Define AgentEvent, rename tool call messages to events. (#4750)

* Define AgentEvent, rename tool call messages to events.

* update doc

* Use AgentEvent | ChatMessage to replace AgentMessage

* Update docs

* update deprecation notice

* remove unused

* fix doc

* format
This commit is contained in:
Eric Zhu 2024-12-18 14:09:19 -08:00 committed by GitHub
parent 7a7eb7449a
commit e902e94b14
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
34 changed files with 3642 additions and 3615 deletions

View File

@ -21,13 +21,13 @@ from .. import EVENT_LOGGER_NAME
from ..base import Handoff as HandoffBase from ..base import Handoff as HandoffBase
from ..base import Response from ..base import Response
from ..messages import ( from ..messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallExecutionEvent,
ToolCallResultMessage, ToolCallRequestEvent,
) )
from ..state import AssistantAgentState from ..state import AssistantAgentState
from ._base_chat_agent import BaseChatAgent from ._base_chat_agent import BaseChatAgent
@ -292,7 +292,7 @@ class AssistantAgent(BaseChatAgent):
async def on_messages_stream( async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
# Add messages to the model context. # Add messages to the model context.
for msg in messages: for msg in messages:
if isinstance(msg, MultiModalMessage) and self._model_client.capabilities["vision"] is False: if isinstance(msg, MultiModalMessage) and self._model_client.capabilities["vision"] is False:
@ -300,7 +300,7 @@ class AssistantAgent(BaseChatAgent):
self._model_context.append(UserMessage(content=msg.content, source=msg.source)) self._model_context.append(UserMessage(content=msg.content, source=msg.source))
# Inner messages. # Inner messages.
inner_messages: List[AgentMessage] = [] inner_messages: List[AgentEvent | ChatMessage] = []
# Generate an inference result based on the current model context. # Generate an inference result based on the current model context.
llm_messages = self._system_messages + self._model_context llm_messages = self._system_messages + self._model_context
@ -321,7 +321,7 @@ class AssistantAgent(BaseChatAgent):
# Process tool calls. # Process tool calls.
assert isinstance(result.content, list) and all(isinstance(item, FunctionCall) for item in result.content) assert isinstance(result.content, list) and all(isinstance(item, FunctionCall) for item in result.content)
tool_call_msg = ToolCallMessage(content=result.content, source=self.name, models_usage=result.usage) tool_call_msg = ToolCallRequestEvent(content=result.content, source=self.name, models_usage=result.usage)
event_logger.debug(tool_call_msg) event_logger.debug(tool_call_msg)
# Add the tool call message to the output. # Add the tool call message to the output.
inner_messages.append(tool_call_msg) inner_messages.append(tool_call_msg)
@ -329,7 +329,7 @@ class AssistantAgent(BaseChatAgent):
# Execute the tool calls. # Execute the tool calls.
results = await asyncio.gather(*[self._execute_tool_call(call, cancellation_token) for call in result.content]) results = await asyncio.gather(*[self._execute_tool_call(call, cancellation_token) for call in result.content])
tool_call_result_msg = ToolCallResultMessage(content=results, source=self.name) tool_call_result_msg = ToolCallExecutionEvent(content=results, source=self.name)
event_logger.debug(tool_call_result_msg) event_logger.debug(tool_call_result_msg)
self._model_context.append(FunctionExecutionResultMessage(content=results)) self._model_context.append(FunctionExecutionResultMessage(content=results))
inner_messages.append(tool_call_result_msg) inner_messages.append(tool_call_result_msg)

View File

@ -5,7 +5,7 @@ from autogen_core import CancellationToken
from ..base import ChatAgent, Response, TaskResult from ..base import ChatAgent, Response, TaskResult
from ..messages import ( from ..messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
TextMessage, TextMessage,
) )
@ -58,7 +58,7 @@ class BaseChatAgent(ChatAgent, ABC):
async def on_messages_stream( async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
"""Handles incoming messages and returns a stream of messages and """Handles incoming messages and returns a stream of messages and
and the final item is the response. The base implementation in and the final item is the response. The base implementation in
:class:`BaseChatAgent` simply calls :meth:`on_messages` and yields :class:`BaseChatAgent` simply calls :meth:`on_messages` and yields
@ -89,7 +89,7 @@ class BaseChatAgent(ChatAgent, ABC):
if cancellation_token is None: if cancellation_token is None:
cancellation_token = CancellationToken() cancellation_token = CancellationToken()
input_messages: List[ChatMessage] = [] input_messages: List[ChatMessage] = []
output_messages: List[AgentMessage] = [] output_messages: List[AgentEvent | ChatMessage] = []
if task is None: if task is None:
pass pass
elif isinstance(task, str): elif isinstance(task, str):
@ -119,13 +119,13 @@ class BaseChatAgent(ChatAgent, ABC):
*, *,
task: str | ChatMessage | List[ChatMessage] | None = None, task: str | ChatMessage | List[ChatMessage] | None = None,
cancellation_token: CancellationToken | None = None, cancellation_token: CancellationToken | None = None,
) -> AsyncGenerator[AgentMessage | TaskResult, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | TaskResult, None]:
"""Run the agent with the given task and return a stream of messages """Run the agent with the given task and return a stream of messages
and the final task result as the last item in the stream.""" and the final task result as the last item in the stream."""
if cancellation_token is None: if cancellation_token is None:
cancellation_token = CancellationToken() cancellation_token = CancellationToken()
input_messages: List[ChatMessage] = [] input_messages: List[ChatMessage] = []
output_messages: List[AgentMessage] = [] output_messages: List[AgentEvent | ChatMessage] = []
if task is None: if task is None:
pass pass
elif isinstance(task, str): elif isinstance(task, str):

View File

@ -8,7 +8,7 @@ from autogen_agentchat.state import SocietyOfMindAgentState
from ..base import TaskResult, Team from ..base import TaskResult, Team
from ..messages import ( from ..messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
@ -119,13 +119,13 @@ class SocietyOfMindAgent(BaseChatAgent):
async def on_messages_stream( async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
# Prepare the task for the team of agents. # Prepare the task for the team of agents.
task = list(messages) task = list(messages)
# Run the team of agents. # Run the team of agents.
result: TaskResult | None = None result: TaskResult | None = None
inner_messages: List[AgentMessage] = [] inner_messages: List[AgentEvent | ChatMessage] = []
count = 0 count = 0
async for inner_msg in self._team.run_stream(task=task, cancellation_token=cancellation_token): async for inner_msg in self._team.run_stream(task=task, cancellation_token=cancellation_token):
if isinstance(inner_msg, TaskResult): if isinstance(inner_msg, TaskResult):

View File

@ -3,7 +3,7 @@ from typing import Any, AsyncGenerator, List, Mapping, Protocol, Sequence, runti
from autogen_core import CancellationToken from autogen_core import CancellationToken
from ..messages import AgentMessage, ChatMessage from ..messages import AgentEvent, ChatMessage
from ._task import TaskRunner from ._task import TaskRunner
@ -14,7 +14,7 @@ class Response:
chat_message: ChatMessage chat_message: ChatMessage
"""A chat message produced by the agent as the response.""" """A chat message produced by the agent as the response."""
inner_messages: List[AgentMessage] | None = None inner_messages: List[AgentEvent | ChatMessage] | None = None
"""Inner messages produced by the agent.""" """Inner messages produced by the agent."""
@ -46,7 +46,7 @@ class ChatAgent(TaskRunner, Protocol):
def on_messages_stream( def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
"""Handles incoming messages and returns a stream of inner messages and """Handles incoming messages and returns a stream of inner messages and
and the final item is the response.""" and the final item is the response."""
... ...

View File

@ -3,14 +3,14 @@ from typing import AsyncGenerator, List, Protocol, Sequence
from autogen_core import CancellationToken from autogen_core import CancellationToken
from ..messages import AgentMessage, ChatMessage from ..messages import AgentEvent, ChatMessage
@dataclass @dataclass
class TaskResult: class TaskResult:
"""Result of running a task.""" """Result of running a task."""
messages: Sequence[AgentMessage] messages: Sequence[AgentEvent | ChatMessage]
"""Messages produced by the task.""" """Messages produced by the task."""
stop_reason: str | None = None stop_reason: str | None = None
@ -38,7 +38,7 @@ class TaskRunner(Protocol):
*, *,
task: str | ChatMessage | List[ChatMessage] | None = None, task: str | ChatMessage | List[ChatMessage] | None = None,
cancellation_token: CancellationToken | None = None, cancellation_token: CancellationToken | None = None,
) -> AsyncGenerator[AgentMessage | TaskResult, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | TaskResult, None]:
"""Run the task and produces a stream of messages and the final result """Run the task and produces a stream of messages and the final result
:class:`TaskResult` as the last item in the stream. :class:`TaskResult` as the last item in the stream.

View File

@ -2,7 +2,7 @@ import asyncio
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Sequence from typing import List, Sequence
from ..messages import AgentMessage, StopMessage from ..messages import AgentEvent, ChatMessage, StopMessage
class TerminatedException(BaseException): ... class TerminatedException(BaseException): ...
@ -50,7 +50,7 @@ class TerminationCondition(ABC):
... ...
@abstractmethod @abstractmethod
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
"""Check if the conversation should be terminated based on the messages received """Check if the conversation should be terminated based on the messages received
since the last time the condition was called. since the last time the condition was called.
Return a StopMessage if the conversation should be terminated, or None otherwise. Return a StopMessage if the conversation should be terminated, or None otherwise.
@ -88,7 +88,7 @@ class _AndTerminationCondition(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return all(condition.terminated for condition in self._conditions) return all(condition.terminated for condition in self._conditions)
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self.terminated: if self.terminated:
raise TerminatedException("Termination condition has already been reached.") raise TerminatedException("Termination condition has already been reached.")
# Check all remaining conditions. # Check all remaining conditions.
@ -120,7 +120,7 @@ class _OrTerminationCondition(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return any(condition.terminated for condition in self._conditions) return any(condition.terminated for condition in self._conditions)
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self.terminated: if self.terminated:
raise RuntimeError("Termination condition has already been reached") raise RuntimeError("Termination condition has already been reached")
stop_messages = await asyncio.gather(*[condition(messages) for condition in self._conditions]) stop_messages = await asyncio.gather(*[condition(messages) for condition in self._conditions])

View File

@ -2,7 +2,7 @@ import time
from typing import List, Sequence from typing import List, Sequence
from ..base import TerminatedException, TerminationCondition from ..base import TerminatedException, TerminationCondition
from ..messages import AgentMessage, HandoffMessage, MultiModalMessage, StopMessage, TextMessage from ..messages import AgentEvent, ChatMessage, HandoffMessage, MultiModalMessage, StopMessage, TextMessage
class StopMessageTermination(TerminationCondition): class StopMessageTermination(TerminationCondition):
@ -15,7 +15,7 @@ class StopMessageTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._terminated return self._terminated
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
for message in messages: for message in messages:
@ -43,7 +43,7 @@ class MaxMessageTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._message_count >= self._max_messages return self._message_count >= self._max_messages
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self.terminated: if self.terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
self._message_count += len(messages) self._message_count += len(messages)
@ -73,7 +73,7 @@ class TextMentionTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._terminated return self._terminated
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
for message in messages: for message in messages:
@ -128,7 +128,7 @@ class TokenUsageTermination(TerminationCondition):
or (self._max_completion_token is not None and self._completion_token_count >= self._max_completion_token) or (self._max_completion_token is not None and self._completion_token_count >= self._max_completion_token)
) )
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self.terminated: if self.terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
for message in messages: for message in messages:
@ -163,7 +163,7 @@ class HandoffTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._terminated return self._terminated
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
for message in messages: for message in messages:
@ -194,7 +194,7 @@ class TimeoutTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._terminated return self._terminated
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
@ -242,7 +242,7 @@ class ExternalTermination(TerminationCondition):
"""Set the termination condition to terminated.""" """Set the termination condition to terminated."""
self._setted = True self._setted = True
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
if self._setted: if self._setted:
@ -273,7 +273,7 @@ class SourceMatchTermination(TerminationCondition):
def terminated(self) -> bool: def terminated(self) -> bool:
return self._terminated return self._terminated
async def __call__(self, messages: Sequence[AgentMessage]) -> StopMessage | None: async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None:
if self._terminated: if self._terminated:
raise TerminatedException("Termination condition has already been reached") raise TerminatedException("Termination condition has already been reached")
if not messages: if not messages:

View File

@ -9,7 +9,7 @@ from typing import List, Literal
from autogen_core import FunctionCall, Image from autogen_core import FunctionCall, Image
from autogen_core.models import FunctionExecutionResult, RequestUsage from autogen_core.models import FunctionExecutionResult, RequestUsage
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Annotated from typing_extensions import Annotated, deprecated
class BaseMessage(BaseModel): class BaseMessage(BaseModel):
@ -63,6 +63,7 @@ class HandoffMessage(BaseMessage):
type: Literal["HandoffMessage"] = "HandoffMessage" type: Literal["HandoffMessage"] = "HandoffMessage"
@deprecated("Will be removed in 0.4.0, use ToolCallRequestEvent instead.")
class ToolCallMessage(BaseMessage): class ToolCallMessage(BaseMessage):
"""A message signaling the use of tools.""" """A message signaling the use of tools."""
@ -72,6 +73,7 @@ class ToolCallMessage(BaseMessage):
type: Literal["ToolCallMessage"] = "ToolCallMessage" type: Literal["ToolCallMessage"] = "ToolCallMessage"
@deprecated("Will be removed in 0.4.0, use ToolCallExecutionEvent instead.")
class ToolCallResultMessage(BaseMessage): class ToolCallResultMessage(BaseMessage):
"""A message signaling the results of tool calls.""" """A message signaling the results of tool calls."""
@ -81,15 +83,37 @@ class ToolCallResultMessage(BaseMessage):
type: Literal["ToolCallResultMessage"] = "ToolCallResultMessage" type: Literal["ToolCallResultMessage"] = "ToolCallResultMessage"
class ToolCallRequestEvent(BaseMessage):
"""An event signaling a request to use tools."""
content: List[FunctionCall]
"""The tool calls."""
type: Literal["ToolCallRequestEvent"] = "ToolCallRequestEvent"
class ToolCallExecutionEvent(BaseMessage):
"""An event signaling the execution of tool calls."""
content: List[FunctionExecutionResult]
"""The tool call results."""
type: Literal["ToolCallExecutionEvent"] = "ToolCallExecutionEvent"
ChatMessage = Annotated[TextMessage | MultiModalMessage | StopMessage | HandoffMessage, Field(discriminator="type")] ChatMessage = Annotated[TextMessage | MultiModalMessage | StopMessage | HandoffMessage, Field(discriminator="type")]
"""Messages for agent-to-agent communication.""" """Messages for agent-to-agent communication only."""
AgentEvent = Annotated[ToolCallRequestEvent | ToolCallExecutionEvent, Field(discriminator="type")]
"""Events emitted by agents and teams when they work, not used for agent-to-agent communication."""
AgentMessage = Annotated[ AgentMessage = Annotated[
TextMessage | MultiModalMessage | StopMessage | HandoffMessage | ToolCallMessage | ToolCallResultMessage, TextMessage | MultiModalMessage | StopMessage | HandoffMessage | ToolCallRequestEvent | ToolCallExecutionEvent,
Field(discriminator="type"), Field(discriminator="type"),
] ]
"""All message types.""" """(Deprecated, will be removed in 0.4.0) All message and event types."""
__all__ = [ __all__ = [
@ -98,8 +122,11 @@ __all__ = [
"MultiModalMessage", "MultiModalMessage",
"StopMessage", "StopMessage",
"HandoffMessage", "HandoffMessage",
"ToolCallRequestEvent",
"ToolCallExecutionEvent",
"ToolCallMessage", "ToolCallMessage",
"ToolCallResultMessage", "ToolCallResultMessage",
"ChatMessage", "ChatMessage",
"AgentEvent",
"AgentMessage", "AgentMessage",
] ]

