mirror of https://github.com/microsoft/autogen.git
Compare commits
11 Commits
a63f1dd7bc
...
b3c7e7508f
Author | SHA1 | Date |
---|---|---|
![]() |
b3c7e7508f | |
![]() |
7e8472f99b | |
![]() |
756aef366d | |
![]() |
99194d48bf | |
![]() |
71a4eaedf9 | |
![]() |
95b1ed5d81 | |
![]() |
c75515990e | |
![]() |
3500170be1 | |
![]() |
7aff3b6c22 | |
![]() |
d42a382b05 | |
![]() |
3425d7dc2c |
|
@ -90,6 +90,7 @@ body:
|
|||
multiple: false
|
||||
options:
|
||||
- "Python dev (main branch)"
|
||||
- "Python 0.5.2"
|
||||
- "Python 0.5.1"
|
||||
- "Python 0.4.9"
|
||||
- "Python 0.4.8"
|
||||
|
|
|
@ -33,7 +33,7 @@ jobs:
|
|||
[
|
||||
# For main use the workflow target
|
||||
{ ref: "${{github.ref}}", dest-dir: dev, uv-version: "0.5.13", sphinx-release-override: "dev" },
|
||||
{ ref: "python-v0.5.1", dest-dir: stable, uv-version: "0.5.13", sphinx-release-override: "stable" },
|
||||
{ ref: "python-v0.5.2", dest-dir: stable, uv-version: "0.5.13", sphinx-release-override: "stable" },
|
||||
{ ref: "v0.4.0.post1", dest-dir: "0.4.0", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
{ ref: "v0.4.1", dest-dir: "0.4.1", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
{ ref: "v0.4.2", dest-dir: "0.4.2", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
|
@ -45,6 +45,7 @@ jobs:
|
|||
{ ref: "python-v0.4.8", dest-dir: "0.4.8", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
{ ref: "python-v0.4.9-website", dest-dir: "0.4.9", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
{ ref: "python-v0.5.1", dest-dir: "0.5.1", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
{ ref: "python-v0.5.2", dest-dir: "0.5.2", uv-version: "0.5.13", sphinx-release-override: "" },
|
||||
]
|
||||
steps:
|
||||
- name: Checkout
|
||||
|
|
|
@ -5,11 +5,16 @@
|
|||
"url": "/autogen/dev/"
|
||||
},
|
||||
{
|
||||
"name": "0.5.1 (stable)",
|
||||
"name": "0.5.2 (stable)",
|
||||
"version": "stable",
|
||||
"url": "/autogen/stable/",
|
||||
"preferred": true
|
||||
},
|
||||
{
|
||||
"name": "0.5.1",
|
||||
"version": "0.5.1",
|
||||
"url": "/autogen/0.5.1/"
|
||||
},
|
||||
{
|
||||
"name": "0.4.9",
|
||||
"version": "0.4.9",
|
||||
|
|
|
@ -4,7 +4,7 @@ build-backend = "hatchling.build"
|
|||
|
||||
[project]
|
||||
name = "autogen-agentchat"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
license = {file = "LICENSE-CODE"}
|
||||
description = "AutoGen agents and teams library"
|
||||
readme = "README.md"
|
||||
|
@ -15,7 +15,7 @@ classifiers = [
|
|||
"Operating System :: OS Independent",
|
||||
]
|
||||
dependencies = [
|
||||
"autogen-core==0.5.1",
|
||||
"autogen-core==0.5.2",
|
||||
]
|
||||
|
||||
[tool.ruff]
|
||||
|
|
|
@ -1,45 +1,108 @@
|
|||
import logging
|
||||
import re
|
||||
from typing import List, Sequence
|
||||
from typing import (
|
||||
AsyncGenerator,
|
||||
List,
|
||||
Optional,
|
||||
Sequence,
|
||||
Union,
|
||||
)
|
||||
|
||||
from autogen_core import CancellationToken, Component, ComponentModel
|
||||
from autogen_core.code_executor import CodeBlock, CodeExecutor
|
||||
from autogen_core.memory import Memory
|
||||
from autogen_core.model_context import (
|
||||
ChatCompletionContext,
|
||||
UnboundedChatCompletionContext,
|
||||
)
|
||||
from autogen_core.models import (
|
||||
AssistantMessage,
|
||||
ChatCompletionClient,
|
||||
CreateResult,
|
||||
LLMMessage,
|
||||
SystemMessage,
|
||||
UserMessage,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from typing_extensions import Self
|
||||
|
||||
from .. import EVENT_LOGGER_NAME
|
||||
from ..base import Response
|
||||
from ..messages import BaseChatMessage, TextMessage
|
||||
from ..messages import (
|
||||
BaseAgentEvent,
|
||||
BaseChatMessage,
|
||||
CodeExecutionEvent,
|
||||
CodeGenerationEvent,
|
||||
HandoffMessage,
|
||||
MemoryQueryEvent,
|
||||
ModelClientStreamingChunkEvent,
|
||||
TextMessage,
|
||||
ThoughtEvent,
|
||||
)
|
||||
from ..utils import remove_images
|
||||
from ._base_chat_agent import BaseChatAgent
|
||||
|
||||
event_logger = logging.getLogger(EVENT_LOGGER_NAME)
|
||||
|
||||
|
||||
class CodeExecutorAgentConfig(BaseModel):
|
||||
"""Configuration for CodeExecutorAgent"""
|
||||
|
||||
name: str
|
||||
code_executor: ComponentModel
|
||||
description: str = "A computer terminal that performs no other action than running Python scripts (provided to it quoted in ```python code blocks), or sh shell scripts (provided to it quoted in ```sh code blocks)."
|
||||
model_client: ComponentModel | None = None
|
||||
description: str | None = None
|
||||
sources: List[str] | None = None
|
||||
system_message: str | None = None
|
||||
model_client_stream: bool = False
|
||||
model_context: ComponentModel | None = None
|
||||
|
||||
|
||||
class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]):
|
||||
"""An agent that extracts and executes code snippets found in received
|
||||
:class:`~autogen_agentchat.messages.TextMessage` messages and returns the output
|
||||
of the code execution.
|
||||
|
||||
It is typically used within a team with another agent that generates code snippets to be executed.
|
||||
"""(Experimental) An agent that generates and executes code snippets based on user instructions.
