autogen/test/oai/test_completion.py

456 lines
14 KiB
Python

import datasets
import sys
import numpy as np
import pytest
from functools import partial
import os
import json
import autogen
from autogen.code_utils import (
eval_function_completions,
generate_assertions,
implement,
generate_code,
)
from autogen.math_utils import eval_math_responses, solve_problem
KEY_LOC = "notebook"
OAI_CONFIG_LIST = "OAI_CONFIG_LIST"
here = os.path.abspath(os.path.dirname(__file__))
def yes_or_no_filter(context, response, **_):
return context.get("yes_or_no_choice", False) is False or any(
text in ["Yes.", "No."] for text in autogen.Completion.extract_text(response)
)
def valid_json_filter(response, **_):
for text in autogen.Completion.extract_text(response):
try:
json.loads(text)
return True
except ValueError:
pass
return False
def test_filter():
try:
import openai
except ImportError as exc:
print(exc)
return
config_list = autogen.config_list_from_models(
KEY_LOC, exclude="aoai", model_list=["text-ada-001", "gpt-3.5-turbo", "text-davinci-003"]
)
response = autogen.Completion.create(
context={"yes_or_no_choice": True},
config_list=config_list,
prompt="Is 37 a prime number? Please answer 'Yes.' or 'No.'",
filter_func=yes_or_no_filter,
)
assert (
autogen.Completion.extract_text(response)[0] in ["Yes.", "No."]
or not response["pass_filter"]
and response["config_id"] == 2
)
response = autogen.Completion.create(
context={"yes_or_no_choice": False},
config_list=config_list,
prompt="Is 37 a prime number?",
filter_func=yes_or_no_filter,
)
assert response["model"] == "text-ada-001"
response = autogen.Completion.create(
config_list=config_list,
prompt="How to construct a json request to Bing API to search for 'latest AI news'? Return the JSON request.",
filter_func=valid_json_filter,
)
assert response["config_id"] == 2 or response["pass_filter"], "the response must pass filter unless all fail"
assert not response["pass_filter"] or json.loads(autogen.Completion.extract_text(response)[0])
def test_chatcompletion():
params = autogen.ChatCompletion._construct_params(
context=None,
config={"model": "unknown"},
prompt="hi",
)
assert "messages" in params
params = autogen.Completion._construct_params(
context=None,
config={"model": "unknown"},
prompt="hi",
)
assert "messages" not in params
params = autogen.Completion._construct_params(
context=None,
config={"model": "gpt-4"},
prompt="hi",
)
assert "messages" in params
params = autogen.Completion._construct_params(
context={"name": "there"},
config={"model": "unknown"},
prompt="hi {name}",
allow_format_str_template=True,
)
assert params["prompt"] == "hi there"
params = autogen.Completion._construct_params(
context={"name": "there"},
config={"model": "unknown"},
prompt="hi {name}",
)
assert params["prompt"] != "hi there"
def test_multi_model():
try:
import openai
except ImportError as exc:
print(exc)
return
response = autogen.Completion.create(
config_list=autogen.config_list_gpt4_gpt35(KEY_LOC),
prompt="Hi",
)
print(response)
def test_nocontext():
try:
import openai
import diskcache
except ImportError as exc:
print(exc)
return
response = autogen.Completion.create(
model="text-ada-001",
prompt="1+1=",
max_tokens=1,
use_cache=False,
request_timeout=10,
config_list=autogen.config_list_openai_aoai(KEY_LOC, exclude="aoai"),
)
print(response)
code, _ = generate_code(
config_list=autogen.config_list_from_json(
OAI_CONFIG_LIST,
file_location=KEY_LOC,
filter_dict={
"model": {
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
"chatgpt-35-turbo-0301",
"gpt-35-turbo-v0301",
"gpt",
},
},
),
messages=[
{
"role": "system",
"content": "You want to become a better assistant by learning new skills and improving your existing ones.",
},
{
"role": "user",
"content": "Write reusable code to use web scraping to get information from websites.",
},
],
)
print(code)
