory: Union[str, Path], check_exists: bool = False, return_type: ReturnType = 'object') -> List[Union[Component, dict, ComponentConfig]]:
|
|
"""
|
|
Import all component configurations from a directory.
|
|
"""
|
|
components = []
|
|
try:
|
|
directory = Path(directory)
|
|
# Using Path.iterdir() instead of os.listdir
|
|
for path in list(directory.glob("*")):
|
|
if path.suffix.lower().endswith(('.json', '.yaml', '.yml')):
|
|
try:
|
|
component = await self.load(path, return_type)
|
|
components.append(component)
|
|
except Exception as e:
|
|
logger.info(
|
|
f"Failed to load component: {str(e)}, {path}")
|
|
|
|
return components
|
|
except Exception as e:
|
|
logger.info(f"Failed to load directory: {str(e)}")
|
|
return components
|
|
|
|
def _dict_to_config(self, config_dict: dict) -> ComponentConfig:
|
|
"""Convert dictionary to appropriate config type based on component_type"""
|
|
if "component_type" not in config_dict:
|
|
raise ValueError("component_type is required in configuration")
|
|
|
|
config_types = {
|
|
ComponentType.TEAM: TeamConfig,
|
|
ComponentType.AGENT: AgentConfig,
|
|
ComponentType.MODEL: ModelConfig,
|
|
ComponentType.TOOL: ToolConfig,
|
|
ComponentType.TERMINATION: TerminationConfig # Add mapping for termination
|
|
}
|
|
|
|
component_type = ComponentType(config_dict["component_type"])
|
|
config_class = config_types.get(component_type)
|
|
|
|
if not config_class:
|
|
raise ValueError(f"Unknown component type: {component_type}")
|
|
|
|
return config_class(**config_dict)
|
|
|
|
async def load_termination(self, config: TerminationConfig) -> TerminationComponent:
|
|
"""Create termination condition instance from configuration."""
|
|
try:
|
|
if config.termination_type == TerminationTypes.MAX_MESSAGES:
|
|
return MaxMessageTermination(max_messages=config.max_messages)
|
|
elif config.termination_type == TerminationTypes.STOP_MESSAGE:
|
|
return StopMessageTermination()
|
|
elif config.termination_type == TerminationTypes.TEXT_MENTION:
|
|
if not config.text:
|
|
raise ValueError(
|
|
"text parameter required for TextMentionTermination")
|
|
return TextMentionTermination(text=config.text)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported termination type: {config.termination_type}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to create termination condition: {str(e)}")
|
|
raise ValueError(
|
|
f"Termination condition creation failed: {str(e)}")
|
|
|
|
async def load_team(self, config: TeamConfig) -> TeamComponent:
|
|
"""Create team instance from configuration."""
|
|
try:
|
|
# Load participants (agents)
|
|
participants = []
|
|
for participant in config.participants:
|
|
agent = await self.load(participant)
|
|
participants.append(agent)
|
|
|
|
# Load model client if specified
|
|
model_client = None
|
|
if config.model_client:
|
|
model_client = await self.load(config.model_client)
|
|
|
|
# Load termination condition if specified
|
|
termination = None
|
|
if config.termination_condition:
|
|
# Now we can use the universal load() method since termination is a proper component
|
|
termination = await self.load(config.termination_condition)
|
|
|
|
# Create team based on type
|
|
if config.team_type == TeamTypes.ROUND_ROBIN:
|
|
return RoundRobinGroupChat(
|
|
participants=participants,
|
|
termination_condition=termination
|
|
)
|
|
elif config.team_type == TeamTypes.SELECTOR:
|
|
if not model_client:
|
|
raise ValueError(
|
|
"SelectorGroupChat requires a model_client")
|
|
return SelectorGroupChat(
|
|
participants=participants,
|
|
model_client=model_client,
|
|
termination_condition=termination
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported team type: {config.team_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to create team {config.name}: {str(e)}")
|
|
raise ValueError(f"Team creation failed: {str(e)}")
|
|
|
|
async def load_agent(self, config: AgentConfig) -> AgentComponent:
|
|
"""Create agent instance from configuration."""