|
||||
|
||||
.. note::
|
||||
|
||||
Consider :class:`~autogen_ext.tools.code_execution.PythonCodeExecutionTool`
|
||||
as an alternative to this agent. The tool allows for executing Python code
|
||||
within a single agent, rather than sending it to a separate agent for execution.
|
||||
However, the model for the agent will have to generate properly escaped code
|
||||
string as a parameter to the tool.
|
||||
This agent is experimental and may change in future releases.
|
||||
|
||||
It is typically used within a team with another agent that generates code snippets
|
||||
to be executed or alone with `model_client` provided so that it can generate code
|
||||
based on user query, execute it and reflect on the code result.
|
||||
|
||||
When used with `model_client`, it will generate code snippets using the model
|
||||
and execute them using the provided `code_executor`. The model will also reflect on the
|
||||
code execution results. The agent will yield the final reflection result from the model
|
||||
as the final response.
|
||||
|
||||
When used without `model_client`, it will only execute code blocks found in
|
||||
:class:`~autogen_agentchat.messages.TextMessage` messages and returns the output
|
||||
of the code execution.
|
||||
|
||||
.. note::
|
||||
|
||||
Using :class:`~autogen_agentchat.agents.AssistantAgent` with
|
||||
:class:`~autogen_ext.tools.code_execution.PythonCodeExecutionTool`
|
||||
is an alternative to this agent. However, the model for that agent will
|
||||
have to generate properly escaped code string as a parameter to the tool.
|
||||
|
||||
Args:
|
||||
name: The name of the agent.
|
||||
code_executor: The CodeExecutor responsible for executing code received in messages (:py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` recommended. See example below)
|
||||
description (optional): The description of the agent.
|
||||
sources (optional): Check only messages from the specified agents for the code to execute.
|
||||
name (str): The name of the agent.
|
||||
code_executor (CodeExecutor): The code executor responsible for executing code received in messages
|
||||
(:py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` recommended. See example below)
|
||||
model_client (ChatCompletionClient, optional): The model client to use for inference and generating code.
|
||||
If not provided, the agent will only execute code blocks found in input messages.
|
||||
model_client_stream (bool, optional): If `True`, the model client will be used in streaming mode.
|
||||
:meth:`on_messages_stream` and :meth:`BaseChatAgent.run_stream` methods will
|
||||
also yield :class:`~autogen_agentchat.messages.ModelClientStreamingChunkEvent`
|
||||
messages as the model client produces chunks of response. Defaults to `False`.
|
||||
description (str, optional): The description of the agent. If not provided,
|
||||
:class:`~autogen_agentchat.agents.CodeExecutorAgent.DEFAULT_AGENT_DESCRIPTION` will be used.
|
||||
system_message (str, optional): The system message for the model. If provided, it will be prepended to the messages in the model context when making an inference. Set to `None` to disable.
|
||||
Defaults to :class:`~autogen_agentchat.agents.CodeExecutorAgent.DEFAULT_SYSTEM_MESSAGE`. This is only used if `model_client` is provided.
|
||||
sources (Sequence[str], optional): Check only messages from the specified agents for the code to execute.
|
||||
This is useful when the agent is part of a group chat and you want to limit the code execution to messages from specific agents.
|
||||
If not provided, all messages will be checked for code blocks.
|
||||
This is only used if `model_client` is not provided.
|
||||
|
||||
|
||||
.. note::
|
||||
|
@ -101,8 +164,126 @@ class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]):
|
|||
|
||||
asyncio.run(run_code_executor_agent())
|
||||
|
||||
In the following example, we show how to setup `CodeExecutorAgent` without `model_client` parameter for executing code blocks generated by other agents in a group chat using :py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor`
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import asyncio
|
||||
|
||||
from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor
|
||||
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
||||
|
||||
from autogen_agentchat.agents import AssistantAgent, CodeExecutorAgent
|
||||
from autogen_agentchat.conditions import MaxMessageTermination
|
||||
from autogen_agentchat.teams import RoundRobinGroupChat
|
||||
from autogen_agentchat.ui import Console
|
||||
|
||||
termination_condition = MaxMessageTermination(3)
|
||||
|
||||
|
||||
async def main() -> None:
|
||||
model_client = OpenAIChatCompletionClient(model="gpt-4o")
|
||||
|
||||
# define the Docker CLI Code Executor
|
||||
code_executor = DockerCommandLineCodeExecutor(work_dir="coding")
|
||||
|
||||
# start the execution container
|
||||
await code_executor.start()
|
||||
|
||||
code_executor_agent = CodeExecutorAgent("code_executor_agent", code_executor=code_executor)
|
||||
coder_agent = AssistantAgent("coder_agent", model_client=model_client)
|
||||
|
||||
groupchat = RoundRobinGroupChat(
|
||||
participants=[coder_agent, code_executor_agent], termination_condition=termination_condition
|
||||
)
|
||||
|
||||
task = "Write python code to print Hello World!"
|
||||
await Console(groupchat.run_stream(task=task))
|
||||
|
||||
# stop the execution container
|
||||
await code_executor.stop()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
---------- user ----------
|
||||
Write python code to print Hello World!
|
||||
---------- coder_agent ----------
|
||||
Certainly! Here's a simple Python code to print "Hello World!":
|
||||
|
||||
```python
|
||||
print("Hello World!")
|
||||
```
|
||||
|
||||
You can run this code in any Python environment to display the message.
|
||||
---------- code_executor_agent ----------
|
||||
Hello World!
|
||||
|
||||
In the following example, we show how to setup `CodeExecutorAgent` with `model_client` that can generate its own code without the help of any other agent and executing it in :py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor`
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import asyncio
|
||||
|
||||
from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor
|
||||
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
||||
|
||||
from autogen_agentchat.agents import CodeExecutorAgent
|
||||
from autogen_agentchat.conditions import TextMessageTermination
|
||||
from autogen_agentchat.ui import Console
|
||||
|
||||
termination_condition = TextMessageTermination("code_executor_agent")
|
||||
|
||||
|
||||
async def main() -> None:
|
||||
model_client = OpenAIChatCompletionClient(model="gpt-4o")
|
||||
|
||||
# define the Docker CLI Code Executor
|
||||
code_executor = DockerCommandLineCodeExecutor(work_dir="coding")
|
||||
|
||||
# start the execution container
|
||||
await code_executor.start()
|
||||
|
||||
code_executor_agent = CodeExecutorAgent(
|
||||
"code_executor_agent", code_executor=code_executor, model_client=model_client
|
||||
)
|
||||
|
||||
task = "Write python code to print Hello World!"