solution, cost = solve_problem("1+1=", config_list=autogen.config_list_gpt4_gpt35(KEY_LOC))
print(solution, cost)
@pytest.mark.skipif(
sys.platform == "win32",
reason="do not run on windows",
)
def test_humaneval(num_samples=1):
gpt35_config_list = autogen.config_list_from_json(
env_or_file=OAI_CONFIG_LIST,
filter_dict={
"model": {
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
"chatgpt-35-turbo-0301",
"gpt-35-turbo-v0301",
"gpt",
},
},
file_location=KEY_LOC,
)
assertions = partial(generate_assertions, config_list=gpt35_config_list)
eval_with_generated_assertions = partial(
eval_function_completions,
assertions=assertions,
)
seed = 41
data = datasets.load_dataset("openai_humaneval")["test"].shuffle(seed=seed)
n_tune_data = 20
tune_data = [
{
"definition": data[x]["prompt"],
"test": data[x]["test"],
"entry_point": data[x]["entry_point"],
}
for x in range(n_tune_data)
]
test_data = [
{
"definition": data[x]["prompt"],
"test": data[x]["test"],
"entry_point": data[x]["entry_point"],
}
for x in range(n_tune_data, len(data))
]
autogen.Completion.clear_cache(cache_path_root="{here}/cache")
autogen.Completion.set_cache(seed)
try:
import openai
import diskcache
except ImportError as exc:
print(exc)
return
autogen.Completion.clear_cache(400)
# no error should be raised
response = autogen.Completion.create(
context=test_data[0],
config_list=autogen.config_list_from_models(KEY_LOC, model_list=["gpt-3.5-turbo"]),
prompt="",
max_tokens=1,
max_retry_period=0,
raise_on_ratelimit_or_timeout=False,
)
# assert response == -1
config_list = autogen.config_list_openai_aoai(KEY_LOC, exclude="aoai")
# a minimal tuning example
config, _ = autogen.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_function_completions,
n=1,
prompt="{definition}",
allow_format_str_template=True,
config_list=config_list,
)
response = autogen.Completion.create(context=test_data[0], config_list=config_list, **config)
# a minimal tuning example for tuning chat completion models using the Completion class
config, _ = autogen.Completion.tune(
data=tune_data,
metric="succeed_assertions",
mode="max",
eval_func=eval_with_generated_assertions,
n=1,
model="text-davinci-003",
prompt="{definition}",
allow_format_str_template=True,
config_list=config_list,
)
response = autogen.Completion.create(context=test_data[0], config_list=config_list, **config)
# a minimal tuning example for tuning chat completion models using the ChatCompletion class
config_list = autogen.config_list_openai_aoai(KEY_LOC)
config, _ = autogen.ChatCompletion.tune(
data=tune_data,
metric="expected_success",
mode="max",
eval_func=eval_function_completions,
n=1,
messages=[{"role": "user", "content": "{definition}"}],
config_list=config_list,
allow_format_str_template=True,
request_timeout=120,
)
response = autogen.ChatCompletion.create(context=test_data[0], config_list=config_list, **config)
print(response)
from openai.error import RateLimitError
try:
code, cost, selected = implement(tune_data[1], [{**config_list[-1], **config}])
except RateLimitError:
code, cost, selected = implement(
tune_data[1],
[{**config_list[0], "model": "text-ada-001", "prompt": config["messages"]["content"]}],
assertions=assertions,
)
print(code)
print(cost)
assert selected == 0
print(eval_function_completions([code], **tune_data[1]))
# a more comprehensive tuning example
config2, analysis = autogen.Completion.tune(
data=tune_data,
metric="success",
mode="max",
eval_func=eval_with_generated_assertions,
log_file_name="logs/humaneval.log",
inference_budget=0.002,
optimization_budget=2,
num_samples=num_samples,
# logging_level=logging.INFO,
prompt=[
"{definition}",
"# Python 3{definition}",
"Complete the following Python function:{definition}",
],
stop=[["\nclass", "\ndef", "\nif", "\nprint"], None], # the stop sequences
config_list=config_list,
allow_format_str_template=True,
)
print(config2)
print(analysis.best_result)