View File

@ -6,7 +6,7 @@ from autogen_core.models import (
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from ..messages import ( from ..messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
) )
@ -36,7 +36,7 @@ class TeamState(BaseState):
class BaseGroupChatManagerState(BaseState): class BaseGroupChatManagerState(BaseState):
"""Base state for all group chat managers.""" """Base state for all group chat managers."""
message_thread: List[AgentMessage] = Field(default_factory=list) message_thread: List[AgentEvent | ChatMessage] = Field(default_factory=list)
current_turn: int = Field(default=0) current_turn: int = Field(default=0)
type: str = Field(default="BaseGroupChatManagerState") type: str = Field(default="BaseGroupChatManagerState")

View File

@ -27,39 +27,39 @@ from ..conditions import (
from ..conditions import ( from ..conditions import (
TokenUsageTermination as TokenUsageTerminationAlias, TokenUsageTermination as TokenUsageTerminationAlias,
) )
from ..messages import AgentMessage from ..messages import AgentEvent, ChatMessage
from ..ui import Console as ConsoleAlias from ..ui import Console as ConsoleAlias
@deprecated("Moved to autogen_agentchat.terminations.ExternalTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.ExternalTermination. Will remove this in 0.4.0.", stacklevel=2)
class ExternalTermination(ExternalTerminationAlias): ... class ExternalTermination(ExternalTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.HandoffTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.HandoffTermination. Will remove this in 0.4.0.", stacklevel=2)
class HandoffTermination(HandoffTerminationAlias): ... class HandoffTermination(HandoffTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.MaxMessageTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.MaxMessageTermination. Will remove this in 0.4.0.", stacklevel=2)
class MaxMessageTermination(MaxMessageTerminationAlias): ... class MaxMessageTermination(MaxMessageTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.SourceMatchTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.SourceMatchTermination. Will remove this in 0.4.0.", stacklevel=2)
class SourceMatchTermination(SourceMatchTerminationAlias): ... class SourceMatchTermination(SourceMatchTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.StopMessageTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.StopMessageTermination. Will remove this in 0.4.0.", stacklevel=2)
class StopMessageTermination(StopMessageTerminationAlias): ... class StopMessageTermination(StopMessageTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.TextMentionTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.TextMentionTermination. Will remove this in 0.4.0.", stacklevel=2)
class TextMentionTermination(TextMentionTerminationAlias): ... class TextMentionTermination(TextMentionTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.TimeoutTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.TimeoutTermination. Will remove this in 0.4.0.", stacklevel=2)
class TimeoutTermination(TimeoutTerminationAlias): ... class TimeoutTermination(TimeoutTerminationAlias): ...
@deprecated("Moved to autogen_agentchat.terminations.TokenUsageTermination. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.conditions.TokenUsageTermination. Will remove this in 0.4.0.", stacklevel=2)
class TokenUsageTermination(TokenUsageTerminationAlias): ... class TokenUsageTermination(TokenUsageTerminationAlias): ...
@ -68,7 +68,7 @@ T = TypeVar("T", bound=TaskResult | Response)
@deprecated("Moved to autogen_agentchat.ui.Console. Will remove this in 0.4.0.", stacklevel=2) @deprecated("Moved to autogen_agentchat.ui.Console. Will remove this in 0.4.0.", stacklevel=2)
async def Console( async def Console(
stream: AsyncGenerator[AgentMessage | T, None], stream: AsyncGenerator[AgentEvent | ChatMessage | T, None],
*, *,
no_inline_images: bool = False, no_inline_images: bool = False,
) -> T: ) -> T:

View File

@ -19,7 +19,7 @@ from autogen_core._closure_agent import ClosureContext
from ... import EVENT_LOGGER_NAME from ... import EVENT_LOGGER_NAME
from ...base import ChatAgent, TaskResult, Team, TerminationCondition from ...base import ChatAgent, TaskResult, Team, TerminationCondition
from ...messages import AgentMessage, ChatMessage, TextMessage from ...messages import AgentEvent, ChatMessage, TextMessage
from ...state import TeamState from ...state import TeamState
from ._chat_agent_container import ChatAgentContainer from ._chat_agent_container import ChatAgentContainer
from ._events import GroupChatMessage, GroupChatReset, GroupChatStart, GroupChatTermination from ._events import GroupChatMessage, GroupChatReset, GroupChatStart, GroupChatTermination
@ -62,7 +62,7 @@ class BaseGroupChat(Team, ABC):
# Constants for the closure agent to collect the output messages. # Constants for the closure agent to collect the output messages.
self._stop_reason: str | None = None self._stop_reason: str | None = None
self._output_message_queue: asyncio.Queue[AgentMessage | None] = asyncio.Queue() self._output_message_queue: asyncio.Queue[AgentEvent | ChatMessage | None] = asyncio.Queue()
# Create a runtime for the team. # Create a runtime for the team.
# TODO: The runtime should be created by a managed context. # TODO: The runtime should be created by a managed context.
@ -273,7 +273,7 @@ class BaseGroupChat(Team, ABC):
*, *,
task: str | ChatMessage | List[ChatMessage] | None = None, task: str | ChatMessage | List[ChatMessage] | None = None,
cancellation_token: CancellationToken | None = None, cancellation_token: CancellationToken | None = None,
) -> AsyncGenerator[AgentMessage | TaskResult, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | TaskResult, None]:
"""Run the team and produces a stream of messages and the final result """Run the team and produces a stream of messages and the final result
of the type :class:`TaskResult` as the last item in the stream. Once the of the type :class:`TaskResult` as the last item in the stream. Once the
team is stopped, the termination condition is reset. team is stopped, the termination condition is reset.
@ -405,7 +405,7 @@ class BaseGroupChat(Team, ABC):
cancellation_token=cancellation_token, cancellation_token=cancellation_token,
) )
# Collect the output messages in order. # Collect the output messages in order.
output_messages: List[AgentMessage] = [] output_messages: List[AgentEvent | ChatMessage] = []
# Yield the messsages until the queue is empty. # Yield the messsages until the queue is empty.
while True: while True:
message_future = asyncio.ensure_future(self._output_message_queue.get()) message_future = asyncio.ensure_future(self._output_message_queue.get())

View File

@ -5,7 +5,7 @@ from typing import Any, List
from autogen_core import DefaultTopicId, MessageContext, event, rpc from autogen_core import DefaultTopicId, MessageContext, event, rpc
from ...base import TerminationCondition from ...base import TerminationCondition
from ...messages import AgentMessage, ChatMessage, StopMessage from ...messages import AgentEvent, ChatMessage, StopMessage
from ._events import ( from ._events import (
GroupChatAgentResponse, GroupChatAgentResponse,
GroupChatRequestPublish, GroupChatRequestPublish,
@ -48,7 +48,7 @@ class BaseGroupChatManager(SequentialRoutedAgent, ABC):
raise ValueError("The group topic type must not be in the participant topic types.") raise ValueError("The group topic type must not be in the participant topic types.")
self._participant_topic_types = participant_topic_types self._participant_topic_types = participant_topic_types
self._participant_descriptions = participant_descriptions self._participant_descriptions = participant_descriptions
self._message_thread: List[AgentMessage] = [] self._message_thread: List[AgentEvent | ChatMessage] = []
self._termination_condition = termination_condition self._termination_condition = termination_condition
if max_turns is not None and max_turns <= 0: if max_turns is not None and max_turns <= 0:
raise ValueError("The maximum number of turns must be greater than 0.") raise ValueError("The maximum number of turns must be greater than 0.")
@ -115,7 +115,7 @@ class BaseGroupChatManager(SequentialRoutedAgent, ABC):
@event @event
async def handle_agent_response(self, message: GroupChatAgentResponse, ctx: MessageContext) -> None: async def handle_agent_response(self, message: GroupChatAgentResponse, ctx: MessageContext) -> None:
# Append the message to the message thread and construct the delta. # Append the message to the message thread and construct the delta.
delta: List[AgentMessage] = [] delta: List[AgentEvent | ChatMessage] = []
if message.agent_response.inner_messages is not None: if message.agent_response.inner_messages is not None:
for inner_message in message.agent_response.inner_messages: for inner_message in message.agent_response.inner_messages:
self._message_thread.append(inner_message) self._message_thread.append(inner_message)
@ -180,7 +180,7 @@ class BaseGroupChatManager(SequentialRoutedAgent, ABC):
... ...
@abstractmethod @abstractmethod
async def select_speaker(self, thread: List[AgentMessage]) -> str: async def select_speaker(self, thread: List[AgentEvent | ChatMessage]) -> str:
"""Select a speaker from the participants and return the """Select a speaker from the participants and return the
topic type of the selected speaker.""" topic type of the selected speaker."""
... ...

View File

@ -3,7 +3,7 @@ from typing import List
from pydantic import BaseModel from pydantic import BaseModel
from ...base import Response from ...base import Response
from ...messages import AgentMessage, ChatMessage, StopMessage from ...messages import AgentEvent, ChatMessage, StopMessage
class GroupChatStart(BaseModel): class GroupChatStart(BaseModel):
@ -29,7 +29,7 @@ class GroupChatRequestPublish(BaseModel):
class GroupChatMessage(BaseModel): class GroupChatMessage(BaseModel):
"""A message from a group chat.""" """A message from a group chat."""
message: AgentMessage message: AgentEvent | ChatMessage
"""The message that was published.""" """The message that was published."""

View File

@ -13,14 +13,14 @@ from autogen_core.models import (
from .... import TRACE_LOGGER_NAME from .... import TRACE_LOGGER_NAME
from ....base import Response, TerminationCondition from ....base import Response, TerminationCondition
from ....messages import ( from ....messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallExecutionEvent,
ToolCallResultMessage, ToolCallRequestEvent,
) )
from ....state import MagenticOneOrchestratorState from ....state import MagenticOneOrchestratorState
from .._base_group_chat_manager import BaseGroupChatManager from .._base_group_chat_manager import BaseGroupChatManager
@ -167,7 +167,7 @@ class MagenticOneOrchestrator(BaseGroupChatManager):
@event @event
async def handle_agent_response(self, message: GroupChatAgentResponse, ctx: MessageContext) -> None: # type: ignore async def handle_agent_response(self, message: GroupChatAgentResponse, ctx: MessageContext) -> None: # type: ignore
delta: List[AgentMessage] = [] delta: List[AgentEvent | ChatMessage] = []
if message.agent_response.inner_messages is not None: if message.agent_response.inner_messages is not None:
for inner_message in message.agent_response.inner_messages: for inner_message in message.agent_response.inner_messages:
delta.append(inner_message) delta.append(inner_message)
@ -210,7 +210,7 @@ class MagenticOneOrchestrator(BaseGroupChatManager):
self._n_rounds = orchestrator_state.n_rounds self._n_rounds = orchestrator_state.n_rounds
self._n_stalls = orchestrator_state.n_stalls self._n_stalls = orchestrator_state.n_stalls
async def select_speaker(self, thread: List[AgentMessage]) -> str: async def select_speaker(self, thread: List[AgentEvent | ChatMessage]) -> str:
"""Not used in this orchestrator, we select next speaker in _orchestrate_step.""" """Not used in this orchestrator, we select next speaker in _orchestrate_step."""
return "" return ""
@ -427,7 +427,7 @@ class MagenticOneOrchestrator(BaseGroupChatManager):
"""Convert the message thread to a context for the model.""" """Convert the message thread to a context for the model."""
context: List[LLMMessage] = [] context: List[LLMMessage] = []
for m in self._message_thread: for m in self._message_thread:
if isinstance(m, ToolCallMessage | ToolCallResultMessage): if isinstance(m, ToolCallRequestEvent | ToolCallExecutionEvent):
# Ignore tool call messages. # Ignore tool call messages.
continue continue
elif isinstance(m, StopMessage | HandoffMessage): elif isinstance(m, StopMessage | HandoffMessage):

View File

@ -1,7 +1,7 @@
from typing import Any, Callable, List, Mapping from typing import Any, Callable, List, Mapping
from ...base import ChatAgent, TerminationCondition from ...base import ChatAgent, TerminationCondition
from ...messages import AgentMessage, ChatMessage from ...messages import AgentEvent, ChatMessage
from ...state import RoundRobinManagerState from ...state import RoundRobinManagerState
from ._base_group_chat import BaseGroupChat from ._base_group_chat import BaseGroupChat
from ._base_group_chat_manager import BaseGroupChatManager from ._base_group_chat_manager import BaseGroupChatManager
@ -53,7 +53,7 @@ class RoundRobinGroupChatManager(BaseGroupChatManager):
self._current_turn = round_robin_state.current_turn self._current_turn = round_robin_state.current_turn
self._next_speaker_index = round_robin_state.next_speaker_index self._next_speaker_index = round_robin_state.next_speaker_index
async def select_speaker(self, thread: List[AgentMessage]) -> str: async def select_speaker(self, thread: List[AgentEvent | ChatMessage]) -> str:
"""Select a speaker from the participants in a round-robin fashion.""" """Select a speaker from the participants in a round-robin fashion."""
current_speaker_index = self._next_speaker_index current_speaker_index = self._next_speaker_index
self._next_speaker_index = (current_speaker_index + 1) % len(self._participant_topic_types) self._next_speaker_index = (current_speaker_index + 1) % len(self._participant_topic_types)

View File

@ -7,14 +7,14 @@ from autogen_core.models import ChatCompletionClient, SystemMessage
from ... import TRACE_LOGGER_NAME from ... import TRACE_LOGGER_NAME
from ...base import ChatAgent, TerminationCondition from ...base import ChatAgent, TerminationCondition
from ...messages import ( from ...messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallExecutionEvent,
ToolCallResultMessage, ToolCallRequestEvent,
) )
from ...state import SelectorManagerState from ...state import SelectorManagerState
from ._base_group_chat import BaseGroupChat from ._base_group_chat import BaseGroupChat
@ -38,7 +38,7 @@ class SelectorGroupChatManager(BaseGroupChatManager):
model_client: ChatCompletionClient, model_client: ChatCompletionClient,
selector_prompt: str, selector_prompt: str,
allow_repeated_speaker: bool, allow_repeated_speaker: bool,
selector_func: Callable[[Sequence[AgentMessage]], str | None] | None, selector_func: Callable[[Sequence[AgentEvent | ChatMessage]], str | None] | None,
) -> None: ) -> None:
super().__init__( super().__init__(
group_topic_type, group_topic_type,
@ -78,7 +78,7 @@ class SelectorGroupChatManager(BaseGroupChatManager):
self._current_turn = selector_state.current_turn self._current_turn = selector_state.current_turn
self._previous_speaker = selector_state.previous_speaker self._previous_speaker = selector_state.previous_speaker
async def select_speaker(self, thread: List[AgentMessage]) -> str: async def select_speaker(self, thread: List[AgentEvent | ChatMessage]) -> str:
"""Selects the next speaker in a group chat using a ChatCompletion client, """Selects the next speaker in a group chat using a ChatCompletion client,
with the selector function as override if it returns a speaker name. with the selector function as override if it returns a speaker name.
@ -95,7 +95,7 @@ class SelectorGroupChatManager(BaseGroupChatManager):
# Construct the history of the conversation. # Construct the history of the conversation.
history_messages: List[str] = [] history_messages: List[str] = []
for msg in thread: for msg in thread:
if isinstance(msg, ToolCallMessage | ToolCallResultMessage): if isinstance(msg, ToolCallRequestEvent | ToolCallExecutionEvent):
# Ignore tool call messages. # Ignore tool call messages.
continue continue
# The agent type must be the same as the topic type, which we use as the agent name. # The agent type must be the same as the topic type, which we use as the agent name.
@ -204,7 +204,7 @@ class SelectorGroupChat(BaseGroupChat):
Must contain '{roles}', '{participants}', and '{history}' to be filled in. Must contain '{roles}', '{participants}', and '{history}' to be filled in.
allow_repeated_speaker (bool, optional): Whether to allow the same speaker to be selected allow_repeated_speaker (bool, optional): Whether to allow the same speaker to be selected
consecutively. Defaults to False. consecutively. Defaults to False.
selector_func (Callable[[Sequence[AgentMessage]], str | None], optional): A custom selector selector_func (Callable[[Sequence[AgentEvent | ChatMessage]], str | None], optional): A custom selector
function that takes the conversation history and returns the name of the next speaker. function that takes the conversation history and returns the name of the next speaker.
If provided, this function will be used to override the model to select the next speaker. If provided, this function will be used to override the model to select the next speaker.
If the function returns None, the model will be used to select the next speaker. If the function returns None, the model will be used to select the next speaker.
@ -278,7 +278,7 @@ class SelectorGroupChat(BaseGroupChat):
from autogen_agentchat.teams import SelectorGroupChat from autogen_agentchat.teams import SelectorGroupChat
from autogen_agentchat.conditions import TextMentionTermination from autogen_agentchat.conditions import TextMentionTermination
from autogen_agentchat.ui import Console from autogen_agentchat.ui import Console
from autogen_agentchat.messages import AgentMessage from autogen_agentchat.messages import AgentEvent, ChatMessage
async def main() -> None: async def main() -> None:
@ -304,7 +304,7 @@ class SelectorGroupChat(BaseGroupChat):
system_message="Check the answer and respond with 'Correct!' or 'Incorrect!'", system_message="Check the answer and respond with 'Correct!' or 'Incorrect!'",
) )
def selector_func(messages: Sequence[AgentMessage]) -> str | None: def selector_func(messages: Sequence[AgentEvent | ChatMessage]) -> str | None:
if len(messages) == 1 or messages[-1].content == "Incorrect!": if len(messages) == 1 or messages[-1].content == "Incorrect!":
return "Agent1" return "Agent1"
if messages[-1].source == "Agent1": if messages[-1].source == "Agent1":
@ -341,7 +341,7 @@ Read the following conversation. Then select the next role from {participants} t
Read the above conversation. Then select the next role from {participants} to play. Only return the role. Read the above conversation. Then select the next role from {participants} to play. Only return the role.
""", """,
allow_repeated_speaker: bool = False, allow_repeated_speaker: bool = False,
selector_func: Callable[[Sequence[AgentMessage]], str | None] | None = None, selector_func: Callable[[Sequence[AgentEvent | ChatMessage]], str | None] | None = None,
): ):
super().__init__( super().__init__(
participants, participants,