|
||||
await Console(code_executor_agent.run_stream(task=task))
|
||||
|
||||
# stop the execution container
|
||||
await code_executor.stop()
|
||||
|
||||
|
||||
asyncio.run(main())
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
---------- user ----------
|
||||
Write python code to print Hello World!
|
||||
---------- code_executor_agent ----------
|
||||
Certainly! Here is a simple Python code to print "Hello World!" to the console:
|
||||
|
||||
```python
|
||||
print("Hello World!")
|
||||
```
|
||||
|
||||
Let's execute it to confirm the output.
|
||||
---------- code_executor_agent ----------
|
||||
Hello World!
|
||||
|
||||
---------- code_executor_agent ----------
|
||||
The code has been executed successfully, and it printed "Hello World!" as expected. If you have any more requests or questions, feel free to ask!
|
||||
|
||||
"""
|
||||
|
||||
DEFAULT_TERMINAL_DESCRIPTION = "A computer terminal that performs no other action than running Python scripts (provided to it quoted in ```python code blocks), or sh shell scripts (provided to it quoted in ```sh code blocks)."
|
||||
DEFAULT_AGENT_DESCRIPTION = "A Code Execution Agent that generates and executes Python and shell scripts based on user instructions. Python code should be provided in ```python code blocks, and sh shell scripts should be provided in ```sh code blocks for execution. It ensures correctness, efficiency, and minimal errors while gracefully handling edge cases."
|
||||
DEFAULT_SYSTEM_MESSAGE = "You are a Code Execution Agent. Your role is to generate and execute Python code based on user instructions, ensuring correctness, efficiency, and minimal errors. Handle edge cases gracefully."
|
||||
NO_CODE_BLOCKS_FOUND_MESSAGE = "No code blocks found in the thread. Please provide at least one markdown-encoded code block to execute (i.e., quoting code in ```python or ```sh code blocks)."
|
||||
|
||||
component_config_schema = CodeExecutorAgentConfig
|
||||
component_provider_override = "autogen_agentchat.agents.CodeExecutorAgent"
|
||||
|
||||
|
@ -111,12 +292,38 @@ class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]):
|
|||
name: str,
|
||||
code_executor: CodeExecutor,
|
||||
*,
|
||||
description: str = "A computer terminal that performs no other action than running Python scripts (provided to it quoted in ```python code blocks), or sh shell scripts (provided to it quoted in ```sh code blocks).",
|
||||
model_client: ChatCompletionClient | None = None,
|
||||
model_context: ChatCompletionContext | None = None,
|
||||
model_client_stream: bool = False,
|
||||
description: str | None = None,
|
||||
system_message: str | None = DEFAULT_SYSTEM_MESSAGE,
|
||||
sources: Sequence[str] | None = None,
|
||||
) -> None:
|
||||
if description is None:
|
||||
if model_client is None:
|
||||
description = CodeExecutorAgent.DEFAULT_TERMINAL_DESCRIPTION
|
||||
else:
|
||||
description = CodeExecutorAgent.DEFAULT_AGENT_DESCRIPTION
|
||||
|
||||
super().__init__(name=name, description=description)
|
||||
self._code_executor = code_executor
|
||||
self._sources = sources
|
||||
self._model_client_stream = model_client_stream
|
||||
|
||||
self._model_client = None
|
||||
if model_client is not None:
|
||||
self._model_client = model_client
|
||||
|
||||
if model_context is not None:
|
||||
self._model_context = model_context
|
||||
else:
|
||||
self._model_context = UnboundedChatCompletionContext()
|
||||
|
||||
self._system_messaages: List[SystemMessage] = []
|
||||
if system_message is None:
|
||||
self._system_messages = []
|
||||
else:
|
||||
self._system_messages = [SystemMessage(content=system_message)]
|
||||
|
||||
@property
|
||||
def produced_message_types(self) -> Sequence[type[BaseChatMessage]]:
|
||||
|
@ -124,32 +331,159 @@ class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]):
|
|||
return (TextMessage,)
|
||||
|
||||
async def on_messages(self, messages: Sequence[BaseChatMessage], cancellation_token: CancellationToken) -> Response:
|
||||
async for message in self.on_messages_stream(messages, cancellation_token):
|
||||
if isinstance(message, Response):
|
||||
return message
|
||||
raise AssertionError("The stream should have returned the final result.")
|
||||
|
||||
async def on_messages_stream(
|
||||
self, messages: Sequence[BaseChatMessage], cancellation_token: CancellationToken
|
||||
) -> AsyncGenerator[BaseAgentEvent | BaseChatMessage | Response, None]:
|
||||
"""
|
||||
Process the incoming messages with the assistant agent and yield events/responses as they happen.
|
||||
"""
|
||||
|
||||
# Gather all relevant state here
|
||||
agent_name = self.name
|
||||
model_context = self._model_context
|
||||
system_messages = self._system_messages
|
||||
model_client = self._model_client
|
||||
model_client_stream = self._model_client_stream
|
||||
|
||||
execution_result: CodeExecutionEvent | None = None
|
||||
if model_client is None: # default behaviour for backward compatibility
|
||||
# execute generated code if present
|
||||
code_blocks: List[CodeBlock] = await self.extract_code_blocks_from_messages(messages)
|
||||
if not code_blocks:
|
||||
yield Response(
|
||||
chat_message=TextMessage(
|
||||
content=self.NO_CODE_BLOCKS_FOUND_MESSAGE,
|
||||
source=agent_name,
|
||||
)
|
||||
)
|
||||
return
|
||||
execution_result = await self.execute_code_block(code_blocks, cancellation_token)
|
||||
yield Response(chat_message=TextMessage(content=execution_result.to_text(), source=execution_result.source))
|
||||
return
|
||||
|
||||
# STEP 1: Add new user/handoff messages to the model context
|
||||
await self._add_messages_to_context(
|
||||
model_context=model_context,
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# STEP 2: Update model context with any relevant memory
|
||||
inner_messages: List[BaseAgentEvent | BaseChatMessage] = []
|
||||
for event_msg in await self._update_model_context_with_memory(
|
||||
memory=None,
|
||||
model_context=model_context,
|
||||
agent_name=agent_name,
|
||||
):
|
||||
inner_messages.append(event_msg)
|
||||
yield event_msg
|
||||
|
||||
# STEP 3: Run the first inference
|
||||
model_result = None
|
||||
async for inference_output in self._call_llm(
|
||||
model_client=model_client,
|
||||
model_client_stream=model_client_stream,
|
||||
system_messages=system_messages,
|
||||
model_context=model_context,
|
||||
agent_name=agent_name,
|
||||
cancellation_token=cancellation_token,
|
||||
):
|
||||
if isinstance(inference_output, CreateResult):
|
||||
model_result = inference_output
|
||||
else:
|
||||
# Streaming chunk event
|
||||
yield inference_output
|
||||
|
||||
assert model_result is not None, "No model result was produced."