|
|
try:
|
|
# Load model client if specified
|
|
model_client = None
|
|
if config.model_client:
|
|
model_client = await self.load(config.model_client)
|
|
system_message = config.system_message if config.system_message else "You are a helpful assistant"
|
|
# Load tools if specified
|
|
tools = []
|
|
if config.tools:
|
|
for tool_config in config.tools:
|
|
tool = await self.load(tool_config)
|
|
tools.append(tool)
|
|
|
|
if config.agent_type == AgentTypes.ASSISTANT:
|
|
return AssistantAgent(
|
|
name=config.name,
|
|
model_client=model_client,
|
|
tools=tools,
|
|
system_message=system_message
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported agent type: {config.agent_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to create agent {config.name}: {str(e)}")
|
|
raise ValueError(f"Agent creation failed: {str(e)}")
|
|
|
|
async def load_model(self, config: ModelConfig) -> ModelComponent:
|
|
"""Create model instance from configuration."""
|
|
try:
|
|
# Check cache first
|
|
cache_key = str(config.model_dump())
|
|
if cache_key in self._model_cache:
|
|
logger.debug(f"Using cached model for {config.model}")
|
|
return self._model_cache[cache_key]
|
|
|
|
if config.model_type == ModelTypes.OPENAI:
|
|
model = OpenAIChatCompletionClient(
|
|
model=config.model,
|
|
api_key=config.api_key,
|
|
base_url=config.base_url
|
|
)
|
|
self._model_cache[cache_key] = model
|
|
return model
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported model type: {config.model_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to create model {config.model}: {str(e)}")
|
|
raise ValueError(f"Model creation failed: {str(e)}")
|
|
|
|
async def load_tool(self, config: ToolConfig) -> ToolComponent:
|
|
"""Create tool instance from configuration."""
|
|
try:
|
|
# Validate required fields
|
|
if not all([config.name, config.description, config.content, config.tool_type]):
|
|
raise ValueError("Tool configuration missing required fields")
|
|
|
|
# Check cache first
|
|
cache_key = str(config.model_dump())
|
|
if cache_key in self._tool_cache:
|
|
logger.debug(f"Using cached tool '{config.name}'")
|
|
return self._tool_cache[cache_key]
|
|
|
|
if config.tool_type == ToolTypes.PYTHON_FUNCTION:
|
|
tool = FunctionTool(
|
|
name=config.name,
|
|
description=config.description,
|
|
func=self._func_from_string(config.content)
|
|
)
|
|
self._tool_cache[cache_key] = tool
|
|
return tool
|
|
else:
|
|
raise ValueError(f"Unsupported tool type: {config.tool_type}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to create tool '{config.name}': {str(e)}")
|
|
raise
|
|
|
|
# Helper methods remain largely the same
|
|
async def _load_from_file(self, path: Union[str, Path]) -> dict:
|
|
"""Load configuration from JSON or YAML file."""
|
|
path = Path(path)
|
|
if not path.exists():
|
|
raise FileNotFoundError(f"Config file not found: {path}")
|
|
|
|
try:
|
|
with open(path) as f:
|
|
if path.suffix == '.json':
|
|
return json.load(f)
|
|
elif path.suffix in ('.yml', '.yaml'):
|
|
return yaml.safe_load(f)
|
|
else:
|
|
raise ValueError(f"Unsupported file format: {path.suffix}")
|
|
except Exception as e:
|
|
raise ValueError(f"Failed to load file {path}: {str(e)}")
|
|
|
|
def _func_from_string(self, content: str) -> callable:
|
|
"""Convert function string to callable."""
|
|
try:
|
|
namespace = {}
|
|
exec(content, namespace)
|
|
for item in namespace.values():
|
|
if callable(item) and not isinstance(item, type):
|
|
return item
|
|
raise ValueError("No function found in provided code")
|
|
except Exception as e:
|
|
raise ValueError(f"Failed to create function: {str(e)}")
|
|
|
|
def _is_version_supported(self, component_type: ComponentType, ver: str) -> bool:
|
|
"""Check if version is supported for component type."""
|
|
try:
|
|
v = version.parse(ver)
|
|
return ver in self.SUPPORTED_VERSIONS[component_type]
|
|
except version.InvalidVersion:
|
|
return False
|
|
|
|
async def cleanup(self) -> None:
|
|
"""Cleanup resources and clear caches."""
|
|
for model in self._model_cache.values():
|
|
if hasattr(model, 'cleanup'):
|
|
await model.cleanup()
|
|
|
|
for tool in self._tool_cache.values():
|
|
if hasattr(tool, 'cleanup'):
|
|
await tool.cleanup()
|
|
|
|
self._model_cache.clear()
|
|
self._tool_cache.clear()
|
|
self._last_cache_clear = datetime.now()
|
|
logger.info("Cleared all component caches")
|