View File

@ -1,7 +1,7 @@
from typing import Any, Callable, List, Mapping from typing import Any, Callable, List, Mapping
from ...base import ChatAgent, TerminationCondition from ...base import ChatAgent, TerminationCondition
from ...messages import AgentMessage, ChatMessage, HandoffMessage from ...messages import AgentEvent, ChatMessage, HandoffMessage
from ...state import SwarmManagerState from ...state import SwarmManagerState
from ._base_group_chat import BaseGroupChat from ._base_group_chat import BaseGroupChat
from ._base_group_chat_manager import BaseGroupChatManager from ._base_group_chat_manager import BaseGroupChatManager
@ -64,7 +64,7 @@ class SwarmGroupChatManager(BaseGroupChatManager):
await self._termination_condition.reset() await self._termination_condition.reset()
self._current_speaker = self._participant_topic_types[0] self._current_speaker = self._participant_topic_types[0]
async def select_speaker(self, thread: List[AgentMessage]) -> str: async def select_speaker(self, thread: List[AgentEvent | ChatMessage]) -> str:
"""Select a speaker from the participants based on handoff message. """Select a speaker from the participants based on handoff message.
Looks for the last handoff message in the thread to determine the next speaker.""" Looks for the last handoff message in the thread to determine the next speaker."""
if len(thread) == 0: if len(thread) == 0:

View File

@ -7,7 +7,7 @@ from autogen_core import Image
from autogen_core.models import RequestUsage from autogen_core.models import RequestUsage
from autogen_agentchat.base import Response, TaskResult from autogen_agentchat.base import Response, TaskResult
from autogen_agentchat.messages import AgentMessage, MultiModalMessage from autogen_agentchat.messages import AgentEvent, ChatMessage, MultiModalMessage
def _is_running_in_iterm() -> bool: def _is_running_in_iterm() -> bool:
@ -22,7 +22,7 @@ T = TypeVar("T", bound=TaskResult | Response)
async def Console( async def Console(
stream: AsyncGenerator[AgentMessage | T, None], stream: AsyncGenerator[AgentEvent | ChatMessage | T, None],
*, *,
no_inline_images: bool = False, no_inline_images: bool = False,
) -> T: ) -> T:
@ -32,7 +32,7 @@ async def Console(
Returns the last processed TaskResult or Response. Returns the last processed TaskResult or Response.
Args: Args:
stream (AsyncGenerator[AgentMessage | TaskResult, None] | AsyncGenerator[AgentMessage | Response, None]): Message stream to render. stream (AsyncGenerator[AgentEvent | ChatMessage | TaskResult, None] | AsyncGenerator[AgentEvent | ChatMessage | Response, None]): Message stream to render.
This can be from :meth:`~autogen_agentchat.base.TaskRunner.run_stream` or :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream`. This can be from :meth:`~autogen_agentchat.base.TaskRunner.run_stream` or :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream`.
no_inline_images (bool, optional): If terminal is iTerm2 will render images inline. Use this to disable this behavior. Defaults to False. no_inline_images (bool, optional): If terminal is iTerm2 will render images inline. Use this to disable this behavior. Defaults to False.
@ -93,7 +93,7 @@ async def Console(
else: else:
# Cast required for mypy to be happy # Cast required for mypy to be happy
message = cast(AgentMessage, message) # type: ignore message = cast(AgentEvent | ChatMessage, message) # type: ignore
output = f"{'-' * 10} {message.source} {'-' * 10}\n{_message_to_str(message, render_image_iterm=render_image_iterm)}\n" output = f"{'-' * 10} {message.source} {'-' * 10}\n{_message_to_str(message, render_image_iterm=render_image_iterm)}\n"
if message.models_usage: if message.models_usage:
output += f"[Prompt tokens: {message.models_usage.prompt_tokens}, Completion tokens: {message.models_usage.completion_tokens}]\n" output += f"[Prompt tokens: {message.models_usage.prompt_tokens}, Completion tokens: {message.models_usage.completion_tokens}]\n"
@ -114,7 +114,7 @@ def _image_to_iterm(image: Image) -> str:
return f"\033]1337;File=inline=1:{image_data}\a\n" return f"\033]1337;File=inline=1:{image_data}\a\n"
def _message_to_str(message: AgentMessage, *, render_image_iterm: bool = False) -> str: def _message_to_str(message: AgentEvent | ChatMessage, *, render_image_iterm: bool = False) -> str:
if isinstance(message, MultiModalMessage): if isinstance(message, MultiModalMessage):
result: List[str] = [] result: List[str] = []
for c in message.content: for c in message.content:

View File

@ -12,8 +12,8 @@ from autogen_agentchat.messages import (
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallExecutionEvent,
ToolCallResultMessage, ToolCallRequestEvent,
) )
from autogen_core import Image from autogen_core import Image
from autogen_core.tools import FunctionTool from autogen_core.tools import FunctionTool
@ -136,11 +136,11 @@ async def test_run_with_tools(monkeypatch: pytest.MonkeyPatch) -> None:
assert len(result.messages) == 4 assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage) assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallMessage) assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 5 assert result.messages[1].models_usage.completion_tokens == 5
assert result.messages[1].models_usage.prompt_tokens == 10 assert result.messages[1].models_usage.prompt_tokens == 10
assert isinstance(result.messages[2], ToolCallResultMessage) assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], TextMessage) assert isinstance(result.messages[3], TextMessage)
assert result.messages[3].content == "pass" assert result.messages[3].content == "pass"
@ -235,11 +235,11 @@ async def test_run_with_tools_and_reflection(monkeypatch: pytest.MonkeyPatch) ->
assert len(result.messages) == 4 assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage) assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallMessage) assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 5 assert result.messages[1].models_usage.completion_tokens == 5
assert result.messages[1].models_usage.prompt_tokens == 10 assert result.messages[1].models_usage.prompt_tokens == 10
assert isinstance(result.messages[2], ToolCallResultMessage) assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], TextMessage) assert isinstance(result.messages[3], TextMessage)
assert result.messages[3].content == "Hello" assert result.messages[3].content == "Hello"
@ -323,11 +323,11 @@ async def test_handoffs(monkeypatch: pytest.MonkeyPatch) -> None:
assert len(result.messages) == 4 assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage) assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallMessage) assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 43 assert result.messages[1].models_usage.completion_tokens == 43
assert result.messages[1].models_usage.prompt_tokens == 42 assert result.messages[1].models_usage.prompt_tokens == 42
assert isinstance(result.messages[2], ToolCallResultMessage) assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], HandoffMessage) assert isinstance(result.messages[3], HandoffMessage)
assert result.messages[3].content == handoff.message assert result.messages[3].content == handoff.message

View File

@ -14,14 +14,14 @@ from autogen_agentchat.agents import (
from autogen_agentchat.base import Handoff, Response, TaskResult from autogen_agentchat.base import Handoff, Response, TaskResult
from autogen_agentchat.conditions import HandoffTermination, MaxMessageTermination, TextMentionTermination from autogen_agentchat.conditions import HandoffTermination, MaxMessageTermination, TextMentionTermination
from autogen_agentchat.messages import ( from autogen_agentchat.messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallExecutionEvent,
ToolCallResultMessage, ToolCallRequestEvent,
) )
from autogen_agentchat.teams import ( from autogen_agentchat.teams import (
RoundRobinGroupChat, RoundRobinGroupChat,
@ -323,8 +323,8 @@ async def test_round_robin_group_chat_with_tools(monkeypatch: pytest.MonkeyPatch
) )
assert len(result.messages) == 8 assert len(result.messages) == 8
assert isinstance(result.messages[0], TextMessage) # task assert isinstance(result.messages[0], TextMessage) # task
assert isinstance(result.messages[1], ToolCallMessage) # tool call assert isinstance(result.messages[1], ToolCallRequestEvent) # tool call
assert isinstance(result.messages[2], ToolCallResultMessage) # tool call result assert isinstance(result.messages[2], ToolCallExecutionEvent) # tool call result
assert isinstance(result.messages[3], TextMessage) # tool use agent response assert isinstance(result.messages[3], TextMessage) # tool use agent response
assert isinstance(result.messages[4], TextMessage) # echo agent response assert isinstance(result.messages[4], TextMessage) # echo agent response
assert isinstance(result.messages[5], TextMessage) # tool use agent response assert isinstance(result.messages[5], TextMessage) # tool use agent response
@ -747,7 +747,7 @@ async def test_selector_group_chat_custom_selector(monkeypatch: pytest.MonkeyPat
agent3 = _EchoAgent("agent3", description="echo agent 3") agent3 = _EchoAgent("agent3", description="echo agent 3")
agent4 = _EchoAgent("agent4", description="echo agent 4") agent4 = _EchoAgent("agent4", description="echo agent 4")
def _select_agent(messages: Sequence[AgentMessage]) -> str | None: def _select_agent(messages: Sequence[AgentEvent | ChatMessage]) -> str | None:
if len(messages) == 0: if len(messages) == 0:
return "agent1" return "agent1"
elif messages[-1].source == "agent1": elif messages[-1].source == "agent1":
@ -920,8 +920,8 @@ async def test_swarm_handoff_using_tool_calls(monkeypatch: pytest.MonkeyPatch) -
result = await team.run(task="task") result = await team.run(task="task")
assert len(result.messages) == 7 assert len(result.messages) == 7
assert result.messages[0].content == "task" assert result.messages[0].content == "task"
assert isinstance(result.messages[1], ToolCallMessage) assert isinstance(result.messages[1], ToolCallRequestEvent)
assert isinstance(result.messages[2], ToolCallResultMessage) assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[3].content == "handoff to agent2" assert result.messages[3].content == "handoff to agent2"
assert result.messages[4].content == "Transferred to agent1." assert result.messages[4].content == "Transferred to agent1."
assert result.messages[5].content == "Hello" assert result.messages[5].content == "Hello"

View File

@ -12,7 +12,7 @@
"- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.name`: The unique name of the agent.\n", "- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.name`: The unique name of the agent.\n",
"- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.description`: The description of the agent in text.\n", "- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.description`: The description of the agent in text.\n",
"- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages`: Send the agent a sequence of {py:class}`~autogen_agentchat.messages.ChatMessage` get a {py:class}`~autogen_agentchat.base.Response`.\n", "- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages`: Send the agent a sequence of {py:class}`~autogen_agentchat.messages.ChatMessage` get a {py:class}`~autogen_agentchat.base.Response`.\n",
"- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream`: Same as {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages` but returns an iterator of {py:class}`~autogen_agentchat.messages.AgentMessage` followed by a {py:class}`~autogen_agentchat.base.Response` as the last item.\n", "- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream`: Same as {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages` but returns an iterator of {py:class}`~autogen_agentchat.messages.AgentEvent` or {py:class}`~autogen_agentchat.messages.ChatMessage` followed by a {py:class}`~autogen_agentchat.base.Response` as the last item.\n",
"- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_reset`: Reset the agent to its initial state.\n", "- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_reset`: Reset the agent to its initial state.\n",
"\n", "\n",
"See {py:mod}`autogen_agentchat.messages` for more information on AgentChat message types.\n", "See {py:mod}`autogen_agentchat.messages` for more information on AgentChat message types.\n",
@ -74,7 +74,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"[ToolCallMessage(source='assistant', models_usage=RequestUsage(prompt_tokens=61, completion_tokens=15), content=[FunctionCall(id='call_hqVC7UJUPhKaiJwgVKkg66ak', arguments='{\"query\":\"AutoGen\"}', name='web_search')]), ToolCallResultMessage(source='assistant', models_usage=None, content=[FunctionExecutionResult(content='AutoGen is a programming framework for building multi-agent applications.', call_id='call_hqVC7UJUPhKaiJwgVKkg66ak')])]\n", "[ToolCallRequestEvent(source='assistant', models_usage=RequestUsage(prompt_tokens=61, completion_tokens=15), content=[FunctionCall(id='call_hqVC7UJUPhKaiJwgVKkg66ak', arguments='{\"query\":\"AutoGen\"}', name='web_search')]), ToolCallExecutionEvent(source='assistant', models_usage=None, content=[FunctionExecutionResult(content='AutoGen is a programming framework for building multi-agent applications.', call_id='call_hqVC7UJUPhKaiJwgVKkg66ak')])]\n",
"source='assistant' models_usage=RequestUsage(prompt_tokens=92, completion_tokens=14) content='AutoGen is a programming framework designed for building multi-agent applications.'\n" "source='assistant' models_usage=RequestUsage(prompt_tokens=92, completion_tokens=14) content='AutoGen is a programming framework designed for building multi-agent applications.'\n"
] ]
} }