|
||||
|
||||
# --- NEW: If the model produced a hidden "thought," yield it as an event ---
|
||||
if model_result.thought:
|
||||
thought_event = ThoughtEvent(content=model_result.thought, source=agent_name)
|
||||
yield thought_event
|
||||
inner_messages.append(thought_event)
|
||||
|
||||
# Add the assistant message to the model context (including thought if present)
|
||||
await model_context.add_message(
|
||||
AssistantMessage(
|
||||
content=model_result.content,
|
||||
source=agent_name,
|
||||
thought=getattr(model_result, "thought", None),
|
||||
)
|
||||
)
|
||||
|
||||
code_blocks = self._extract_markdown_code_blocks(str(model_result.content))
|
||||
|
||||
if not code_blocks:
|
||||
yield Response(
|
||||
chat_message=TextMessage(
|
||||
content=str(model_result.content),
|
||||
source=agent_name,
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
# NOTE: error: Argument of type "str | List[FunctionCall]" cannot be assigned to parameter "content" of type "str" in function "__init__".
|
||||
# For now we can assume that there are no FunctionCalls in the response because we are not providing tools to the CodeExecutorAgent.
|
||||
# So, for now we cast model_result.content to string
|
||||
inferred_text_message: CodeGenerationEvent = CodeGenerationEvent(
|
||||
content=str(model_result.content),
|
||||
code_blocks=code_blocks,
|
||||
source=agent_name,
|
||||
)
|
||||
|
||||
yield inferred_text_message
|
||||
|
||||
execution_result = await self.execute_code_block(inferred_text_message.code_blocks, cancellation_token)
|
||||
|
||||
# Add the code execution result to the model context
|
||||
await model_context.add_message(
|
||||
UserMessage(
|
||||
content=execution_result.result.output,
|
||||
source=agent_name,
|
||||
)
|
||||
)
|
||||
|
||||
yield execution_result
|
||||
|
||||
# always reflect on the execution result
|
||||
async for reflection_response in CodeExecutorAgent._reflect_on_code_block_results_flow(
|
||||
system_messages=system_messages,
|
||||
model_client=model_client,
|
||||
model_client_stream=model_client_stream,
|
||||
model_context=model_context,
|
||||
agent_name=agent_name,
|
||||
inner_messages=inner_messages,
|
||||
):
|
||||
yield reflection_response # last reflection_response is of type Response so it will finish the routine
|
||||
|
||||
async def extract_code_blocks_from_messages(self, messages: Sequence[BaseChatMessage]) -> List[CodeBlock]:
|
||||
# Extract code blocks from the messages.
|
||||
code_blocks: List[CodeBlock] = []
|
||||
for msg in messages:
|
||||
if isinstance(msg, TextMessage):
|
||||
if self._sources is None or msg.source in self._sources:
|
||||
if self._sources is None or msg.source in self._sources:
|
||||
if isinstance(msg, TextMessage):
|
||||
code_blocks.extend(self._extract_markdown_code_blocks(msg.content))
|
||||
if code_blocks:
|
||||
# Execute the code blocks.
|
||||
result = await self._code_executor.execute_code_blocks(code_blocks, cancellation_token=cancellation_token)
|
||||
# TODO: handle other message types if needed
|
||||
return code_blocks
|
||||
|
||||
code_output = result.output
|
||||
if code_output.strip() == "":
|
||||
# No output
|
||||
code_output = f"The script ran but produced no output to console. The POSIX exit code was: {result.exit_code}. If you were expecting output, consider revising the script to ensure content is printed to stdout."
|
||||
elif result.exit_code != 0:
|
||||
# Error
|
||||
code_output = f"The script ran, then exited with an error (POSIX exit code: {result.exit_code})\nIts output was:\n{result.output}"
|
||||
async def execute_code_block(
|
||||
self, code_blocks: List[CodeBlock], cancellation_token: CancellationToken
|
||||
) -> CodeExecutionEvent:
|
||||
# Execute the code blocks.
|
||||
result = await self._code_executor.execute_code_blocks(code_blocks, cancellation_token=cancellation_token)
|
||||
|
||||
return Response(chat_message=TextMessage(content=code_output, source=self.name))
|
||||
else:
|
||||
return Response(
|
||||
chat_message=TextMessage(
|
||||
content="No code blocks found in the thread. Please provide at least one markdown-encoded code block to execute (i.e., quoting code in ```python or ```sh code blocks).",
|
||||
source=self.name,
|
||||
)
|
||||
)
|
||||
if result.output.strip() == "":
|
||||
# No output
|
||||
result.output = f"The script ran but produced no output to console. The POSIX exit code was: {result.exit_code}. If you were expecting output, consider revising the script to ensure content is printed to stdout."
|
||||
elif result.exit_code != 0:
|
||||
# Error
|
||||
result.output = f"The script ran, then exited with an error (POSIX exit code: {result.exit_code})\nIts output was:\n{result.output}"
|
||||
|
||||
return CodeExecutionEvent(result=result, source=self.name)
|
||||
|
||||
async def on_reset(self, cancellation_token: CancellationToken) -> None:
|
||||
"""Its a no-op as the code executor agent has no mutable state."""
|
||||
|
@ -168,16 +502,164 @@ class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]):
|
|||
def _to_config(self) -> CodeExecutorAgentConfig:
|
||||
return CodeExecutorAgentConfig(
|
||||
name=self.name,
|
||||
model_client=(self._model_client.dump_component() if self._model_client is not None else None),
|
||||
code_executor=self._code_executor.dump_component(),
|
||||
description=self.description,
|
||||
sources=list(self._sources) if self._sources is not None else None,
|
||||
system_message=(
|
||||
self._system_messages[0].content
|
||||
if self._system_messages and isinstance(self._system_messages[0].content, str)
|
||||
else None
|
||||
),
|
||||
model_client_stream=self._model_client_stream,
|
||||
model_context=self._model_context.dump_component(),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_config(cls, config: CodeExecutorAgentConfig) -> Self:
|
||||
return cls(
|
||||
name=config.name,
|
||||
model_client=(
|
||||
ChatCompletionClient.load_component(config.model_client) if config.model_client is not None else None
|
||||
),
|
||||
code_executor=CodeExecutor.load_component(config.code_executor),
|
||||
description=config.description,
|
||||
sources=config.sources,
|
||||
system_message=config.system_message,
|
||||
model_client_stream=config.model_client_stream,
|
||||
model_context=None,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _get_compatible_context(model_client: ChatCompletionClient, messages: List[LLMMessage]) -> Sequence[LLMMessage]:
|
||||
"""Ensure that the messages are compatible with the underlying client, by removing images if needed."""