print(test_data[0])
response = autogen.Completion.create(context=test_data[0], config_list=config_list, **config2)
print(response)
autogen.Completion.data = test_data[:num_samples]
result = autogen.Completion._eval(analysis.best_config, prune=False, eval_only=True)
print("result without pruning", result)
result = autogen.Completion.test(test_data[:num_samples], config_list=config_list, **config2)
print(result)
try:
code, cost, selected = implement(
tune_data[1], [{**config_list[-2], **config2}, {**config_list[-1], **config}], assertions=assertions
)
except RateLimitError:
code, cost, selected = implement(
tune_data[1],
[
{**config_list[-3], **config2},
{**config_list[0], "model": "text-ada-001", "prompt": config["messages"]["content"]},
],
assertions=assertions,
)
print(code)
print(cost)
print(selected)
print(eval_function_completions([code], **tune_data[1]))
def test_math(num_samples=-1):
try:
import openai
import diskcache
except ImportError as exc:
print(exc)
return
seed = 41
data = datasets.load_dataset("competition_math")
train_data = data["train"].shuffle(seed=seed)
test_data = data["test"].shuffle(seed=seed)
n_tune_data = 20
tune_data = [
{
"problem": train_data[x]["problem"],
"solution": train_data[x]["solution"],
}
for x in range(len(train_data))
if train_data[x]["level"] == "Level 1"
][:n_tune_data]
test_data = [
{
"problem": test_data[x]["problem"],
"solution": test_data[x]["solution"],
}
for x in range(len(test_data))
if test_data[x]["level"] == "Level 1"
]
print(
"max tokens in tuning data's canonical solutions",
max([len(x["solution"].split()) for x in tune_data]),
)
print(len(tune_data), len(test_data))
# prompt template
prompts = [
lambda data: "%s Solve the problem carefully. Simplify your answer as much as possible. Put the final answer in \\boxed{}."
% data["problem"]
]
autogen.Completion.set_cache(seed)
config_list = autogen.config_list_openai_aoai(KEY_LOC, exclude="aoai")
vanilla_config = {
"model": "text-davinci-003",
"temperature": 1,
"max_tokens": 2048,
"n": 1,
"prompt": prompts[0],
"stop": "###",
}
test_data_sample = test_data[0:3]
result = autogen.Completion.test(test_data_sample, eval_math_responses, config_list=config_list, **vanilla_config)
result = autogen.Completion.test(
test_data_sample,
eval_math_responses,
agg_method="median",
config_list=config_list,
**vanilla_config,
)
def my_median(results):
return np.median(results)
def my_average(results):
return np.mean(results)
result = autogen.Completion.test(
test_data_sample,
eval_math_responses,
agg_method=my_median,
**vanilla_config,
)
result = autogen.Completion.test(
test_data_sample,
eval_math_responses,
agg_method={
"expected_success": my_median,
"success": my_average,
"success_vote": my_average,
"votes": np.mean,
},
**vanilla_config,
)
print(result)
config, _ = autogen.Completion.tune(
data=tune_data, # the data for tuning
metric="expected_success", # the metric to optimize
mode="max", # the optimization mode
eval_func=eval_math_responses, # the evaluation function to return the success metrics
# log_file_name="logs/math.log", # the log file name
inference_budget=0.002, # the inference budget (dollar)
optimization_budget=0.01, # the optimization budget (dollar)
num_samples=num_samples,
prompt=prompts, # the prompt templates to choose from
stop="###", # the stop sequence
config_list=config_list,
)
print("tuned config", config)
result = autogen.Completion.test(test_data_sample, config_list=config_list, **config)
print("result from tuned config:", result)
print("empty responses", eval_math_responses([], None))
if __name__ == "__main__":
import openai
config_list = autogen.config_list_openai_aoai(KEY_LOC)
assert len(config_list) >= 3, config_list
openai.api_key = os.environ["OPENAI_API_KEY"]
# test_filter()
# test_chatcompletion()
# test_multi_model()
# test_nocontext()
test_humaneval(1)
# test_math(1)