View File

@ -1,313 +1,313 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Custom Agents\n", "# Custom Agents\n",
"\n", "\n",
"You may have agents with behaviors that do not fall into a preset. \n", "You may have agents with behaviors that do not fall into a preset. \n",
"In such cases, you can build custom agents.\n", "In such cases, you can build custom agents.\n",
"\n", "\n",
"All agents in AgentChat inherit from {py:class}`~autogen_agentchat.agents.BaseChatAgent` \n", "All agents in AgentChat inherit from {py:class}`~autogen_agentchat.agents.BaseChatAgent` \n",
"class and implement the following abstract methods and attributes:\n", "class and implement the following abstract methods and attributes:\n",
"\n", "\n",
"- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages`: The abstract method that defines the behavior of the agent in response to messages. This method is called when the agent is asked to provide a response in {py:meth}`~autogen_agentchat.agents.BaseChatAgent.run`. It returns a {py:class}`~autogen_agentchat.base.Response` object.\n", "- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages`: The abstract method that defines the behavior of the agent in response to messages. This method is called when the agent is asked to provide a response in {py:meth}`~autogen_agentchat.agents.BaseChatAgent.run`. It returns a {py:class}`~autogen_agentchat.base.Response` object.\n",
"- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_reset`: The abstract method that resets the agent to its initial state. This method is called when the agent is asked to reset itself.\n", "- {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_reset`: The abstract method that resets the agent to its initial state. This method is called when the agent is asked to reset itself.\n",
"- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.produced_message_types`: The list of possible {py:class}`~autogen_agentchat.messages.ChatMessage` message types the agent can produce in its response.\n", "- {py:attr}`~autogen_agentchat.agents.BaseChatAgent.produced_message_types`: The list of possible {py:class}`~autogen_agentchat.messages.ChatMessage` message types the agent can produce in its response.\n",
"\n", "\n",
"Optionally, you can implement the the {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream` method to stream messages as they are generated by the agent. If this method is not implemented, the agent\n", "Optionally, you can implement the the {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream` method to stream messages as they are generated by the agent. If this method is not implemented, the agent\n",
"uses the default implementation of {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream`\n", "uses the default implementation of {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages_stream`\n",
"that calls the {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages` method and\n", "that calls the {py:meth}`~autogen_agentchat.agents.BaseChatAgent.on_messages` method and\n",
"yields all messages in the response." "yields all messages in the response."
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## CountDownAgent\n", "## CountDownAgent\n",
"\n", "\n",
"In this example, we create a simple agent that counts down from a given number to zero,\n", "In this example, we create a simple agent that counts down from a given number to zero,\n",
"and produces a stream of messages with the current count." "and produces a stream of messages with the current count."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"3...\n", "3...\n",
"2...\n", "2...\n",
"1...\n", "1...\n",
"Done!\n" "Done!\n"
] ]
} }
], ],
"source": [ "source": [
"from typing import AsyncGenerator, List, Sequence\n", "from typing import AsyncGenerator, List, Sequence\n",
"\n", "\n",
"from autogen_agentchat.agents import BaseChatAgent\n", "from autogen_agentchat.agents import BaseChatAgent\n",
"from autogen_agentchat.base import Response\n", "from autogen_agentchat.base import Response\n",
"from autogen_agentchat.messages import AgentMessage, ChatMessage, TextMessage\n", "from autogen_agentchat.messages import AgentEvent, ChatMessage, TextMessage\n",
"from autogen_core import CancellationToken\n", "from autogen_core import CancellationToken\n",
"\n", "\n",
"\n", "\n",
"class CountDownAgent(BaseChatAgent):\n", "class CountDownAgent(BaseChatAgent):\n",
" def __init__(self, name: str, count: int = 3):\n", " def __init__(self, name: str, count: int = 3):\n",
" super().__init__(name, \"A simple agent that counts down.\")\n", " super().__init__(name, \"A simple agent that counts down.\")\n",
" self._count = count\n", " self._count = count\n",
"\n", "\n",
" @property\n", " @property\n",
" def produced_message_types(self) -> List[type[ChatMessage]]:\n", " def produced_message_types(self) -> List[type[ChatMessage]]:\n",
" return [TextMessage]\n", " return [TextMessage]\n",
"\n", "\n",
" async def on_messages(self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken) -> Response:\n", " async def on_messages(self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken) -> Response:\n",
" # Calls the on_messages_stream.\n", " # Calls the on_messages_stream.\n",
" response: Response | None = None\n", " response: Response | None = None\n",
" async for message in self.on_messages_stream(messages, cancellation_token):\n", " async for message in self.on_messages_stream(messages, cancellation_token):\n",
" if isinstance(message, Response):\n", " if isinstance(message, Response):\n",
" response = message\n", " response = message\n",
" assert response is not None\n", " assert response is not None\n",
" return response\n", " return response\n",
"\n", "\n",
" async def on_messages_stream(\n", " async def on_messages_stream(\n",
" self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken\n", " self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken\n",
" ) -> AsyncGenerator[AgentMessage | Response, None]:\n", " ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:\n",
" inner_messages: List[AgentMessage] = []\n", " inner_messages: List[AgentEvent | ChatMessage] = []\n",
" for i in range(self._count, 0, -1):\n", " for i in range(self._count, 0, -1):\n",
" msg = TextMessage(content=f\"{i}...\", source=self.name)\n", " msg = TextMessage(content=f\"{i}...\", source=self.name)\n",
" inner_messages.append(msg)\n", " inner_messages.append(msg)\n",
" yield msg\n", " yield msg\n",
" # The response is returned at the end of the stream.\n", " # The response is returned at the end of the stream.\n",
" # It contains the final message and all the inner messages.\n", " # It contains the final message and all the inner messages.\n",
" yield Response(chat_message=TextMessage(content=\"Done!\", source=self.name), inner_messages=inner_messages)\n", " yield Response(chat_message=TextMessage(content=\"Done!\", source=self.name), inner_messages=inner_messages)\n",
"\n", "\n",
" async def on_reset(self, cancellation_token: CancellationToken) -> None:\n", " async def on_reset(self, cancellation_token: CancellationToken) -> None:\n",
" pass\n", " pass\n",
"\n", "\n",
"\n", "\n",
"async def run_countdown_agent() -> None:\n", "async def run_countdown_agent() -> None:\n",
" # Create a countdown agent.\n", " # Create a countdown agent.\n",
" countdown_agent = CountDownAgent(\"countdown\")\n", " countdown_agent = CountDownAgent(\"countdown\")\n",
"\n", "\n",
" # Run the agent with a given task and stream the response.\n", " # Run the agent with a given task and stream the response.\n",
" async for message in countdown_agent.on_messages_stream([], CancellationToken()):\n", " async for message in countdown_agent.on_messages_stream([], CancellationToken()):\n",
" if isinstance(message, Response):\n", " if isinstance(message, Response):\n",
" print(message.chat_message.content)\n", " print(message.chat_message.content)\n",
" else:\n", " else:\n",
" print(message.content)\n", " print(message.content)\n",
"\n", "\n",
"\n", "\n",
"# Use asyncio.run(run_countdown_agent()) when running in a script.\n", "# Use asyncio.run(run_countdown_agent()) when running in a script.\n",
"await run_countdown_agent()" "await run_countdown_agent()"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## ArithmeticAgent\n", "## ArithmeticAgent\n",
"\n", "\n",
"In this example, we create an agent class that can perform simple arithmetic operations\n", "In this example, we create an agent class that can perform simple arithmetic operations\n",
"on a given integer. Then, we will use different instances of this agent class\n", "on a given integer. Then, we will use different instances of this agent class\n",
"in a {py:class}`~autogen_agentchat.teams.SelectorGroupChat`\n", "in a {py:class}`~autogen_agentchat.teams.SelectorGroupChat`\n",
"to transform a given integer into another integer by applying a sequence of arithmetic operations.\n", "to transform a given integer into another integer by applying a sequence of arithmetic operations.\n",
"\n", "\n",
"The `ArithmeticAgent` class takes an `operator_func` that takes an integer and returns an integer,\n", "The `ArithmeticAgent` class takes an `operator_func` that takes an integer and returns an integer,\n",
"after applying an arithmetic operation to the integer.\n", "after applying an arithmetic operation to the integer.\n",
"In its `on_messages` method, it applies the `operator_func` to the integer in the input message,\n", "In its `on_messages` method, it applies the `operator_func` to the integer in the input message,\n",
"and returns a response with the result." "and returns a response with the result."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from typing import Callable, List, Sequence\n", "from typing import Callable, List, Sequence\n",
"\n", "\n",
"from autogen_agentchat.agents import BaseChatAgent\n", "from autogen_agentchat.agents import BaseChatAgent\n",
"from autogen_agentchat.base import Response\n", "from autogen_agentchat.base import Response\n",
"from autogen_agentchat.conditions import MaxMessageTermination\n", "from autogen_agentchat.conditions import MaxMessageTermination\n",
"from autogen_agentchat.messages import ChatMessage\n", "from autogen_agentchat.messages import ChatMessage\n",
"from autogen_agentchat.teams import SelectorGroupChat\n", "from autogen_agentchat.teams import SelectorGroupChat\n",
"from autogen_agentchat.ui import Console\n", "from autogen_agentchat.ui import Console\n",
"from autogen_core import CancellationToken\n", "from autogen_core import CancellationToken\n",
"from autogen_ext.models.openai import OpenAIChatCompletionClient\n", "from autogen_ext.models.openai import OpenAIChatCompletionClient\n",
"\n", "\n",
"\n", "\n",
"class ArithmeticAgent(BaseChatAgent):\n", "class ArithmeticAgent(BaseChatAgent):\n",
" def __init__(self, name: str, description: str, operator_func: Callable[[int], int]) -> None:\n", " def __init__(self, name: str, description: str, operator_func: Callable[[int], int]) -> None:\n",
" super().__init__(name, description=description)\n", " super().__init__(name, description=description)\n",
" self._operator_func = operator_func\n", " self._operator_func = operator_func\n",
" self._message_history: List[ChatMessage] = []\n", " self._message_history: List[ChatMessage] = []\n",
"\n", "\n",
" @property\n", " @property\n",
" def produced_message_types(self) -> List[type[ChatMessage]]:\n", " def produced_message_types(self) -> List[type[ChatMessage]]:\n",
" return [TextMessage]\n", " return [TextMessage]\n",
"\n", "\n",
" async def on_messages(self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken) -> Response:\n", " async def on_messages(self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken) -> Response:\n",
" # Update the message history.\n", " # Update the message history.\n",
" # NOTE: it is possible the messages is an empty list, which means the agent was selected previously.\n", " # NOTE: it is possible the messages is an empty list, which means the agent was selected previously.\n",
" self._message_history.extend(messages)\n", " self._message_history.extend(messages)\n",
" # Parse the number in the last message.\n", " # Parse the number in the last message.\n",
" assert isinstance(self._message_history[-1], TextMessage)\n", " assert isinstance(self._message_history[-1], TextMessage)\n",
" number = int(self._message_history[-1].content)\n", " number = int(self._message_history[-1].content)\n",
" # Apply the operator function to the number.\n", " # Apply the operator function to the number.\n",
" result = self._operator_func(number)\n", " result = self._operator_func(number)\n",
" # Create a new message with the result.\n", " # Create a new message with the result.\n",
" response_message = TextMessage(content=str(result), source=self.name)\n", " response_message = TextMessage(content=str(result), source=self.name)\n",
" # Update the message history.\n", " # Update the message history.\n",
" self._message_history.append(response_message)\n", " self._message_history.append(response_message)\n",
" # Return the response.\n", " # Return the response.\n",
" return Response(chat_message=response_message)\n", " return Response(chat_message=response_message)\n",
"\n", "\n",
" async def on_reset(self, cancellation_token: CancellationToken) -> None:\n", " async def on_reset(self, cancellation_token: CancellationToken) -> None:\n",
" pass" " pass"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"```{note}\n", "```{note}\n",
"The `on_messages` method may be called with an empty list of messages, in which\n", "The `on_messages` method may be called with an empty list of messages, in which\n",
"case it means the agent was called previously and is now being called again,\n", "case it means the agent was called previously and is now being called again,\n",
"without any new messages from the caller. So it is important to keep a history\n", "without any new messages from the caller. So it is important to keep a history\n",
"of the previous messages received by the agent, and use that history to generate\n", "of the previous messages received by the agent, and use that history to generate\n",
"the response.\n", "the response.\n",
"```" "```"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Now we can create a {py:class}`~autogen_agentchat.teams.SelectorGroupChat` with 5 instances of `ArithmeticAgent`:\n", "Now we can create a {py:class}`~autogen_agentchat.teams.SelectorGroupChat` with 5 instances of `ArithmeticAgent`:\n",
"\n", "\n",
"- one that adds 1 to the input integer,\n", "- one that adds 1 to the input integer,\n",
"- one that subtracts 1 from the input integer,\n", "- one that subtracts 1 from the input integer,\n",
"- one that multiplies the input integer by 2,\n", "- one that multiplies the input integer by 2,\n",
"- one that divides the input integer by 2 and rounds down to the nearest integer, and\n", "- one that divides the input integer by 2 and rounds down to the nearest integer, and\n",
"- one that returns the input integer unchanged.\n", "- one that returns the input integer unchanged.\n",
"\n", "\n",
"We then create a {py:class}`~autogen_agentchat.teams.SelectorGroupChat` with these agents,\n", "We then create a {py:class}`~autogen_agentchat.teams.SelectorGroupChat` with these agents,\n",
"and set the appropriate selector settings:\n", "and set the appropriate selector settings:\n",
"\n", "\n",
"- allow the same agent to be selected consecutively to allow for repeated operations, and\n", "- allow the same agent to be selected consecutively to allow for repeated operations, and\n",
"- customize the selector prompt to tailor the model's response to the specific task." "- customize the selector prompt to tailor the model's response to the specific task."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"---------- user ----------\n", "---------- user ----------\n",
"Apply the operations to turn the given number into 25.\n", "Apply the operations to turn the given number into 25.\n",
"---------- user ----------\n", "---------- user ----------\n",
"10\n", "10\n",
"---------- multiply_agent ----------\n", "---------- multiply_agent ----------\n",
"20\n", "20\n",
"---------- add_agent ----------\n", "---------- add_agent ----------\n",
"21\n", "21\n",
"---------- multiply_agent ----------\n", "---------- multiply_agent ----------\n",
"42\n", "42\n",
"---------- divide_agent ----------\n", "---------- divide_agent ----------\n",
"21\n", "21\n",
"---------- add_agent ----------\n", "---------- add_agent ----------\n",
"22\n", "22\n",
"---------- add_agent ----------\n", "---------- add_agent ----------\n",
"23\n", "23\n",
"---------- add_agent ----------\n", "---------- add_agent ----------\n",
"24\n", "24\n",
"---------- add_agent ----------\n", "---------- add_agent ----------\n",
"25\n", "25\n",
"---------- Summary ----------\n", "---------- Summary ----------\n",
"Number of messages: 10\n", "Number of messages: 10\n",
"Finish reason: Maximum number of messages 10 reached, current message count: 10\n", "Finish reason: Maximum number of messages 10 reached, current message count: 10\n",
"Total prompt tokens: 0\n", "Total prompt tokens: 0\n",
"Total completion tokens: 0\n", "Total completion tokens: 0\n",
"Duration: 2.40 seconds\n" "Duration: 2.40 seconds\n"
] ]
} }
], ],
"source": [ "source": [
"async def run_number_agents() -> None:\n", "async def run_number_agents() -> None:\n",
" # Create agents for number operations.\n", " # Create agents for number operations.\n",
" add_agent = ArithmeticAgent(\"add_agent\", \"Adds 1 to the number.\", lambda x: x + 1)\n", " add_agent = ArithmeticAgent(\"add_agent\", \"Adds 1 to the number.\", lambda x: x + 1)\n",
" multiply_agent = ArithmeticAgent(\"multiply_agent\", \"Multiplies the number by 2.\", lambda x: x * 2)\n", " multiply_agent = ArithmeticAgent(\"multiply_agent\", \"Multiplies the number by 2.\", lambda x: x * 2)\n",
" subtract_agent = ArithmeticAgent(\"subtract_agent\", \"Subtracts 1 from the number.\", lambda x: x - 1)\n", " subtract_agent = ArithmeticAgent(\"subtract_agent\", \"Subtracts 1 from the number.\", lambda x: x - 1)\n",
" divide_agent = ArithmeticAgent(\"divide_agent\", \"Divides the number by 2 and rounds down.\", lambda x: x // 2)\n", " divide_agent = ArithmeticAgent(\"divide_agent\", \"Divides the number by 2 and rounds down.\", lambda x: x // 2)\n",
" identity_agent = ArithmeticAgent(\"identity_agent\", \"Returns the number as is.\", lambda x: x)\n", " identity_agent = ArithmeticAgent(\"identity_agent\", \"Returns the number as is.\", lambda x: x)\n",
"\n", "\n",
" # The termination condition is to stop after 10 messages.\n", " # The termination condition is to stop after 10 messages.\n",
" termination_condition = MaxMessageTermination(10)\n", " termination_condition = MaxMessageTermination(10)\n",
"\n", "\n",
" # Create a selector group chat.\n", " # Create a selector group chat.\n",
" selector_group_chat = SelectorGroupChat(\n", " selector_group_chat = SelectorGroupChat(\n",
" [add_agent, multiply_agent, subtract_agent, divide_agent, identity_agent],\n", " [add_agent, multiply_agent, subtract_agent, divide_agent, identity_agent],\n",
" model_client=OpenAIChatCompletionClient(model=\"gpt-4o\"),\n", " model_client=OpenAIChatCompletionClient(model=\"gpt-4o\"),\n",
" termination_condition=termination_condition,\n", " termination_condition=termination_condition,\n",
" allow_repeated_speaker=True, # Allow the same agent to speak multiple times, necessary for this task.\n", " allow_repeated_speaker=True, # Allow the same agent to speak multiple times, necessary for this task.\n",
" selector_prompt=(\n", " selector_prompt=(\n",
" \"Available roles:\\n{roles}\\nTheir job descriptions:\\n{participants}\\n\"\n", " \"Available roles:\\n{roles}\\nTheir job descriptions:\\n{participants}\\n\"\n",
" \"Current conversation history:\\n{history}\\n\"\n", " \"Current conversation history:\\n{history}\\n\"\n",
" \"Please select the most appropriate role for the next message, and only return the role name.\"\n", " \"Please select the most appropriate role for the next message, and only return the role name.\"\n",
" ),\n", " ),\n",
" )\n", " )\n",
"\n", "\n",
" # Run the selector group chat with a given task and stream the response.\n", " # Run the selector group chat with a given task and stream the response.\n",
" task: List[ChatMessage] = [\n", " task: List[ChatMessage] = [\n",
" TextMessage(content=\"Apply the operations to turn the given number into 25.\", source=\"user\"),\n", " TextMessage(content=\"Apply the operations to turn the given number into 25.\", source=\"user\"),\n",
" TextMessage(content=\"10\", source=\"user\"),\n", " TextMessage(content=\"10\", source=\"user\"),\n",
" ]\n", " ]\n",
" stream = selector_group_chat.run_stream(task=task)\n", " stream = selector_group_chat.run_stream(task=task)\n",
" await Console(stream)\n", " await Console(stream)\n",
"\n", "\n",
"\n", "\n",
"# Use asyncio.run(run_number_agents()) when running in a script.\n", "# Use asyncio.run(run_number_agents()) when running in a script.\n",
"await run_number_agents()" "await run_number_agents()"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"From the output, we can see that the agents have successfully transformed the input integer\n", "From the output, we can see that the agents have successfully transformed the input integer\n",
"from 10 to 25 by choosing appropriate agents that apply the arithmetic operations in sequence." "from 10 to 25 by choosing appropriate agents that apply the arithmetic operations in sequence."
] ]
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": ".venv", "display_name": ".venv",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
"version": 3 "version": 3
}, },
"file_extension": ".py", "file_extension": ".py",
"mimetype": "text/x-python", "mimetype": "text/x-python",
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.12.7" "version": "3.11.5"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }

View File

@ -23,7 +23,7 @@
"At a high level, messages in AgentChat can be categorized into two types: agent-agent messages and an agent's internal events and messages.\n", "At a high level, messages in AgentChat can be categorized into two types: agent-agent messages and an agent's internal events and messages.\n",
"\n", "\n",
"### Agent-Agent Messages\n", "### Agent-Agent Messages\n",
"AgentChat supports many message types for agent-to-agent communication. The most common one is the {py:class}`~autogen_agentchat.messages.ChatMessage`. This message type allows both text and multimodal communication and subsumes other message types, such as {py:class}`~autogen_agentchat.messages.TextMessage` or {py:class}`~autogen_agentchat.messages.MultiModalMessage`.\n", "AgentChat supports many message types for agent-to-agent communication. They belong to the union type {py:class}`~autogen_agentchat.messages.ChatMessage`. This message type allows both text and multimodal communication and subsumes other message types, such as {py:class}`~autogen_agentchat.messages.TextMessage` or {py:class}`~autogen_agentchat.messages.MultiModalMessage`.\n",
"\n", "\n",
"For example, the following code snippet demonstrates how to create a text message, which accepts a string content and a string source:" "For example, the following code snippet demonstrates how to create a text message, which accepts a string content and a string source:"
] ]
@ -91,13 +91,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Internal Events and Messages\n", "### Internal Events\n",
"\n", "\n",
"AgentChat also supports the concept of `inner_messages` - messages that are internal to an agent. These messages are used to communicate events and information on actions _within_ the agent itself.\n", "AgentChat also supports the concept of `events` - messages that are internal to an agent. These messages are used to communicate events and information on actions _within_ the agent itself, and belong to the union type {py:class}`~autogen_agentchat.messages.AgentEvent`.\n",
"\n", "\n",
"Examples of these include {py:class}`~autogen_agentchat.messages.ToolCallMessage`, which indicates that a request was made to call a tool, and {py:class}`~autogen_agentchat.messages.ToolCallResultMessage`, which contains the results of tool calls.\n", "Examples of these include {py:class}`~autogen_agentchat.messages.ToolCallRequestEvent`, which indicates that a request was made to call a tool, and {py:class}`~autogen_agentchat.messages.ToolCallExecutionEvent`, which contains the results of tool calls.\n",
"\n", "\n",
"Typically, these messages are created by the agent itself and are contained in the {py:attr}`~autogen_agentchat.base.Response.inner_messages` field of the {py:class}`~autogen_agentchat.base.Response` returned from {py:class}`~autogen_agentchat.base.ChatAgent.on_messages`. If you are building a custom agent and have events that you want to communicate to other entities (e.g., a UI), you can include these in the {py:attr}`~autogen_agentchat.base.Response.inner_messages` field of the {py:class}`~autogen_agentchat.base.Response`. We will show examples of this in [Custom Agents](./custom-agents.ipynb).\n", "Typically, events are created by the agent itself and are contained in the {py:attr}`~autogen_agentchat.base.Response.inner_messages` field of the {py:class}`~autogen_agentchat.base.Response` returned from {py:class}`~autogen_agentchat.base.ChatAgent.on_messages`. If you are building a custom agent and have events that you want to communicate to other entities (e.g., a UI), you can include these in the {py:attr}`~autogen_agentchat.base.Response.inner_messages` field of the {py:class}`~autogen_agentchat.base.Response`. We will show examples of this in [Custom Agents](./custom-agents.ipynb).\n",
"\n", "\n",
"\n", "\n",
"You can read about the full set of messages supported in AgentChat in the {py:mod}`~autogen_agentchat.messages` module. \n", "You can read about the full set of messages supported in AgentChat in the {py:mod}`~autogen_agentchat.messages` module. \n",

File diff suppressed because one or more lines are too long

View File

@ -1,304 +1,304 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Termination \n", "# Termination \n",
"\n", "\n",
"In the previous section, we explored how to define agents, and organize them into teams that can solve tasks. However, a run can go on forever, and in many cases, we need to know _when_ to stop them. This is the role of the termination condition.\n", "In the previous section, we explored how to define agents, and organize them into teams that can solve tasks. However, a run can go on forever, and in many cases, we need to know _when_ to stop them. This is the role of the termination condition.\n",
"\n", "\n",
"AgentChat supports several termination condition by providing a base {py:class}`~autogen_agentchat.base.TerminationCondition` class and several implementations that inherit from it.\n", "AgentChat supports several termination condition by providing a base {py:class}`~autogen_agentchat.base.TerminationCondition` class and several implementations that inherit from it.\n",
"\n", "\n",
"A termination condition is a callable that takes a sequece of {py:class}`~autogen_agentchat.messages.AgentMessage` objects **since the last time the condition was called**, and returns a {py:class}`~autogen_agentchat.messages.StopMessage` if the conversation should be terminated, or `None` otherwise.\n", "A termination condition is a callable that takes a sequece of {py:class}`~autogen_agentchat.messages.AgentEvent` or {py:class}`~autogen_agentchat.messages.ChatMessage` objects **since the last time the condition was called**, and returns a {py:class}`~autogen_agentchat.messages.StopMessage` if the conversation should be terminated, or `None` otherwise.\n",
"Once a termination condition has been reached, it must be reset by calling {py:meth}`~autogen_agentchat.base.TerminationCondition.reset` before it can be used again.\n", "Once a termination condition has been reached, it must be reset by calling {py:meth}`~autogen_agentchat.base.TerminationCondition.reset` before it can be used again.\n",
"\n", "\n",
"Some important things to note about termination conditions: \n", "Some important things to note about termination conditions: \n",
"- They are stateful but reset automatically after each run ({py:meth}`~autogen_agentchat.base.TaskRunner.run` or {py:meth}`~autogen_agentchat.base.TaskRunner.run_stream`) is finished.\n", "- They are stateful but reset automatically after each run ({py:meth}`~autogen_agentchat.base.TaskRunner.run` or {py:meth}`~autogen_agentchat.base.TaskRunner.run_stream`) is finished.\n",
"- They can be combined using the AND and OR operators.\n", "- They can be combined using the AND and OR operators.\n",
"\n", "\n",
"```{note}\n", "```{note}\n",
"For group chat teams (i.e., {py:class}`~autogen_agentchat.teams.RoundRobinGroupChat`,\n", "For group chat teams (i.e., {py:class}`~autogen_agentchat.teams.RoundRobinGroupChat`,\n",
"{py:class}`~autogen_agentchat.teams.SelectorGroupChat`, and {py:class}`~autogen_agentchat.teams.Swarm`),\n", "{py:class}`~autogen_agentchat.teams.SelectorGroupChat`, and {py:class}`~autogen_agentchat.teams.Swarm`),\n",
"the termination condition is called after each agent responds.\n", "the termination condition is called after each agent responds.\n",
"While a response may contain multiple inner messages, the team calls its termination condition just once for all the messages from a single response.\n", "While a response may contain multiple inner messages, the team calls its termination condition just once for all the messages from a single response.\n",
"So the condition is called with the \"delta sequence\" of messages since the last time it was called.\n", "So the condition is called with the \"delta sequence\" of messages since the last time it was called.\n",
"```" "```"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Built-In Termination Conditions: \n", "Built-In Termination Conditions: \n",
"1. {py:class}`~autogen_agentchat.conditions.MaxMessageTermination`: Stops after a specified number of messages have been produced, including both agent and task messages.\n", "1. {py:class}`~autogen_agentchat.conditions.MaxMessageTermination`: Stops after a specified number of messages have been produced, including both agent and task messages.\n",
"2. {py:class}`~autogen_agentchat.conditions.TextMentionTermination`: Stops when specific text or string is mentioned in a message (e.g., \"TERMINATE\").\n", "2. {py:class}`~autogen_agentchat.conditions.TextMentionTermination`: Stops when specific text or string is mentioned in a message (e.g., \"TERMINATE\").\n",
"3. {py:class}`~autogen_agentchat.conditions.TokenUsageTermination`: Stops when a certain number of prompt or completion tokens are used. This requires the agents to report token usage in their messages.\n", "3. {py:class}`~autogen_agentchat.conditions.TokenUsageTermination`: Stops when a certain number of prompt or completion tokens are used. This requires the agents to report token usage in their messages.\n",
"4. {py:class}`~autogen_agentchat.conditions.TimeoutTermination`: Stops after a specified duration in seconds.\n", "4. {py:class}`~autogen_agentchat.conditions.TimeoutTermination`: Stops after a specified duration in seconds.\n",
"5. {py:class}`~autogen_agentchat.conditions.HandoffTermination`: Stops when a handoff to a specific target is requested. Handoff messages can be used to build patterns such as {py:class}`~autogen_agentchat.teams.Swarm`. This is useful when you want to pause the run and allow application or user to provide input when an agent hands off to them.\n", "5. {py:class}`~autogen_agentchat.conditions.HandoffTermination`: Stops when a handoff to a specific target is requested. Handoff messages can be used to build patterns such as {py:class}`~autogen_agentchat.teams.Swarm`. This is useful when you want to pause the run and allow application or user to provide input when an agent hands off to them.\n",
"6. {py:class}`~autogen_agentchat.conditions.SourceMatchTermination`: Stops after a specific agent responds.\n", "6. {py:class}`~autogen_agentchat.conditions.SourceMatchTermination`: Stops after a specific agent responds.\n",
"7. {py:class}`~autogen_agentchat.conditions.ExternalTermination`: Enables programmatic control of termination from outside the run. This is useful for UI integration (e.g., \"Stop\" buttons in chat interfaces).\n", "7. {py:class}`~autogen_agentchat.conditions.ExternalTermination`: Enables programmatic control of termination from outside the run. This is useful for UI integration (e.g., \"Stop\" buttons in chat interfaces).\n",
"8. {py:class}`~autogen_agentchat.conditions.StopMessageTermination`: Stops when a {py:class}`~autogen_agentchat.messages.StopMessage` is produced by an agent." "8. {py:class}`~autogen_agentchat.conditions.StopMessageTermination`: Stops when a {py:class}`~autogen_agentchat.messages.StopMessage` is produced by an agent."
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"To demonstrate the characteristics of termination conditions, we'll create a team consisting of two agents: a primary agent responsible for text generation and a critic agent that reviews and provides feedback on the generated text." "To demonstrate the characteristics of termination conditions, we'll create a team consisting of two agents: a primary agent responsible for text generation and a critic agent that reviews and provides feedback on the generated text."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from autogen_agentchat.agents import AssistantAgent\n", "from autogen_agentchat.agents import AssistantAgent\n",
"from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination\n", "from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination\n",
"from autogen_agentchat.teams import RoundRobinGroupChat\n", "from autogen_agentchat.teams import RoundRobinGroupChat\n",
"from autogen_agentchat.ui import Console\n", "from autogen_agentchat.ui import Console\n",
"from autogen_ext.models.openai import OpenAIChatCompletionClient\n", "from autogen_ext.models.openai import OpenAIChatCompletionClient\n",
"\n", "\n",
"model_client = OpenAIChatCompletionClient(\n", "model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o\",\n", " model=\"gpt-4o\",\n",
" temperature=1,\n", " temperature=1,\n",
" # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY env variable set.\n", " # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY env variable set.\n",
")\n", ")\n",
"\n", "\n",
"# Create the primary agent.\n", "# Create the primary agent.\n",
"primary_agent = AssistantAgent(\n", "primary_agent = AssistantAgent(\n",
" \"primary\",\n", " \"primary\",\n",
" model_client=model_client,\n", " model_client=model_client,\n",
" system_message=\"You are a helpful AI assistant.\",\n", " system_message=\"You are a helpful AI assistant.\",\n",
")\n", ")\n",
"\n", "\n",
"# Create the critic agent.\n", "# Create the critic agent.\n",
"critic_agent = AssistantAgent(\n", "critic_agent = AssistantAgent(\n",
" \"critic\",\n", " \"critic\",\n",
" model_client=model_client,\n", " model_client=model_client,\n",
" system_message=\"Provide constructive feedback for every message. Respond with 'APPROVE' to when your feedbacks are addressed.\",\n", " system_message=\"Provide constructive feedback for every message. Respond with 'APPROVE' to when your feedbacks are addressed.\",\n",
")" ")"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Let's explore how termination conditions automatically reset after each `run` or `run_stream` call, allowing the team to resume its conversation from where it left off." "Let's explore how termination conditions automatically reset after each `run` or `run_stream` call, allowing the team to resume its conversation from where it left off."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"---------- user ----------\n", "---------- user ----------\n",
"Write a unique, Haiku about the weather in Paris\n", "Write a unique, Haiku about the weather in Paris\n",
"---------- primary ----------\n", "---------- primary ----------\n",
"Gentle rain whispers, \n", "Gentle rain whispers, \n",
"Cobblestones glisten softly— \n", "Cobblestones glisten softly— \n",
"Paris dreams in gray.\n", "Paris dreams in gray.\n",
"[Prompt tokens: 30, Completion tokens: 19]\n", "[Prompt tokens: 30, Completion tokens: 19]\n",
"---------- critic ----------\n", "---------- critic ----------\n",
"The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.\n", "The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.\n",
"\n", "\n",
"For example:\n", "For example:\n",
"Soft rain whispers down, \n", "Soft rain whispers down, \n",
"Cobblestones glisten softly — \n", "Cobblestones glisten softly — \n",
"Paris dreams in gray.\n", "Paris dreams in gray.\n",
"\n", "\n",
"This revision maintains the essence of your original lines while adhering to the traditional Haiku structure.\n", "This revision maintains the essence of your original lines while adhering to the traditional Haiku structure.\n",
"[Prompt tokens: 70, Completion tokens: 120]\n", "[Prompt tokens: 70, Completion tokens: 120]\n",
"---------- Summary ----------\n", "---------- Summary ----------\n",
"Number of messages: 3\n", "Number of messages: 3\n",
"Finish reason: Maximum number of messages 3 reached, current message count: 3\n", "Finish reason: Maximum number of messages 3 reached, current message count: 3\n",
"Total prompt tokens: 100\n", "Total prompt tokens: 100\n",
"Total completion tokens: 139\n", "Total completion tokens: 139\n",
"Duration: 3.34 seconds\n" "Duration: 3.34 seconds\n"
] ]
},
{
"data": {
"text/plain": [
"TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=30, completion_tokens=19), content='Gentle rain whispers, \\nCobblestones glisten softly— \\nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=70, completion_tokens=120), content=\"The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.\\n\\nFor example:\\nSoft rain whispers down, \\nCobblestones glisten softly — \\nParis dreams in gray.\\n\\nThis revision maintains the essence of your original lines while adhering to the traditional Haiku structure.\")], stop_reason='Maximum number of messages 3 reached, current message count: 3')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max_msg_termination = MaxMessageTermination(max_messages=3)\n",
"round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=max_msg_termination)\n",
"\n",
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream(task=\"Write a unique, Haiku about the weather in Paris\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The conversation stopped after reaching the maximum message limit. Since the primary agent didn't get to respond to the feedback, let's continue the conversation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- primary ----------\n",
"Thank you for your feedback. Here is the revised Haiku:\n",
"\n",
"Soft rain whispers down, \n",
"Cobblestones glisten softly — \n",
"Paris dreams in gray.\n",
"[Prompt tokens: 181, Completion tokens: 32]\n",
"---------- critic ----------\n",
"The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! \n",
"\n",
"APPROVE\n",
"[Prompt tokens: 234, Completion tokens: 54]\n",
"---------- primary ----------\n",
"Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!\n",
"[Prompt tokens: 279, Completion tokens: 39]\n",
"---------- Summary ----------\n",
"Number of messages: 3\n",
"Finish reason: Maximum number of messages 3 reached, current message count: 3\n",
"Total prompt tokens: 694\n",
"Total completion tokens: 125\n",
"Duration: 6.43 seconds\n"
]
},
{
"data": {
"text/plain": [
"TaskResult(messages=[TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=181, completion_tokens=32), content='Thank you for your feedback. Here is the revised Haiku:\\n\\nSoft rain whispers down, \\nCobblestones glisten softly — \\nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=234, completion_tokens=54), content='The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! \\n\\nAPPROVE'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=279, completion_tokens=39), content=\"Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!\")], stop_reason='Maximum number of messages 3 reached, current message count: 3')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The team continued from where it left off, allowing the primary agent to respond to the feedback."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let's show how termination conditions can be combined using the AND (`&`) and OR (`|`) operators to create more complex termination logic. For example, we'll create a team that stops either after 10 messages are generated or when the critic agent approves a message.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- user ----------\n",
"Write a unique, Haiku about the weather in Paris\n",
"---------- primary ----------\n",
"Spring breeze gently hums, \n",
"Cherry blossoms in full bloom— \n",
"Paris wakes to life.\n",
"[Prompt tokens: 467, Completion tokens: 19]\n",
"---------- critic ----------\n",
"The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, \"Paris wakes to life,\" encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!\n",
"\n",
"APPROVE\n",
"[Prompt tokens: 746, Completion tokens: 93]\n",
"---------- Summary ----------\n",
"Number of messages: 3\n",
"Finish reason: Text 'APPROVE' mentioned\n",
"Total prompt tokens: 1213\n",
"Total completion tokens: 112\n",
"Duration: 2.75 seconds\n"
]
},
{
"data": {
"text/plain": [
"TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=467, completion_tokens=19), content='Spring breeze gently hums, \\nCherry blossoms in full bloom— \\nParis wakes to life.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=746, completion_tokens=93), content='The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, \"Paris wakes to life,\" encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!\\n\\nAPPROVE')], stop_reason=\"Text 'APPROVE' mentioned\")"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max_msg_termination = MaxMessageTermination(max_messages=10)\n",
"text_termination = TextMentionTermination(\"APPROVE\")\n",
"combined_termination = max_msg_termination | text_termination\n",
"\n",
"round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination)\n",
"\n",
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream(task=\"Write a unique, Haiku about the weather in Paris\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The conversation stopped after the critic agent approved the message, although it could have also stopped if 10 messages were generated.\n",
"\n",
"Alternatively, if we want to stop the run only when both conditions are met, we can use the AND (`&`) operator."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"combined_termination = max_msg_termination & text_termination"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
}, },
{ "nbformat": 4,
"data": { "nbformat_minor": 2
"text/plain": [
"TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=30, completion_tokens=19), content='Gentle rain whispers, \\nCobblestones glisten softly— \\nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=70, completion_tokens=120), content=\"The Haiku captures the essence of a rainy day in Paris beautifully, and the imagery is vivid. However, it's important to ensure the use of the traditional 5-7-5 syllable structure for Haikus. Your current Haiku lines are composed of 4-7-5 syllables, which slightly deviates from the form. Consider revising the first line to fit the structure.\\n\\nFor example:\\nSoft rain whispers down, \\nCobblestones glisten softly — \\nParis dreams in gray.\\n\\nThis revision maintains the essence of your original lines while adhering to the traditional Haiku structure.\")], stop_reason='Maximum number of messages 3 reached, current message count: 3')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max_msg_termination = MaxMessageTermination(max_messages=3)\n",
"round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=max_msg_termination)\n",
"\n",
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream(task=\"Write a unique, Haiku about the weather in Paris\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The conversation stopped after reaching the maximum message limit. Since the primary agent didn't get to respond to the feedback, let's continue the conversation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- primary ----------\n",
"Thank you for your feedback. Here is the revised Haiku:\n",
"\n",
"Soft rain whispers down, \n",
"Cobblestones glisten softly — \n",
"Paris dreams in gray.\n",
"[Prompt tokens: 181, Completion tokens: 32]\n",
"---------- critic ----------\n",
"The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! \n",
"\n",
"APPROVE\n",
"[Prompt tokens: 234, Completion tokens: 54]\n",
"---------- primary ----------\n",
"Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!\n",
"[Prompt tokens: 279, Completion tokens: 39]\n",
"---------- Summary ----------\n",
"Number of messages: 3\n",
"Finish reason: Maximum number of messages 3 reached, current message count: 3\n",
"Total prompt tokens: 694\n",
"Total completion tokens: 125\n",
"Duration: 6.43 seconds\n"
]
},
{
"data": {
"text/plain": [
"TaskResult(messages=[TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=181, completion_tokens=32), content='Thank you for your feedback. Here is the revised Haiku:\\n\\nSoft rain whispers down, \\nCobblestones glisten softly — \\nParis dreams in gray.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=234, completion_tokens=54), content='The revised Haiku now follows the traditional 5-7-5 syllable pattern, and it still beautifully captures the atmospheric mood of Paris in the rain. The imagery and flow are both clear and evocative. Well done on making the adjustment! \\n\\nAPPROVE'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=279, completion_tokens=39), content=\"Thank you for your kind words and approval. I'm glad the revision meets your expectations and captures the essence of Paris. If you have any more requests or need further assistance, feel free to ask!\")], stop_reason='Maximum number of messages 3 reached, current message count: 3')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The team continued from where it left off, allowing the primary agent to respond to the feedback."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let's show how termination conditions can be combined using the AND (`&`) and OR (`|`) operators to create more complex termination logic. For example, we'll create a team that stops either after 10 messages are generated or when the critic agent approves a message.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- user ----------\n",
"Write a unique, Haiku about the weather in Paris\n",
"---------- primary ----------\n",
"Spring breeze gently hums, \n",
"Cherry blossoms in full bloom— \n",
"Paris wakes to life.\n",
"[Prompt tokens: 467, Completion tokens: 19]\n",
"---------- critic ----------\n",
"The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, \"Paris wakes to life,\" encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!\n",
"\n",
"APPROVE\n",
"[Prompt tokens: 746, Completion tokens: 93]\n",
"---------- Summary ----------\n",
"Number of messages: 3\n",
"Finish reason: Text 'APPROVE' mentioned\n",
"Total prompt tokens: 1213\n",
"Total completion tokens: 112\n",
"Duration: 2.75 seconds\n"
]
},
{
"data": {
"text/plain": [
"TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Write a unique, Haiku about the weather in Paris'), TextMessage(source='primary', models_usage=RequestUsage(prompt_tokens=467, completion_tokens=19), content='Spring breeze gently hums, \\nCherry blossoms in full bloom— \\nParis wakes to life.'), TextMessage(source='critic', models_usage=RequestUsage(prompt_tokens=746, completion_tokens=93), content='The Haiku beautifully captures the awakening of Paris in the spring. The imagery of a gentle spring breeze and cherry blossoms in full bloom effectively conveys the rejuvenating feel of the season. The final line, \"Paris wakes to life,\" encapsulates the renewed energy and vibrancy of the city. The Haiku adheres to the 5-7-5 syllable structure and portrays a vivid seasonal transformation in a concise and poetic manner. Excellent work!\\n\\nAPPROVE')], stop_reason=\"Text 'APPROVE' mentioned\")"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max_msg_termination = MaxMessageTermination(max_messages=10)\n",
"text_termination = TextMentionTermination(\"APPROVE\")\n",
"combined_termination = max_msg_termination | text_termination\n",
"\n",
"round_robin_team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination)\n",
"\n",
"# Use asyncio.run(...) if you are running this script as a standalone script.\n",
"await Console(round_robin_team.run_stream(task=\"Write a unique, Haiku about the weather in Paris\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The conversation stopped after the critic agent approved the message, although it could have also stopped if 10 messages were generated.\n",
"\n",
"Alternatively, if we want to stop the run only when both conditions are met, we can use the AND (`&`) operator."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"combined_termination = max_msg_termination & text_termination"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
} }