|
||||
if model_client.model_info["vision"]:
|
||||
return messages
|
||||
else:
|
||||
return remove_images(messages)
|
||||
|
||||
@classmethod
|
||||
async def _call_llm(
|
||||
cls,
|
||||
model_client: ChatCompletionClient,
|
||||
model_client_stream: bool,
|
||||
system_messages: List[SystemMessage],
|
||||
model_context: ChatCompletionContext,
|
||||
agent_name: str,
|
||||
cancellation_token: CancellationToken,
|
||||
) -> AsyncGenerator[Union[CreateResult, ModelClientStreamingChunkEvent], None]:
|
||||
"""
|
||||
Perform a model inference and yield either streaming chunk events or the final CreateResult.
|
||||
"""
|
||||
all_messages = await model_context.get_messages()
|
||||
llm_messages = cls._get_compatible_context(model_client=model_client, messages=system_messages + all_messages)
|
||||
|
||||
if model_client_stream:
|
||||
model_result: Optional[CreateResult] = None
|
||||
async for chunk in model_client.create_stream(
|
||||
llm_messages, tools=[], cancellation_token=cancellation_token
|
||||
):
|
||||
if isinstance(chunk, CreateResult):
|
||||
model_result = chunk
|
||||
elif isinstance(chunk, str):
|
||||
yield ModelClientStreamingChunkEvent(content=chunk, source=agent_name)
|
||||
else:
|
||||
raise RuntimeError(f"Invalid chunk type: {type(chunk)}")
|
||||
if model_result is None:
|
||||
raise RuntimeError("No final model result in streaming mode.")
|
||||
yield model_result
|
||||
else:
|
||||
model_result = await model_client.create(llm_messages, tools=[], cancellation_token=cancellation_token)
|
||||
yield model_result
|
||||
|
||||
@staticmethod
|
||||
async def _update_model_context_with_memory(
|
||||
memory: Optional[Sequence[Memory]],
|
||||
model_context: ChatCompletionContext,
|
||||
agent_name: str,
|
||||
) -> List[MemoryQueryEvent]:
|
||||
"""
|
||||
If memory modules are present, update the model context and return the events produced.
|
||||
"""
|
||||
events: List[MemoryQueryEvent] = []
|
||||
if memory:
|
||||
for mem in memory:
|
||||
update_context_result = await mem.update_context(model_context)
|
||||
if update_context_result and len(update_context_result.memories.results) > 0:
|
||||
memory_query_event_msg = MemoryQueryEvent(
|
||||
content=update_context_result.memories.results,
|
||||
source=agent_name,
|
||||
)
|
||||
events.append(memory_query_event_msg)
|
||||
return events
|
||||
|
||||
@staticmethod
|
||||
async def _add_messages_to_context(
|
||||
model_context: ChatCompletionContext,
|
||||
messages: Sequence[BaseChatMessage],
|
||||
) -> None:
|
||||
"""
|
||||
Add incoming messages to the model context.
|
||||
"""
|
||||
for msg in messages:
|
||||
if isinstance(msg, HandoffMessage):
|
||||
for llm_msg in msg.context:
|
||||
await model_context.add_message(llm_msg)
|
||||
await model_context.add_message(msg.to_model_message())
|
||||
|
||||
@classmethod
|
||||
async def _reflect_on_code_block_results_flow(
|
||||
cls,
|
||||
system_messages: List[SystemMessage],
|
||||
model_client: ChatCompletionClient,
|
||||
model_client_stream: bool,
|
||||
model_context: ChatCompletionContext,
|
||||
agent_name: str,
|
||||
inner_messages: List[BaseAgentEvent | BaseChatMessage],
|
||||
) -> AsyncGenerator[Response | ModelClientStreamingChunkEvent | ThoughtEvent, None]:
|
||||
"""
|
||||
If reflect_on_code_block_results=True, we do another inference based on tool results
|
||||
and yield the final text response (or streaming chunks).
|
||||
"""
|
||||
all_messages = system_messages + await model_context.get_messages()
|
||||
llm_messages = cls._get_compatible_context(model_client=model_client, messages=all_messages)
|
||||
|
||||
reflection_result: Optional[CreateResult] = None
|
||||
|
||||
if model_client_stream:
|
||||
async for chunk in model_client.create_stream(llm_messages):
|
||||
if isinstance(chunk, CreateResult):
|
||||
reflection_result = chunk
|
||||
elif isinstance(chunk, str):
|
||||
yield ModelClientStreamingChunkEvent(content=chunk, source=agent_name)
|
||||
else:
|
||||
raise RuntimeError(f"Invalid chunk type: {type(chunk)}")
|
||||
else:
|
||||
reflection_result = await model_client.create(llm_messages)
|
||||
|
||||
if not reflection_result or not isinstance(reflection_result.content, str):
|
||||
raise RuntimeError("Reflect on tool use produced no valid text response.")