View File

@ -23,14 +23,14 @@ from autogen_agentchat import EVENT_LOGGER_NAME
from autogen_agentchat.agents import BaseChatAgent from autogen_agentchat.agents import BaseChatAgent
from autogen_agentchat.base import Response from autogen_agentchat.base import Response
from autogen_agentchat.messages import ( from autogen_agentchat.messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallRequestEvent,
ToolCallResultMessage, ToolCallExecutionEvent,
) )
from autogen_core import CancellationToken, FunctionCall from autogen_core import CancellationToken, FunctionCall
from autogen_core.models._types import FunctionExecutionResult from autogen_core.models._types import FunctionExecutionResult
@ -350,7 +350,7 @@ class OpenAIAssistantAgent(BaseChatAgent):
async def on_messages_stream( async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
"""Handle incoming messages and return a response.""" """Handle incoming messages and return a response."""
await self._ensure_initialized() await self._ensure_initialized()
@ -362,7 +362,7 @@ class OpenAIAssistantAgent(BaseChatAgent):
await self.handle_text_message(message.content, cancellation_token) await self.handle_text_message(message.content, cancellation_token)
# Inner messages for tool calls # Inner messages for tool calls
inner_messages: List[AgentMessage] = [] inner_messages: List[AgentEvent | ChatMessage] = []
# Create and start a run # Create and start a run
run: Run = await cancellation_token.link_future( run: Run = await cancellation_token.link_future(
@ -402,7 +402,7 @@ class OpenAIAssistantAgent(BaseChatAgent):
) )
# Add tool call message to inner messages # Add tool call message to inner messages
tool_call_msg = ToolCallMessage(source=self.name, content=tool_calls) tool_call_msg = ToolCallRequestEvent(source=self.name, content=tool_calls)
inner_messages.append(tool_call_msg) inner_messages.append(tool_call_msg)
event_logger.debug(tool_call_msg) event_logger.debug(tool_call_msg)
yield tool_call_msg yield tool_call_msg
@ -414,7 +414,7 @@ class OpenAIAssistantAgent(BaseChatAgent):
tool_outputs.append(FunctionExecutionResult(content=result, call_id=tool_call.id)) tool_outputs.append(FunctionExecutionResult(content=result, call_id=tool_call.id))
# Add tool result message to inner messages # Add tool result message to inner messages
tool_result_msg = ToolCallResultMessage(source=self.name, content=tool_outputs) tool_result_msg = ToolCallExecutionEvent(source=self.name, content=tool_outputs)
inner_messages.append(tool_result_msg) inner_messages.append(tool_result_msg)
event_logger.debug(tool_result_msg) event_logger.debug(tool_result_msg)
yield tool_result_msg yield tool_result_msg

View File

@ -23,7 +23,7 @@ import aiofiles
import PIL.Image import PIL.Image
from autogen_agentchat.agents import BaseChatAgent from autogen_agentchat.agents import BaseChatAgent
from autogen_agentchat.base import Response from autogen_agentchat.base import Response
from autogen_agentchat.messages import AgentMessage, ChatMessage, MultiModalMessage, TextMessage from autogen_agentchat.messages import AgentEvent, ChatMessage, MultiModalMessage, TextMessage
from autogen_core import EVENT_LOGGER_NAME, CancellationToken, FunctionCall from autogen_core import EVENT_LOGGER_NAME, CancellationToken, FunctionCall
from autogen_core import Image as AGImage from autogen_core import Image as AGImage
from autogen_core.models import ( from autogen_core.models import (
@ -365,13 +365,13 @@ class MultimodalWebSurfer(BaseChatAgent):
async def on_messages_stream( async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentMessage | Response, None]: ) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
for chat_message in messages: for chat_message in messages:
if isinstance(chat_message, TextMessage | MultiModalMessage): if isinstance(chat_message, TextMessage | MultiModalMessage):
self._chat_history.append(UserMessage(content=chat_message.content, source=chat_message.source)) self._chat_history.append(UserMessage(content=chat_message.content, source=chat_message.source))
else: else:
raise ValueError(f"Unexpected message in MultiModalWebSurfer: {chat_message}") raise ValueError(f"Unexpected message in MultiModalWebSurfer: {chat_message}")
self.inner_messages: List[AgentMessage] = [] self.inner_messages: List[AgentEvent | ChatMessage] = []
self.model_usage: List[RequestUsage] = [] self.model_usage: List[RequestUsage] = []
try: try:
content = await self._generate_reply(cancellation_token=cancellation_token) content = await self._generate_reply(cancellation_token=cancellation_token)

View File

@ -2,7 +2,7 @@ import time
from typing import AsyncGenerator, Callable, Optional, Union from typing import AsyncGenerator, Callable, Optional, Union
from autogen_agentchat.base import TaskResult from autogen_agentchat.base import TaskResult
from autogen_agentchat.messages import AgentMessage, ChatMessage from autogen_agentchat.messages import AgentEvent, ChatMessage
from autogen_core import CancellationToken from autogen_core import CancellationToken
from .database import Component, ComponentFactory from .database import Component, ComponentFactory
@ -27,7 +27,7 @@ class TeamManager:
team_config: ComponentConfigInput, team_config: ComponentConfigInput,
input_func: Optional[Callable] = None, input_func: Optional[Callable] = None,
cancellation_token: Optional[CancellationToken] = None, cancellation_token: Optional[CancellationToken] = None,
) -> AsyncGenerator[Union[AgentMessage, ChatMessage, TaskResult], None]: ) -> AsyncGenerator[Union[AgentEvent | ChatMessage, ChatMessage, TaskResult], None]:
"""Stream the team's execution results""" """Stream the team's execution results"""
start_time = time.time() start_time = time.time()