|
||||
|
||||
# --- NEW: If the reflection produced a thought, yield it ---
|
||||
if reflection_result.thought:
|
||||
thought_event = ThoughtEvent(content=reflection_result.thought, source=agent_name)
|
||||
yield thought_event
|
||||
inner_messages.append(thought_event)
|
||||
|
||||
# Add to context (including thought if present)
|
||||
await model_context.add_message(
|
||||
AssistantMessage(
|
||||
content=reflection_result.content,
|
||||
source=agent_name,
|
||||
thought=getattr(reflection_result, "thought", None),
|
||||
)
|
||||
)
|
||||
|
||||
yield Response(
|
||||
chat_message=TextMessage(
|
||||
content=reflection_result.content,
|
||||
source=agent_name,
|
||||
models_usage=reflection_result.usage,
|
||||
),
|
||||
inner_messages=inner_messages,
|
||||
)
|
||||
|
|
|
@ -8,8 +8,14 @@ from abc import ABC, abstractmethod
|
|||
from typing import Any, Dict, Generic, List, Literal, Mapping, TypeVar
|
||||
|
||||
from autogen_core import FunctionCall, Image
|
||||
from autogen_core.code_executor import CodeBlock, CodeResult
|
||||
from autogen_core.memory import MemoryContent
|
||||
from autogen_core.models import FunctionExecutionResult, LLMMessage, RequestUsage, UserMessage
|
||||
from autogen_core.models import (
|
||||
FunctionExecutionResult,
|
||||
LLMMessage,
|
||||
RequestUsage,
|
||||
UserMessage,
|
||||
)
|
||||
from pydantic import BaseModel, Field, computed_field
|
||||
from typing_extensions import Annotated, Self
|
||||
|
||||
|
@ -96,7 +102,8 @@ class BaseChatMessage(BaseMessage, ABC):
|
|||
@abstractmethod
|
||||
def to_model_message(self) -> UserMessage:
|
||||
"""Convert the message content to a :class:`~autogen_core.models.UserMessage`
|
||||
for use with model client, e.g., :class:`~autogen_core.models.ChatCompletionClient`."""
|
||||
for use with model client, e.g., :class:`~autogen_core.models.ChatCompletionClient`.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
@ -282,6 +289,28 @@ class ToolCallRequestEvent(BaseAgentEvent):
|
|||
return str(self.content)
|
||||
|
||||
|
||||
class CodeGenerationEvent(BaseAgentEvent):
|
||||
"""An event signaling code generation for execution."""
|
||||
|
||||
content: str
|
||||
"The complete content as string."
|
||||
|
||||
type: Literal["CodeGenerationEvent"] = "CodeGenerationEvent"
|
||||
|
||||
code_blocks: List[CodeBlock]
|
||||
|
||||
def to_text(self) -> str:
|
||||
return self.content
|
||||
|
||||
|
||||
class CodeExecutionEvent(BaseAgentEvent):
|
||||
type: Literal["CodeExecutionEvent"] = "CodeExecutionEvent"
|
||||
result: CodeResult
|
||||
|
||||
def to_text(self) -> str:
|
||||
return self.result.output
|
||||
|
||||
|
||||
class ToolCallExecutionEvent(BaseAgentEvent):
|
||||
"""An event signaling the execution of tool calls."""
|
||||
|
||||
|
@ -369,6 +398,8 @@ class MessageFactory:
|
|||
self._message_types[UserInputRequestedEvent.__name__] = UserInputRequestedEvent
|
||||
self._message_types[ModelClientStreamingChunkEvent.__name__] = ModelClientStreamingChunkEvent
|
||||
self._message_types[ThoughtEvent.__name__] = ThoughtEvent
|
||||
self._message_types[CodeGenerationEvent.__name__] = CodeGenerationEvent
|
||||
self._message_types[CodeExecutionEvent.__name__] = CodeExecutionEvent
|
||||
|
||||
def is_registered(self, message_type: type[BaseAgentEvent | BaseChatMessage]) -> bool:
|
||||
"""Check if a message type is registered with the factory."""
|
||||
|
@ -409,7 +440,8 @@ class MessageFactory:
|
|||
|
||||
|
||||
ChatMessage = Annotated[
|
||||
TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, Field(discriminator="type")
|
||||
TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
"""The union type of all built-in concrete subclasses of :class:`BaseChatMessage`.
|
||||
It does not include :class:`StructuredMessage` types."""
|
||||
|
@ -420,7 +452,9 @@ AgentEvent = Annotated[
|
|||
| MemoryQueryEvent
|
||||
| UserInputRequestedEvent
|
||||
| ModelClientStreamingChunkEvent
|
||||
| ThoughtEvent,
|
||||
| ThoughtEvent
|
||||
| CodeGenerationEvent
|
||||
| CodeExecutionEvent,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
"""The union type of all built-in concrete subclasses of :class:`BaseAgentEvent`."""
|
||||
|
@ -446,4 +480,6 @@ __all__ = [
|
|||
"ModelClientStreamingChunkEvent",
|
||||
"ThoughtEvent",
|
||||
"MessageFactory",
|
||||
"CodeGenerationEvent",
|
||||
"CodeExecutionEvent",
|
||||
]
|
||||
|
|
|
@ -205,8 +205,6 @@ class SelectorGroupChatManager(BaseGroupChatManager):
|
|||
if self._streaming:
|
||||
message: CreateResult | str = ""
|
||||
async for _message in self._model_client.create_stream(messages=select_speaker_messages):
|
||||
if isinstance(_message, LLMStreamEndEvent):
|
||||
break
|
||||
message = _message
|
||||
if isinstance(message, CreateResult):
|
||||
response = message
|
||||
|
|
|
@ -1,9 +1,14 @@
|
|||
import pytest
|
||||
from autogen_agentchat.agents import CodeExecutorAgent
|
||||
from autogen_agentchat.base import Response
|
||||
from autogen_agentchat.messages import TextMessage
|
||||
from autogen_agentchat.messages import (
|
||||
CodeExecutionEvent,
|
||||
CodeGenerationEvent,
|
||||
TextMessage,
|
||||
)
|
||||
from autogen_core import CancellationToken
|
||||
from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor
|
||||
from autogen_ext.models.replay import ReplayChatCompletionClient
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
@ -34,6 +39,98 @@ print("%0.3f" % (square_root,))
|
|||
assert response.chat_message.source == "code_executor"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_code_generation_and_execution_with_model_client() -> None:
|
||||
"""
|
||||
Tests the code generation, execution and reflection pipeline using a model client.
|
||||
"""
|
||||
|
||||
language = "python"
|
||||
code = 'import math\n\nnumber = 42\nsquare_root = math.sqrt(number)\nprint("%0.3f" % (square_root,))'
|
||||
|
||||
model_client = ReplayChatCompletionClient(
|
||||
[f"Here is the code to calculate the square root of 42:\n```{language}\n{code}```".strip(), "TERMINATE"]
|
||||
)
|
||||
|
||||
agent = CodeExecutorAgent(
|
||||
name="code_executor_agent", code_executor=LocalCommandLineCodeExecutor(), model_client=model_client
|
||||
)
|
||||
|
||||
messages = [
|
||||
TextMessage(
|
||||
content="Generate python code to calculate the square root of 42",
|
||||
source="assistant",
|
||||
)
|
||||
]
|
||||
|
||||
code_generation_event: CodeGenerationEvent | None = None
|
||||
code_execution_event: CodeExecutionEvent | None = None
|
||||
response: Response | None = None
|
||||
|
||||
async for message in agent.on_messages_stream(messages, CancellationToken()):
|
||||
if isinstance(message, CodeGenerationEvent):
|
||||
code_block = message.code_blocks[0]
|
||||
assert code_block.code == code, "Code block does not match"
|
||||
assert code_block.language == language, "Language does not match"
|
||||
code_generation_event = message
|
||||
elif isinstance(message, CodeExecutionEvent):
|
||||
assert message.to_text().strip() == "6.481", f"Expected '6.481', got: {message.to_text().strip()}"
|
||||
code_execution_event = message
|
||||
elif isinstance(message, Response):
|
||||
assert isinstance(
|
||||
message.chat_message, TextMessage
|
||||
), f"Expected TextMessage, got: {type(message.chat_message)}"
|
||||
assert (
|
||||
message.chat_message.source == "code_executor_agent"
|
||||
), f"Expected source 'code_executor_agent', got: {message.chat_message.source}"
|
||||
response = message
|
||||
else:
|
||||
raise AssertionError(f"Unexpected message type: {type(message)}")
|
||||
|
||||
assert code_generation_event is not None, "Code generation event was not received"
|
||||
assert code_execution_event is not None, "Code execution event was not received"
|
||||
assert response is not None, "Response was not received"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_no_code_response_with_model_client() -> None:
|
||||
"""
|
||||
Tests agent behavior when the model client responds with non-code content.
|
||||
"""
|
||||
|
||||
model_client = ReplayChatCompletionClient(["The capital of France is Paris.", "TERMINATE"])
|
||||
|
||||
agent = CodeExecutorAgent(
|
||||
name="code_executor_agent", code_executor=LocalCommandLineCodeExecutor(), model_client=model_client
|
||||
)
|
||||
|
||||
messages = [
|
||||
TextMessage(
|
||||
content="What is the capital of France?",
|
||||
source="assistant",
|
||||
)
|
||||
]
|
||||
|
||||
response: Response | None = None
|
||||
|
||||
async for message in agent.on_messages_stream(messages, CancellationToken()):
|
||||
if isinstance(message, Response):
|
||||
assert isinstance(
|
||||
message.chat_message, TextMessage
|
||||
), f"Expected TextMessage, got: {type(message.chat_message)}"
|
||||
assert (
|
||||
message.chat_message.source == "code_executor_agent"
|
||||
), f"Expected source 'code_executor_agent', got: {message.chat_message.source}"
|
||||
assert (
|
||||
message.chat_message.content.strip() == "The capital of France is Paris."
|
||||
), f"Expected 'The capital of France is Paris.', got: {message.chat_message.content.strip()}"
|
||||
response = message
|
||||
else:
|
||||
raise AssertionError(f"Unexpected message type: {type(message)}")
|
||||
|
||||
assert response is not None, "Response was not received"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_code_execution_error() -> None:
|
||||
"""Test basic code execution"""
|
||||
|
@ -178,3 +275,22 @@ async def test_code_execution_agent_serialization() -> None:
|
|||
|
||||
assert isinstance(deserialized_agent, CodeExecutorAgent)
|
||||
assert deserialized_agent.name == "code_executor"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_code_execution_agent_serialization_with_model_client() -> None:
|
||||
"""Test agent config serialization"""
|
||||
|
||||
model_client = ReplayChatCompletionClient(["The capital of France is Paris.", "TERMINATE"])
|
||||
|
||||
agent = CodeExecutorAgent(
|
||||
name="code_executor_agent", code_executor=LocalCommandLineCodeExecutor(), model_client=model_client
|
||||
)
|
||||
|
||||
# Serialize and deserialize the agent
|
||||
serialized_agent = agent.dump_component()
|
||||
deserialized_agent = CodeExecutorAgent.load_component(serialized_agent)
|
||||
|
||||
assert isinstance(deserialized_agent, CodeExecutorAgent)
|
||||
assert deserialized_agent.name == "code_executor_agent"
|
||||
assert deserialized_agent._model_client is not None # type: ignore
|
||||
|
|
|
@ -291,7 +291,7 @@
|
|||
"A --- B\n",
|
||||
"| |\n",
|
||||
"| |\n",
|
||||
"C --- D\n",
|
||||
"D --- C\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Each solver agent is connected to two other solver agents. \n",
|
||||
|
|
|
@ -158,7 +158,7 @@
|
|||
"source": [
|
||||
"from autogen_core import AgentId, SingleThreadedAgentRuntime\n",
|
||||
"\n",
|
||||
"# Create an local embedded runtime.\n",
|
||||
"# Create a local embedded runtime.\n",
|
||||
"runtime = SingleThreadedAgentRuntime()\n",
|
||||
"\n",
|
||||
"# Register the modifier and checker agents by providing\n",
|
||||
|
|
|
@ -4,7 +4,7 @@ build-backend = "hatchling.build"
|
|||
|
||||
[project]
|
||||
name = "autogen-core"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
license = {file = "LICENSE-CODE"}
|
||||