View File

@ -6,14 +6,14 @@ from uuid import UUID
from autogen_agentchat.base._task import TaskResult from autogen_agentchat.base._task import TaskResult
from autogen_agentchat.messages import ( from autogen_agentchat.messages import (
AgentMessage, AgentEvent,
ChatMessage, ChatMessage,
HandoffMessage, HandoffMessage,
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
TextMessage, TextMessage,
ToolCallMessage, ToolCallRequestEvent,
ToolCallResultMessage, ToolCallExecutionEvent,
) )
from autogen_core import CancellationToken from autogen_core import CancellationToken
from autogen_core import Image as AGImage from autogen_core import Image as AGImage
@ -108,8 +108,8 @@ class WebSocketManager:
MultiModalMessage, MultiModalMessage,
StopMessage, StopMessage,
HandoffMessage, HandoffMessage,
ToolCallMessage, ToolCallRequestEvent,
ToolCallResultMessage, ToolCallExecutionEvent,
), ),
): ):
await self._save_message(run_id, message) await self._save_message(run_id, message)
@ -141,7 +141,7 @@ class WebSocketManager:
finally: finally:
self._cancellation_tokens.pop(run_id, None) self._cancellation_tokens.pop(run_id, None)
async def _save_message(self, run_id: UUID, message: Union[AgentMessage, ChatMessage]) -> None: async def _save_message(self, run_id: UUID, message: Union[AgentEvent | ChatMessage, ChatMessage]) -> None:
"""Save a message to the database""" """Save a message to the database"""
run = await self._get_run(run_id) run = await self._get_run(run_id)
if run: if run:
@ -325,7 +325,7 @@ class WebSocketManager:
} }
elif isinstance( elif isinstance(
message, (TextMessage, StopMessage, HandoffMessage, ToolCallMessage, ToolCallResultMessage) message, (TextMessage, StopMessage, HandoffMessage, ToolCallRequestEvent, ToolCallExecutionEvent)
): ):
return {"type": "message", "data": message.model_dump()} return {"type": "message", "data": message.model_dump()}