description = "Foundational interfaces and agent runtime implementation for AutoGen"
|
||||
readme = "README.md"
|
||||
|
@ -69,7 +69,7 @@ dev = [
|
|||
"pygments",
|
||||
"sphinxext-rediraffe",
|
||||
|
||||
"autogen_ext==0.5.1",
|
||||
"autogen_ext==0.5.2",
|
||||
|
||||
# Documentation tooling
|
||||
"diskcache",
|
||||
|
|
|
@ -4,7 +4,7 @@ build-backend = "hatchling.build"
|
|||
|
||||
[project]
|
||||
name = "autogen-ext"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
license = {file = "LICENSE-CODE"}
|
||||
description = "AutoGen extensions library"
|
||||
readme = "README.md"
|
||||
|
@ -15,7 +15,7 @@ classifiers = [
|
|||
"Operating System :: OS Independent",
|
||||
]
|
||||
dependencies = [
|
||||
"autogen-core==0.5.1",
|
||||
"autogen-core==0.5.2",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
@ -31,7 +31,7 @@ docker = ["docker~=7.0", "asyncio_atexit>=1.0.1"]
|
|||
ollama = ["ollama>=0.4.7", "tiktoken>=0.8.0"]
|
||||
openai = ["openai>=1.66.5", "tiktoken>=0.8.0", "aiofiles"]
|
||||
file-surfer = [
|
||||
"autogen-agentchat==0.5.1",
|
||||
"autogen-agentchat==0.5.2",
|
||||
"magika>=0.6.1rc2",
|
||||
"markitdown[all]~=0.1.0a3",
|
||||
]
|
||||
|
@ -43,21 +43,21 @@ llama-cpp = [
|
|||
graphrag = ["graphrag>=1.0.1"]
|
||||
chromadb = ["chromadb>=1.0.0"]
|
||||
web-surfer = [
|
||||
"autogen-agentchat==0.5.1",
|
||||
"autogen-agentchat==0.5.2",
|
||||
"playwright>=1.48.0",
|
||||
"pillow>=11.0.0",
|
||||
"magika>=0.6.1rc2",
|
||||
"markitdown[all]~=0.1.0a3",
|
||||
]
|
||||
magentic-one = [
|
||||
"autogen-agentchat==0.5.1",
|
||||
"autogen-agentchat==0.5.2",
|
||||
"magika>=0.6.1rc2",
|
||||
"markitdown[all]~=0.1.0a3",
|
||||
"playwright>=1.48.0",
|
||||
"pillow>=11.0.0",
|
||||
]
|
||||
video-surfer = [
|
||||
"autogen-agentchat==0.5.1",
|
||||
"autogen-agentchat==0.5.2",
|
||||
"opencv-python>=4.5",
|
||||
"ffmpeg-python",
|
||||
"openai-whisper",
|
||||
|
@ -137,7 +137,7 @@ rich = ["rich>=13.9.4"]
|
|||
|
||||
mcp = [
|
||||
"mcp>=1.6.0",
|
||||
"json-schema-to-pydantic>=0.2.3"
|
||||
"json-schema-to-pydantic>=0.2.4"
|
||||
]
|
||||
|
||||
[tool.hatch.build.targets.wheel]
|
||||
|
|
|
@ -32,9 +32,9 @@ dependencies = [
|
|||
"loguru",
|
||||
"pyyaml",
|
||||
"html2text",
|
||||
"autogen-core>=0.4.9.2,<0.5",
|
||||
"autogen-agentchat>=0.4.9.2,<0.5",
|
||||
"autogen-ext[magentic-one, openai, azure]>=0.4.2,<0.5",
|
||||
"autogen-core>=0.4.9.2,<0.6",
|
||||
"autogen-agentchat>=0.4.9.2,<0.6",
|
||||
"autogen-ext[magentic-one, openai, azure]>=0.4.2,<0.6",
|
||||
"anthropic",
|
||||
]
|
||||
optional-dependencies = {web = ["fastapi", "uvicorn"], database = ["psycopg"]}
|
||||
|
|
|
@ -452,7 +452,7 @@ wheels = [
|
|||
|
||||
[[package]]
|
||||
name = "autogen-agentchat"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
source = { editable = "packages/autogen-agentchat" }
|
||||
dependencies = [
|
||||
{ name = "autogen-core" },
|
||||
|
@ -463,7 +463,7 @@ requires-dist = [{ name = "autogen-core", editable = "packages/autogen-core" }]
|
|||
|
||||
[[package]]
|
||||
name = "autogen-core"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
source = { editable = "packages/autogen-core" }
|
||||
dependencies = [
|
||||
{ name = "jsonref" },
|
||||
|
@ -582,7 +582,7 @@ dev = [
|
|||
|
||||
[[package]]
|
||||
name = "autogen-ext"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
source = { editable = "packages/autogen-ext" }
|
||||
dependencies = [
|
||||
{ name = "autogen-core" },
|
||||
|
@ -745,7 +745,7 @@ requires-dist = [
|
|||
{ name = "httpx", marker = "extra == 'http-tool'", specifier = ">=0.27.0" },
|
||||
{ name = "ipykernel", marker = "extra == 'jupyter-executor'", specifier = ">=6.29.5" },
|
||||
{ name = "json-schema-to-pydantic", marker = "extra == 'http-tool'", specifier = ">=0.2.0" },
|
||||
{ name = "json-schema-to-pydantic", marker = "extra == 'mcp'", specifier = ">=0.2.3" },
|
||||
{ name = "json-schema-to-pydantic", marker = "extra == 'mcp'", specifier = ">=0.2.4" },
|
||||
{ name = "langchain-core", marker = "extra == 'langchain'", specifier = "~=0.3.3" },
|
||||
{ name = "llama-cpp-python", marker = "extra == 'llama-cpp'", specifier = ">=0.3.8" },
|
||||
{ name = "magika", marker = "extra == 'file-surfer'", specifier = ">=0.6.1rc2" },
|
||||
|
@ -3044,14 +3044,14 @@ wheels = [
|
|||
|
||||
[[package]]
|
||||
name = "json-schema-to-pydantic"
|
||||
version = "0.2.3"
|
||||
version = "0.2.4"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "pydantic" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/f2/8d/da0e791baf63a957ff67e0706d59386b72ab87858e616b6fcfc9b58cd910/json_schema_to_pydantic-0.2.3.tar.gz", hash = "sha256:c76db1f6001996895328e7aa174aae201d85d1f5e79d592c272ea03c8586e453", size = 35305 }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/0e/5a/82ce52917b4b021e739dc02384bb3257b5ddd04e40211eacdc32c88bdda5/json_schema_to_pydantic-0.2.4.tar.gz", hash = "sha256:c24060aa7694ae7be0465ce11339a6d1cc8a72cd8f4378c889d19722fa7da1ee", size = 37816 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4a/55/81bbfbc806aab8dc4a21ad1c9c7fd61f94f2b4076ea64f1730a0368831a2/json_schema_to_pydantic-0.2.3-py3-none-any.whl", hash = "sha256:fe0c04357aa8d27ad5a46e54c2d6a8f35ca6c10b36e76a95c39827e38397f427", size = 11699 },
|
||||
{ url = "https://files.pythonhosted.org/packages/2e/86/35135e8e4b1da50e6e8ed2afcacce589e576f3460c892d5e616390a4eb71/json_schema_to_pydantic-0.2.4-py3-none-any.whl", hash = "sha256:5c46675df0ab2685d92ed805da38348a34488654cb95ceb1a564dda23dcc3a89", size = 11940 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
Loading…
Reference in New Issue