View File

@ -1,342 +1,342 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## AutoGen Studio Agent Workflow API Example\n", "## AutoGen Studio Agent Workflow API Example\n",
"\n", "\n",
"This notebook focuses on demonstrating capabilities of the autogen studio workflow python api. \n", "This notebook focuses on demonstrating capabilities of the autogen studio workflow python api. \n",
"\n", "\n",
"- Declarative Specification of an Agent Team\n", "- Declarative Specification of an Agent Team\n",
"- Loading the specification and running the resulting agent\n", "- Loading the specification and running the resulting agent\n",
"\n", "\n",
" " " "
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"task_result=TaskResult(messages=[TextMessage(source='user', models_usage=None, content='What is the weather in New York?', type='TextMessage'), ToolCallMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15), content=[FunctionCall(id='call_jcgtAVlBvTFzVpPxKX88Xsa4', arguments='{\"city\":\"New York\"}', name='get_weather')], type='ToolCallMessage'), ToolCallResultMessage(source='writing_agent', models_usage=None, content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_jcgtAVlBvTFzVpPxKX88Xsa4')], type='ToolCallResultMessage'), TextMessage(source='writing_agent', models_usage=None, content='The weather in New York is 73 degrees and Sunny.', type='TextMessage'), TextMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14), content='The current weather in New York is 73 degrees and sunny.', type='TextMessage')], stop_reason='Maximum number of messages 5 reached, current message count: 5') usage='' duration=5.103050947189331\n" "task_result=TaskResult(messages=[TextMessage(source='user', models_usage=None, content='What is the weather in New York?', type='TextMessage'), ToolCallRequestEvent(source='writing_agent', models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15), content=[FunctionCall(id='call_jcgtAVlBvTFzVpPxKX88Xsa4', arguments='{\"city\":\"New York\"}', name='get_weather')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='writing_agent', models_usage=None, content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_jcgtAVlBvTFzVpPxKX88Xsa4')], type='ToolCallExecutionEvent'), TextMessage(source='writing_agent', models_usage=None, content='The weather in New York is 73 degrees and Sunny.', type='TextMessage'), TextMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14), content='The current weather in New York is 73 degrees and sunny.', type='TextMessage')], stop_reason='Maximum number of messages 5 reached, current message count: 5') usage='' duration=5.103050947189331\n"
] ]
} }
], ],
"source": [ "source": [
"from autogenstudio.teammanager import TeamManager\n", "from autogenstudio.teammanager import TeamManager\n",
"\n", "\n",
"wm = TeamManager()\n", "wm = TeamManager()\n",
"result = await wm.run(task=\"What is the weather in New York?\", team_config=\"team.json\")\n", "result = await wm.run(task=\"What is the weather in New York?\", team_config=\"team.json\")\n",
"print(result)" "print(result)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"source='user' models_usage=None content='What is the weather in New York?' type='TextMessage'\n", "source='user' models_usage=None content='What is the weather in New York?' type='TextMessage'\n",
"source='writing_agent' models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15) content=[FunctionCall(id='call_EwdwWogp5jDKdB7t9WGCNjZW', arguments='{\"city\":\"New York\"}', name='get_weather')] type='ToolCallMessage'\n", "source='writing_agent' models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15) content=[FunctionCall(id='call_EwdwWogp5jDKdB7t9WGCNjZW', arguments='{\"city\":\"New York\"}', name='get_weather')] type='ToolCallRequestEvent'\n",
"source='writing_agent' models_usage=None content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_EwdwWogp5jDKdB7t9WGCNjZW')] type='ToolCallResultMessage'\n", "source='writing_agent' models_usage=None content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_EwdwWogp5jDKdB7t9WGCNjZW')] type='ToolCallExecutionEvent'\n",
"source='writing_agent' models_usage=None content='The weather in New York is 73 degrees and Sunny.' type='TextMessage'\n", "source='writing_agent' models_usage=None content='The weather in New York is 73 degrees and Sunny.' type='TextMessage'\n",
"source='writing_agent' models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14) content='The weather in New York is currently 73 degrees and sunny.' type='TextMessage'\n", "source='writing_agent' models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14) content='The weather in New York is currently 73 degrees and sunny.' type='TextMessage'\n",
"task_result=TaskResult(messages=[TextMessage(source='user', models_usage=None, content='What is the weather in New York?', type='TextMessage'), ToolCallMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15), content=[FunctionCall(id='call_EwdwWogp5jDKdB7t9WGCNjZW', arguments='{\"city\":\"New York\"}', name='get_weather')], type='ToolCallMessage'), ToolCallResultMessage(source='writing_agent', models_usage=None, content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_EwdwWogp5jDKdB7t9WGCNjZW')], type='ToolCallResultMessage'), TextMessage(source='writing_agent', models_usage=None, content='The weather in New York is 73 degrees and Sunny.', type='TextMessage'), TextMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14), content='The weather in New York is currently 73 degrees and sunny.', type='TextMessage')], stop_reason='Maximum number of messages 5 reached, current message count: 5') usage='' duration=1.284574270248413\n" "task_result=TaskResult(messages=[TextMessage(source='user', models_usage=None, content='What is the weather in New York?', type='TextMessage'), ToolCallRequestEvent(source='writing_agent', models_usage=RequestUsage(prompt_tokens=65, completion_tokens=15), content=[FunctionCall(id='call_EwdwWogp5jDKdB7t9WGCNjZW', arguments='{\"city\":\"New York\"}', name='get_weather')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='writing_agent', models_usage=None, content=[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_EwdwWogp5jDKdB7t9WGCNjZW')], type='ToolCallExecutionEvent'), TextMessage(source='writing_agent', models_usage=None, content='The weather in New York is 73 degrees and Sunny.', type='TextMessage'), TextMessage(source='writing_agent', models_usage=RequestUsage(prompt_tokens=103, completion_tokens=14), content='The weather in New York is currently 73 degrees and sunny.', type='TextMessage')], stop_reason='Maximum number of messages 5 reached, current message count: 5') usage='' duration=1.284574270248413\n"
] ]
} }
], ],
"source": [ "source": [
"result_stream = wm.run_stream(task=\"What is the weather in New York?\", team_config=\"team.json\")\n", "result_stream = wm.run_stream(task=\"What is the weather in New York?\", team_config=\"team.json\")\n",
"async for response in result_stream:\n", "async for response in result_stream:\n",
" print(response)" " print(response)"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## AutoGen Studio Database API\n", "## AutoGen Studio Database API\n",
"\n", "\n",
"Api for creating objects and serializing to a database." "Api for creating objects and serializing to a database."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"Response(message='Database is ready', status=True, data=None)" "Response(message='Database is ready', status=True, data=None)"
] ]
}, },
"execution_count": 3, "execution_count": 3,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"from autogenstudio.database import DatabaseManager\n", "from autogenstudio.database import DatabaseManager\n",
"import os\n", "import os\n",
"# delete database\n", "# delete database\n",
"# if os.path.exists(\"test.db\"):\n", "# if os.path.exists(\"test.db\"):\n",
"# os.remove(\"test.db\")\n", "# os.remove(\"test.db\")\n",
"\n", "\n",
"os.makedirs(\"test\", exist_ok=True)\n", "os.makedirs(\"test\", exist_ok=True)\n",
"# create a database\n", "# create a database\n",
"dbmanager = DatabaseManager(engine_uri=\"sqlite:///test.db\", base_dir=\"test\")\n", "dbmanager = DatabaseManager(engine_uri=\"sqlite:///test.db\", base_dir=\"test\")\n",
"dbmanager.initialize_database()" "dbmanager.initialize_database()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"\n", "\n",
"from sqlmodel import Session, text, select\n", "from sqlmodel import Session, text, select\n",
"from autogenstudio.datamodel.types import ModelTypes, TeamTypes, AgentTypes, ToolConfig, ToolTypes, OpenAIModelConfig, RoundRobinTeamConfig, MaxMessageTerminationConfig, AssistantAgentConfig, TerminationTypes\n", "from autogenstudio.datamodel.types import ModelTypes, TeamTypes, AgentTypes, ToolConfig, ToolTypes, OpenAIModelConfig, RoundRobinTeamConfig, MaxMessageTerminationConfig, AssistantAgentConfig, TerminationTypes\n",
"\n", "\n",
"from autogenstudio.datamodel.db import Model, Team, Agent, Tool,LinkTypes\n", "from autogenstudio.datamodel.db import Model, Team, Agent, Tool,LinkTypes\n",
"\n", "\n",
"user_id = \"guestuser@gmail.com\" \n", "user_id = \"guestuser@gmail.com\" \n",
"\n", "\n",
"gpt4_model = Model(user_id=user_id, config= OpenAIModelConfig(model=\"gpt-4o-2024-08-06\", model_type=ModelTypes.OPENAI).model_dump() )\n", "gpt4_model = Model(user_id=user_id, config= OpenAIModelConfig(model=\"gpt-4o-2024-08-06\", model_type=ModelTypes.OPENAI).model_dump() )\n",
"\n", "\n",
"weather_tool = Tool(user_id=user_id, config=ToolConfig(name=\"get_weather\", description=\"Get the weather for a city\", content=\"async def get_weather(city: str) -> str:\\n return f\\\"The weather in {city} is 73 degrees and Sunny.\\\"\",tool_type=ToolTypes.PYTHON_FUNCTION).model_dump() )\n", "weather_tool = Tool(user_id=user_id, config=ToolConfig(name=\"get_weather\", description=\"Get the weather for a city\", content=\"async def get_weather(city: str) -> str:\\n return f\\\"The weather in {city} is 73 degrees and Sunny.\\\"\",tool_type=ToolTypes.PYTHON_FUNCTION).model_dump() )\n",
"\n", "\n",
"adding_tool = Tool(user_id=user_id, config=ToolConfig(name=\"add\", description=\"Add two numbers\", content=\"async def add(a: int, b: int) -> int:\\n return a + b\", tool_type=ToolTypes.PYTHON_FUNCTION).model_dump() )\n", "adding_tool = Tool(user_id=user_id, config=ToolConfig(name=\"add\", description=\"Add two numbers\", content=\"async def add(a: int, b: int) -> int:\\n return a + b\", tool_type=ToolTypes.PYTHON_FUNCTION).model_dump() )\n",
"\n", "\n",
"writing_agent = Agent(user_id=user_id,\n", "writing_agent = Agent(user_id=user_id,\n",
" config=AssistantAgentConfig(\n", " config=AssistantAgentConfig(\n",
" name=\"writing_agent\",\n", " name=\"writing_agent\",\n",
" tools=[weather_tool.config],\n", " tools=[weather_tool.config],\n",
" agent_type=AgentTypes.ASSISTANT,\n", " agent_type=AgentTypes.ASSISTANT,\n",
" model_client=gpt4_model.config\n", " model_client=gpt4_model.config\n",
" ).model_dump()\n", " ).model_dump()\n",
" )\n", " )\n",
"\n", "\n",
"team = Team(user_id=user_id, config=RoundRobinTeamConfig(\n", "team = Team(user_id=user_id, config=RoundRobinTeamConfig(\n",
" name=\"weather_team\",\n", " name=\"weather_team\",\n",
" participants=[writing_agent.config],\n", " participants=[writing_agent.config],\n",
" termination_condition=MaxMessageTerminationConfig(termination_type=TerminationTypes.MAX_MESSAGES, max_messages=5).model_dump(),\n", " termination_condition=MaxMessageTerminationConfig(termination_type=TerminationTypes.MAX_MESSAGES, max_messages=5).model_dump(),\n",
" team_type=TeamTypes.ROUND_ROBIN\n", " team_type=TeamTypes.ROUND_ROBIN\n",
" ).model_dump()\n", " ).model_dump()\n",
")\n", ")\n",
"\n", "\n",
"with Session(dbmanager.engine) as session:\n", "with Session(dbmanager.engine) as session:\n",
" session.add(gpt4_model)\n", " session.add(gpt4_model)\n",
" session.add(weather_tool)\n", " session.add(weather_tool)\n",
" session.add(adding_tool)\n", " session.add(adding_tool)\n",
" session.add(writing_agent)\n", " session.add(writing_agent)\n",
" session.add(team)\n", " session.add(team)\n",
" session.commit()\n", " session.commit()\n",
"\n", "\n",
" dbmanager.link(LinkTypes.AGENT_MODEL, writing_agent.id, gpt4_model.id)\n", " dbmanager.link(LinkTypes.AGENT_MODEL, writing_agent.id, gpt4_model.id)\n",
" dbmanager.link(LinkTypes.AGENT_TOOL, writing_agent.id, weather_tool.id)\n", " dbmanager.link(LinkTypes.AGENT_TOOL, writing_agent.id, weather_tool.id)\n",
" dbmanager.link(LinkTypes.AGENT_TOOL, writing_agent.id, adding_tool.id)\n", " dbmanager.link(LinkTypes.AGENT_TOOL, writing_agent.id, adding_tool.id)\n",
" dbmanager.link(LinkTypes.TEAM_AGENT, team.id, writing_agent.id)\n" " dbmanager.link(LinkTypes.TEAM_AGENT, team.id, writing_agent.id)\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"2 teams in database\n" "2 teams in database\n"
] ]
} }
], ],
"source": [ "source": [
"all_teams = dbmanager.get(Team)\n", "all_teams = dbmanager.get(Team)\n",
"print(len(all_teams.data), \"teams in database\")" "print(len(all_teams.data), \"teams in database\")"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Configuration Manager\n", "## Configuration Manager\n",
"\n", "\n",
"Helper class to mostly import teams/agents/models/tools etc into a database." "Helper class to mostly import teams/agents/models/tools etc into a database."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from autogenstudio.database import ConfigurationManager\n", "from autogenstudio.database import ConfigurationManager\n",
"\n", "\n",
"config_manager = ConfigurationManager(dbmanager)\n" "config_manager = ConfigurationManager(dbmanager)\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"message='Team Created Successfully' status=True data={'id': 4, 'updated_at': datetime.datetime(2024, 12, 15, 15, 52, 21, 674916), 'version': '0.0.1', 'created_at': datetime.datetime(2024, 12, 15, 15, 52, 21, 674910), 'user_id': 'user_id', 'config': {'version': '1.0.0', 'component_type': 'team', 'name': 'weather_team', 'participants': [{'version': '1.0.0', 'component_type': 'agent', 'name': 'writing_agent', 'agent_type': 'AssistantAgent', 'description': None, 'model_client': {'version': '1.0.0', 'component_type': 'model', 'model': 'gpt-4o-2024-08-06', 'model_type': 'OpenAIChatCompletionClient', 'api_key': None, 'base_url': None}, 'tools': [{'version': '1.0.0', 'component_type': 'tool', 'name': 'get_weather', 'description': 'Get the weather for a city', 'content': 'async def get_weather(city: str) -> str:\\n return f\"The weather in {city} is 73 degrees and Sunny.\"', 'tool_type': 'PythonFunction'}], 'system_message': None}], 'team_type': 'RoundRobinGroupChat', 'termination_condition': {'version': '1.0.0', 'component_type': 'termination', 'termination_type': 'MaxMessageTermination', 'max_messages': 5}, 'max_turns': None}}\n" "message='Team Created Successfully' status=True data={'id': 4, 'updated_at': datetime.datetime(2024, 12, 15, 15, 52, 21, 674916), 'version': '0.0.1', 'created_at': datetime.datetime(2024, 12, 15, 15, 52, 21, 674910), 'user_id': 'user_id', 'config': {'version': '1.0.0', 'component_type': 'team', 'name': 'weather_team', 'participants': [{'version': '1.0.0', 'component_type': 'agent', 'name': 'writing_agent', 'agent_type': 'AssistantAgent', 'description': None, 'model_client': {'version': '1.0.0', 'component_type': 'model', 'model': 'gpt-4o-2024-08-06', 'model_type': 'OpenAIChatCompletionClient', 'api_key': None, 'base_url': None}, 'tools': [{'version': '1.0.0', 'component_type': 'tool', 'name': 'get_weather', 'description': 'Get the weather for a city', 'content': 'async def get_weather(city: str) -> str:\\n return f\"The weather in {city} is 73 degrees and Sunny.\"', 'tool_type': 'PythonFunction'}], 'system_message': None}], 'team_type': 'RoundRobinGroupChat', 'termination_condition': {'version': '1.0.0', 'component_type': 'termination', 'termination_type': 'MaxMessageTermination', 'max_messages': 5}, 'max_turns': None}}\n"
] ]
} }
], ],
"source": [ "source": [
"result = await config_manager.import_component(\"team.json\", user_id=\"user_id\", check_exists=True)\n", "result = await config_manager.import_component(\"team.json\", user_id=\"user_id\", check_exists=True)\n",
"print(result)" "print(result)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"message='Directory import complete' status=True data=[{'component': 'team', 'status': True, 'message': 'Team Created Successfully', 'id': 5}]\n" "message='Directory import complete' status=True data=[{'component': 'team', 'status': True, 'message': 'Team Created Successfully', 'id': 5}]\n"
] ]
} }
], ],
"source": [ "source": [
"result = await config_manager.import_directory(\".\", user_id=\"user_id\", check_exists=False)\n", "result = await config_manager.import_directory(\".\", user_id=\"user_id\", check_exists=False)\n",
"print(result)" "print(result)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"5 teams in database\n" "5 teams in database\n"
] ]
} }
], ],
"source": [ "source": [
"all_teams = dbmanager.get(Team)\n", "all_teams = dbmanager.get(Team)\n",
"print(len(all_teams.data), \"teams in database\")" "print(len(all_teams.data), \"teams in database\")"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Sample AgentChat Example (Python)" "## Sample AgentChat Example (Python)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 12,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from autogen_agentchat.agents import AssistantAgent\n", "from autogen_agentchat.agents import AssistantAgent\n",
"from autogen_agentchat.conditions import TextMentionTermination\n", "from autogen_agentchat.conditions import TextMentionTermination\n",
"from autogen_agentchat.teams import RoundRobinGroupChat, SelectorGroupChat\n", "from autogen_agentchat.teams import RoundRobinGroupChat, SelectorGroupChat\n",
"from autogen_ext.models.openai import OpenAIChatCompletionClient\n", "from autogen_ext.models.openai import OpenAIChatCompletionClient\n",
"\n", "\n",
"planner_agent = AssistantAgent(\n", "planner_agent = AssistantAgent(\n",
" \"planner_agent\",\n", " \"planner_agent\",\n",
" model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n", " model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n",
" description=\"A helpful assistant that can plan trips.\",\n", " description=\"A helpful assistant that can plan trips.\",\n",
" system_message=\"You are a helpful assistant that can suggest a travel plan for a user based on their request. Respond with a single sentence\",\n", " system_message=\"You are a helpful assistant that can suggest a travel plan for a user based on their request. Respond with a single sentence\",\n",
")\n", ")\n",
"\n", "\n",
"local_agent = AssistantAgent(\n", "local_agent = AssistantAgent(\n",
" \"local_agent\",\n", " \"local_agent\",\n",
" model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n", " model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n",
" description=\"A local assistant that can suggest local activities or places to visit.\",\n", " description=\"A local assistant that can suggest local activities or places to visit.\",\n",
" system_message=\"You are a helpful assistant that can suggest authentic and interesting local activities or places to visit for a user and can utilize any context information provided. Respond with a single sentence\",\n", " system_message=\"You are a helpful assistant that can suggest authentic and interesting local activities or places to visit for a user and can utilize any context information provided. Respond with a single sentence\",\n",
")\n", ")\n",
"\n", "\n",
"language_agent = AssistantAgent(\n", "language_agent = AssistantAgent(\n",
" \"language_agent\",\n", " \"language_agent\",\n",
" model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n", " model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n",
" description=\"A helpful assistant that can provide language tips for a given destination.\",\n", " description=\"A helpful assistant that can provide language tips for a given destination.\",\n",
" system_message=\"You are a helpful assistant that can review travel plans, providing feedback on important/critical tips about how best to address language or communication challenges for the given destination. If the plan already includes language tips, you can mention that the plan is satisfactory, with rationale.Respond with a single sentence\",\n", " system_message=\"You are a helpful assistant that can review travel plans, providing feedback on important/critical tips about how best to address language or communication challenges for the given destination. If the plan already includes language tips, you can mention that the plan is satisfactory, with rationale.Respond with a single sentence\",\n",
")\n", ")\n",
"\n", "\n",
"travel_summary_agent = AssistantAgent(\n", "travel_summary_agent = AssistantAgent(\n",
" \"travel_summary_agent\",\n", " \"travel_summary_agent\",\n",
" model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n", " model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n",
" description=\"A helpful assistant that can summarize the travel plan.\",\n", " description=\"A helpful assistant that can summarize the travel plan.\",\n",
" system_message=\"You are a helpful assistant that can take in all of the suggestions and advice from the other agents and provide a detailed tfinal travel plan. You must ensure th b at the final plan is integrated and complete. YOUR FINAL RESPONSE MUST BE THE COMPLETE PLAN. When the plan is complete and all perspectives are integrated, you can respond with TERMINATE.Respond with a single sentence\",\n", " system_message=\"You are a helpful assistant that can take in all of the suggestions and advice from the other agents and provide a detailed tfinal travel plan. You must ensure th b at the final plan is integrated and complete. YOUR FINAL RESPONSE MUST BE THE COMPLETE PLAN. When the plan is complete and all perspectives are integrated, you can respond with TERMINATE.Respond with a single sentence\",\n",
")\n", ")\n",
"\n", "\n",
"termination = TextMentionTermination(\"TERMINATE\")\n", "termination = TextMentionTermination(\"TERMINATE\")\n",
"group_chat = RoundRobinGroupChat(\n", "group_chat = RoundRobinGroupChat(\n",
" [planner_agent, local_agent, language_agent, travel_summary_agent], termination_condition=termination\n", " [planner_agent, local_agent, language_agent, travel_summary_agent], termination_condition=termination\n",
")" ")"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 13,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"source='user' models_usage=None content='Plan a 3 day trip to Nepal.' type='TextMessage'\n", "source='user' models_usage=None content='Plan a 3 day trip to Nepal.' type='TextMessage'\n",
"source='planner_agent' models_usage=RequestUsage(prompt_tokens=45, completion_tokens=53) content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.' type='TextMessage'\n", "source='planner_agent' models_usage=RequestUsage(prompt_tokens=45, completion_tokens=53) content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.' type='TextMessage'\n",
"source='local_agent' models_usage=RequestUsage(prompt_tokens=115, completion_tokens=53) content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.' type='TextMessage'\n", "source='local_agent' models_usage=RequestUsage(prompt_tokens=115, completion_tokens=53) content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.' type='TextMessage'\n",
"source='language_agent' models_usage=RequestUsage(prompt_tokens=199, completion_tokens=42) content=\"For your trip to Nepal, it's crucial to learn some phrases in Nepali since English is not widely spoken outside of major cities and tourist areas; even a simple phrasebook or translation app would be beneficial.\" type='TextMessage'\n", "source='language_agent' models_usage=RequestUsage(prompt_tokens=199, completion_tokens=42) content=\"For your trip to Nepal, it's crucial to learn some phrases in Nepali since English is not widely spoken outside of major cities and tourist areas; even a simple phrasebook or translation app would be beneficial.\" type='TextMessage'\n",
"source='travel_summary_agent' models_usage=RequestUsage(prompt_tokens=265, completion_tokens=298) content=\"Day 1: Begin your journey in Kathmandu, where you can visit the historic Durbar Square, a UNESCO World Heritage site that showcases intricate woodcarving and houses the iconic Kasthamandap Temple. From there, proceed to the sacred Pashupatinath Temple, a significant Hindu pilgrimage site on the banks of the holy Bagmati River.\\n\\nDay 2: Embark on an early morning scenic flight over the Everest range. This one-hour flight provides a breathtaking view of the world's highest peak along with other neighboring peaks. Standard flights depart from Tribhuvan International Airport between 6:30 AM to 7:30 AM depending on the weather. Spend the remainder of the day exploring the local markets in Kathmandu, sampling a variety of Nepalese cuisines and shopping for unique souvenirs.\\n\\nDay 3: Finally, take a short flight or drive to Pokhara, the gateway to the Annapurna region. Embark on a guided hike enjoying the stunning backdrop of the Annapurna ranges and the serene Phewa lake.\\n\\nRemember to bring along a phrasebook or translation app, as English is not widely spoken in Nepal, particularly outside of major cities and tourist hotspots. \\n\\nPack comfortable trekking gear, adequate water, medical and emergency supplies. It's also advisable to check on the weather updates, as conditions can change rapidly, particularly in mountainous areas. Enjoy your Nepal expedition!TERMINATE\" type='TextMessage'\n", "source='travel_summary_agent' models_usage=RequestUsage(prompt_tokens=265, completion_tokens=298) content=\"Day 1: Begin your journey in Kathmandu, where you can visit the historic Durbar Square, a UNESCO World Heritage site that showcases intricate woodcarving and houses the iconic Kasthamandap Temple. From there, proceed to the sacred Pashupatinath Temple, a significant Hindu pilgrimage site on the banks of the holy Bagmati River.\\n\\nDay 2: Embark on an early morning scenic flight over the Everest range. This one-hour flight provides a breathtaking view of the world's highest peak along with other neighboring peaks. Standard flights depart from Tribhuvan International Airport between 6:30 AM to 7:30 AM depending on the weather. Spend the remainder of the day exploring the local markets in Kathmandu, sampling a variety of Nepalese cuisines and shopping for unique souvenirs.\\n\\nDay 3: Finally, take a short flight or drive to Pokhara, the gateway to the Annapurna region. Embark on a guided hike enjoying the stunning backdrop of the Annapurna ranges and the serene Phewa lake.\\n\\nRemember to bring along a phrasebook or translation app, as English is not widely spoken in Nepal, particularly outside of major cities and tourist hotspots. \\n\\nPack comfortable trekking gear, adequate water, medical and emergency supplies. It's also advisable to check on the weather updates, as conditions can change rapidly, particularly in mountainous areas. Enjoy your Nepal expedition!TERMINATE\" type='TextMessage'\n",
"TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Plan a 3 day trip to Nepal.', type='TextMessage'), TextMessage(source='planner_agent', models_usage=RequestUsage(prompt_tokens=45, completion_tokens=53), content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.', type='TextMessage'), TextMessage(source='local_agent', models_usage=RequestUsage(prompt_tokens=115, completion_tokens=53), content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.', type='TextMessage'), TextMessage(source='language_agent', models_usage=RequestUsage(prompt_tokens=199, completion_tokens=42), content=\"For your trip to Nepal, it's crucial to learn some phrases in Nepali since English is not widely spoken outside of major cities and tourist areas; even a simple phrasebook or translation app would be beneficial.\", type='TextMessage'), TextMessage(source='travel_summary_agent', models_usage=RequestUsage(prompt_tokens=265, completion_tokens=298), content=\"Day 1: Begin your journey in Kathmandu, where you can visit the historic Durbar Square, a UNESCO World Heritage site that showcases intricate woodcarving and houses the iconic Kasthamandap Temple. From there, proceed to the sacred Pashupatinath Temple, a significant Hindu pilgrimage site on the banks of the holy Bagmati River.\\n\\nDay 2: Embark on an early morning scenic flight over the Everest range. This one-hour flight provides a breathtaking view of the world's highest peak along with other neighboring peaks. Standard flights depart from Tribhuvan International Airport between 6:30 AM to 7:30 AM depending on the weather. Spend the remainder of the day exploring the local markets in Kathmandu, sampling a variety of Nepalese cuisines and shopping for unique souvenirs.\\n\\nDay 3: Finally, take a short flight or drive to Pokhara, the gateway to the Annapurna region. Embark on a guided hike enjoying the stunning backdrop of the Annapurna ranges and the serene Phewa lake.\\n\\nRemember to bring along a phrasebook or translation app, as English is not widely spoken in Nepal, particularly outside of major cities and tourist hotspots. \\n\\nPack comfortable trekking gear, adequate water, medical and emergency supplies. It's also advisable to check on the weather updates, as conditions can change rapidly, particularly in mountainous areas. Enjoy your Nepal expedition!TERMINATE\", type='TextMessage')], stop_reason=\"Text 'TERMINATE' mentioned\")\n" "TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Plan a 3 day trip to Nepal.', type='TextMessage'), TextMessage(source='planner_agent', models_usage=RequestUsage(prompt_tokens=45, completion_tokens=53), content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.', type='TextMessage'), TextMessage(source='local_agent', models_usage=RequestUsage(prompt_tokens=115, completion_tokens=53), content='I recommend starting your trip in Kathmandu, where you can explore the historic Durbar Square and Pashupatinath Temple, then take a scenic flight over the Everest range, and finish your journey with a stunning hike in the Annapurna region.', type='TextMessage'), TextMessage(source='language_agent', models_usage=RequestUsage(prompt_tokens=199, completion_tokens=42), content=\"For your trip to Nepal, it's crucial to learn some phrases in Nepali since English is not widely spoken outside of major cities and tourist areas; even a simple phrasebook or translation app would be beneficial.\", type='TextMessage'), TextMessage(source='travel_summary_agent', models_usage=RequestUsage(prompt_tokens=265, completion_tokens=298), content=\"Day 1: Begin your journey in Kathmandu, where you can visit the historic Durbar Square, a UNESCO World Heritage site that showcases intricate woodcarving and houses the iconic Kasthamandap Temple. From there, proceed to the sacred Pashupatinath Temple, a significant Hindu pilgrimage site on the banks of the holy Bagmati River.\\n\\nDay 2: Embark on an early morning scenic flight over the Everest range. This one-hour flight provides a breathtaking view of the world's highest peak along with other neighboring peaks. Standard flights depart from Tribhuvan International Airport between 6:30 AM to 7:30 AM depending on the weather. Spend the remainder of the day exploring the local markets in Kathmandu, sampling a variety of Nepalese cuisines and shopping for unique souvenirs.\\n\\nDay 3: Finally, take a short flight or drive to Pokhara, the gateway to the Annapurna region. Embark on a guided hike enjoying the stunning backdrop of the Annapurna ranges and the serene Phewa lake.\\n\\nRemember to bring along a phrasebook or translation app, as English is not widely spoken in Nepal, particularly outside of major cities and tourist hotspots. \\n\\nPack comfortable trekking gear, adequate water, medical and emergency supplies. It's also advisable to check on the weather updates, as conditions can change rapidly, particularly in mountainous areas. Enjoy your Nepal expedition!TERMINATE\", type='TextMessage')], stop_reason=\"Text 'TERMINATE' mentioned\")\n"
] ]
} }
], ],
"source": [ "source": [
"\n", "\n",
"result = group_chat.run_stream(task=\"Plan a 3 day trip to Nepal.\")\n", "result = group_chat.run_stream(task=\"Plan a 3 day trip to Nepal.\")\n",
"async for response in result:\n", "async for response in result:\n",
" print(response)" " print(response)"
] ]
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "agnext", "display_name": "agnext",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
"version": 3 "version": 3
}, },
"file_extension": ".py", "file_extension": ".py",
"mimetype": "text/x-python", "mimetype": "text/x-python",
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.9" "version": "3.11.9"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }