mirror of https://github.com/microsoft/autogen.git
Zero-shot AutoML (#468)
* Prepare for release Co-authored-by: Moe Kayali <t-moekayali@microsoft.com> * bug fix * improve doc and code quality Co-authored-by: Qingyun Wu
This commit is contained in:
parent
01ca0422ea
commit
df01031cfe
|
@ -49,6 +49,7 @@ from .data import (
|
|||
)
|
||||
from . import tune
|
||||
from .training_log import training_log_reader, training_log_writer
|
||||
from flaml.default.suggest import suggest_learner
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger_formatter = logging.Formatter(
|
||||
|
@ -540,9 +541,13 @@ class AutoML(BaseEstimator):
|
|||
is used. BlendSearch can be tried when the search space is
|
||||
complex, for example, containing multiple disjoint, discontinuous
|
||||
subspaces. When set to 'random', random search is used.
|
||||
starting_points: A dictionary to specify the starting hyperparameter
|
||||
config for the estimators.
|
||||
Keys are the name of the estimators, and values are the starting
|
||||
starting_points: A dictionary or a str to specify the starting hyperparameter
|
||||
config for the estimators | default="static".
|
||||
If str:
|
||||
- if "data", use data-dependent defaults;
|
||||
- if "data:path" use data-dependent defaults which are stored at path;
|
||||
- if "static", use data-independent defaults.
|
||||
If dict, keys are the name of the estimators, and values are the starting
|
||||
hyperparamter configurations for the corresponding estimators.
|
||||
The value can be a single hyperparamter configuration dict or a list
|
||||
of hyperparamter configuration dicts.
|
||||
|
@ -611,7 +616,7 @@ class AutoML(BaseEstimator):
|
|||
settings["split_type"] = settings.get("split_type", "auto")
|
||||
settings["hpo_method"] = settings.get("hpo_method", "auto")
|
||||
settings["learner_selector"] = settings.get("learner_selector", "sample")
|
||||
settings["starting_points"] = settings.get("starting_points", {})
|
||||
settings["starting_points"] = settings.get("starting_points", "static")
|
||||
settings["n_concurrent_trials"] = settings.get("n_concurrent_trials", 1)
|
||||
settings["keep_search_state"] = settings.get("keep_search_state", False)
|
||||
settings["early_stop"] = settings.get("early_stop", False)
|
||||
|
@ -1900,9 +1905,13 @@ class AutoML(BaseEstimator):
|
|||
is used. BlendSearch can be tried when the search space is
|
||||
complex, for example, containing multiple disjoint, discontinuous
|
||||
subspaces. When set to 'random', random search is used.
|
||||
starting_points: A dictionary to specify the starting hyperparameter
|
||||
config for the estimators.
|
||||
Keys are the name of the estimators, and values are the starting
|
||||
starting_points: A dictionary or a str to specify the starting hyperparameter
|
||||
config for the estimators | default="data".
|
||||
If str:
|
||||
- if "data", use data-dependent defaults;
|
||||
- if "data:path" use data-dependent defaults which are stored at path;
|
||||
- if "static", use data-independent defaults.
|
||||
If dict, keys are the name of the estimators, and values are the starting
|
||||
hyperparamter configurations for the corresponding estimators.
|
||||
The value can be a single hyperparamter configuration dict or a list
|
||||
of hyperparamter configuration dicts.
|
||||
|
@ -2191,6 +2200,41 @@ class AutoML(BaseEstimator):
|
|||
get_estimator_class(self._state.task, estimator_name),
|
||||
)
|
||||
# set up learner search space
|
||||
if isinstance(starting_points, str) and starting_points.startswith("data"):
|
||||
from flaml.default import suggest_config
|
||||
|
||||
location = starting_points[5:]
|
||||
starting_points = {}
|
||||
for estimator_name in estimator_list:
|
||||
try:
|
||||
configs = suggest_config(
|
||||
self._state.task,
|
||||
self._X_train_all,
|
||||
self._y_train_all,
|
||||
estimator_name,
|
||||
location,
|
||||
k=1,
|
||||
)
|
||||
starting_points[estimator_name] = [
|
||||
x["hyperparameters"] for x in configs
|
||||
]
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
try:
|
||||
learner = suggest_learner(
|
||||
self._state.task,
|
||||
self._X_train_all,
|
||||
self._y_train_all,
|
||||
estimator_list=estimator_list,
|
||||
location=location,
|
||||
)
|
||||
if learner != estimator_list[0]:
|
||||
estimator_list.remove(learner)
|
||||
estimator_list.insert(0, learner)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
starting_points = {} if starting_points == "static" else starting_points
|
||||
for estimator_name in estimator_list:
|
||||
estimator_class = self._state.learner_classes[estimator_name]
|
||||
estimator_class.init()
|
||||
|
|
|
@ -0,0 +1,184 @@
|
|||
# FLAML-Zero: Zero-shot AutoML
|
||||
|
||||
## Zero-shot AutoML
|
||||
|
||||
There are several ways to use zero-shot AutoML, i.e., train a model with the data-dependent default configuration.
|
||||
|
||||
0. Use estimators in `flaml.default.estimator`.
|
||||
|
||||
```python
|
||||
from flaml.default import LGBMRegressor
|
||||
|
||||
estimator = LGBMRegressor()
|
||||
estimator.fit(X_train, y_train)
|
||||
estimator.predict(X_test, y_test)
|
||||
```
|
||||
|
||||
|
||||
1. Use AutoML.fit(). set `starting_points="data"` and `max_iter=0`.
|
||||
|
||||
```python
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 2,
|
||||
"task": "classification",
|
||||
"log_file_name": "test/iris.log",
|
||||
"starting_points": "data",
|
||||
"max_iter": 0,
|
||||
}
|
||||
automl.fit(X_train, y_train, **automl_settings)
|
||||
```
|
||||
|
||||
2. Use `flaml.default.preprocess_and_suggest_hyperparams`.
|
||||
|
||||
```python
|
||||
from flaml.default import preprocess_and_suggest_hyperparams
|
||||
|
||||
X, y = load_iris(return_X_y=True, as_frame=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
|
||||
hyperparams, estimator_class, X_transformed, y_transformed, feature_transformer, label_transformer = preprocess_and_suggest_hyperparams(
|
||||
"classification", X_train, y_train, "lgbm"
|
||||
)
|
||||
model = estimator_class(**hyperparams) # estimator_class is LGBMClassifier
|
||||
model.fit(X_transformed, y_train) # LGBMClassifier can handle raw labels
|
||||
X_test = feature_transformer.transform(X_test) # preprocess test data
|
||||
y_pred = model.predict(X_test)
|
||||
```
|
||||
|
||||
If you want to use your own meta-learned defaults, specify the path containing the meta-learned defaults. For example,
|
||||
|
||||
```python
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 2,
|
||||
"task": "classification",
|
||||
"log_file_name": "test/iris.log",
|
||||
"starting_points": "data:test/default",
|
||||
"estimator_list": ["lgbm", "xgb_limitdepth", "rf"]
|
||||
"max_iter": 0,
|
||||
}
|
||||
automl.fit(X_train, y_train, **automl_settings)
|
||||
```
|
||||
|
||||
Since this is a multiclass task, it will look for the following files under `test/default/`:
|
||||
|
||||
- `all/multiclass.json`.
|
||||
- `{learner_name}/multiclass.json` for every learner_name in the estimator_list.
|
||||
|
||||
Read the next subsection to understand how to generate these files if you would like to meta-learn the defaults yourself.
|
||||
|
||||
To perform hyperparameter search starting with the data-dependent defaults, remove `max_iter=0`.
|
||||
|
||||
## Perform Meta Learning
|
||||
|
||||
FLAML provides a package `flaml.default` to learn defaults customized for your own tasks/learners/metrics.
|
||||
|
||||
### Prepare a collection of training tasks
|
||||
|
||||
Collect a diverse set of training tasks. For each task, extract its meta feature and save in a .csv file. For example, test/default/all/metafeatures.csv:
|
||||
|
||||
```
|
||||
Dataset,NumberOfInstances,NumberOfFeatures,NumberOfClasses,PercentageOfNumericFeatures
|
||||
2dplanes,36691,10,0,1.0
|
||||
adult,43957,14,2,0.42857142857142855
|
||||
Airlines,485444,7,2,0.42857142857142855
|
||||
Albert,382716,78,2,0.3333333333333333
|
||||
Amazon_employee_access,29492,9,2,0.0
|
||||
bng_breastTumor,104976,9,0,0.1111111111111111
|
||||
bng_pbc,900000,18,0,0.5555555555555556
|
||||
car,1555,6,4,0.0
|
||||
connect-4,60801,42,3,0.0
|
||||
dilbert,9000,2000,5,1.0
|
||||
Dionis,374569,60,355,1.0
|
||||
poker,922509,10,0,1.0
|
||||
```
|
||||
|
||||
The first column is the dataset name, and the latter four are meta features.
|
||||
|
||||
### Prepare the candidate configurations
|
||||
|
||||
You can extract the best configurations for each task in your collection of training tasks by running flaml on each of them with a long enough budget. Save the best configuration in a .json file under `{location_for_defaults}/{learner_name}/{task_name}.json`. For example,
|
||||
|
||||
```python
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
automl.fit(X_train, y_train, estimator_list=["lgbm"], **settings)
|
||||
automl.save_best_config("test/default/lgbm/iris.json")
|
||||
```
|
||||
|
||||
### Evaluate each candidate configuration on each task
|
||||
|
||||
Save the evaluation results in a .csv file. For example, save the evaluation results for lgbm under `test/default/lgbm/results.csv`:
|
||||
|
||||
```
|
||||
task,fold,type,result,params
|
||||
2dplanes,0,regression,0.946366,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
2dplanes,0,regression,0.907774,{'_modeljson': 'lgbm/adult.json'}
|
||||
2dplanes,0,regression,0.901643,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
2dplanes,0,regression,0.915098,{'_modeljson': 'lgbm/Albert.json'}
|
||||
2dplanes,0,regression,0.302328,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
2dplanes,0,regression,0.94523,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
2dplanes,0,regression,0.945698,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
2dplanes,0,regression,0.946194,{'_modeljson': 'lgbm/car.json'}
|
||||
2dplanes,0,regression,0.945549,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
2dplanes,0,regression,0.946232,{'_modeljson': 'lgbm/default.json'}
|
||||
2dplanes,0,regression,0.945594,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
2dplanes,0,regression,0.836996,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
2dplanes,0,regression,0.917152,{'_modeljson': 'lgbm/poker.json'}
|
||||
adult,0,binary,0.927203,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
adult,0,binary,0.932072,{'_modeljson': 'lgbm/adult.json'}
|
||||
adult,0,binary,0.926563,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
adult,0,binary,0.928604,{'_modeljson': 'lgbm/Albert.json'}
|
||||
adult,0,binary,0.911171,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.930645,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
adult,0,binary,0.928603,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
adult,0,binary,0.915825,{'_modeljson': 'lgbm/car.json'}
|
||||
adult,0,binary,0.919499,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
adult,0,binary,0.930109,{'_modeljson': 'lgbm/default.json'}
|
||||
adult,0,binary,0.932453,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
adult,0,binary,0.921959,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
adult,0,binary,0.910763,{'_modeljson': 'lgbm/poker.json'}
|
||||
...
|
||||
```
|
||||
|
||||
The `type` column indicates the type of the task, such as regression, binary or multiclass.
|
||||
The `result` column stores the evaluation result, assuming the large the better. The `params` column indicates which json config is used. For example 'lgbm/2dplanes.json' indicates that the best lgbm configuration extracted from 2dplanes is used.
|
||||
|
||||
### Learn data-dependent defaults
|
||||
|
||||
To recap, the inputs required for meta-learning are:
|
||||
|
||||
1. Metafeatures: e.g., `{location}/all/metafeatures.csv`.
|
||||
1. Configurations: `{location}/{learner_name}/{task_name}.json`.
|
||||
1. Evaluation results: `{location}/{learner_name}/results.csv`.
|
||||
|
||||
For example, if the input location is "test/default", learners are lgbm, xgb_limitdepth and rf, the following command learns data-dependent defaults for binary classification tasks.
|
||||
|
||||
```bash
|
||||
python portfolio.py --output test/default --input test/default --metafeatures test/default/all/metafeatures.csv --task binary --estimator lgbm xgb_limitdepth rf
|
||||
```
|
||||
|
||||
It will produce the following files as output:
|
||||
|
||||
- test/default/lgbm/binary.json: the learned defaults for lgbm.
|
||||
- test/default/xgb_limitdepth/binary.json: the learned defaults for xgb_limitdepth.
|
||||
- test/default/rf/binary.json: the learned defaults for rf.
|
||||
- test/default/all/binary.json: the learned defaults for lgbm, xgb_limitdepth and rf together.
|
||||
|
||||
Change "binary" into "multiclass" or "regression" for the other tasks.
|
||||
|
||||
## Reference
|
||||
|
||||
For more technical details, please check our research paper.
|
||||
|
||||
* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. arXiv preprint arXiv:2202.09927 (2022).
|
||||
|
||||
```bibtex
|
||||
@article{Kayali2022default,
|
||||
title={Mining Robust Default Configurations for Resource-constrained AutoML},
|
||||
author={Moe Kayali and Chi Wang},
|
||||
year={2022},
|
||||
journal={arXiv preprint arXiv:2202.09927},
|
||||
}
|
||||
```
|
|
@ -0,0 +1,18 @@
|
|||
from .suggest import (
|
||||
suggest_config,
|
||||
suggest_learner,
|
||||
suggest_hyperparams,
|
||||
preprocess_and_suggest_hyperparams,
|
||||
meta_feature,
|
||||
)
|
||||
from .estimator import (
|
||||
flamlize_estimator,
|
||||
LGBMClassifier,
|
||||
LGBMRegressor,
|
||||
XGBClassifier,
|
||||
XGBRegressor,
|
||||
RandomForestClassifier,
|
||||
RandomForestRegressor,
|
||||
ExtraTreesClassifier,
|
||||
ExtraTreesRegressor,
|
||||
)
|
|
@ -0,0 +1,943 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2541,
|
||||
"num_leaves": 1667,
|
||||
"min_child_samples": 29,
|
||||
"learning_rate": 0.0016660662914022302,
|
||||
"log_max_bin": 8,
|
||||
"colsample_bytree": 0.5157078343718623,
|
||||
"reg_alpha": 0.045792841240713165,
|
||||
"reg_lambda": 0.0012362651138125363,
|
||||
"FLAML_sample_size": 436899
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 141,
|
||||
"num_leaves": 139,
|
||||
"min_child_samples": 8,
|
||||
"learning_rate": 0.04824748268727149,
|
||||
"log_max_bin": 9,
|
||||
"colsample_bytree": 0.5261441571042451,
|
||||
"reg_alpha": 0.002896920833899335,
|
||||
"reg_lambda": 0.024463247502165594
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 31204,
|
||||
"num_leaves": 4,
|
||||
"min_child_samples": 3,
|
||||
"learning_rate": 0.009033979476164342,
|
||||
"log_max_bin": 10,
|
||||
"colsample_bytree": 0.5393339924944204,
|
||||
"reg_alpha": 15.800090067239827,
|
||||
"reg_lambda": 34.82471227276953
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 362,
|
||||
"num_leaves": 1208,
|
||||
"min_child_samples": 8,
|
||||
"learning_rate": 0.02070742242160566,
|
||||
"log_max_bin": 4,
|
||||
"colsample_bytree": 0.37915528071680865,
|
||||
"reg_alpha": 0.002982599447751338,
|
||||
"reg_lambda": 1.136605174453919,
|
||||
"FLAML_sample_size": 337147
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 319,
|
||||
"max_leaves": 1312,
|
||||
"min_child_weight": 0.001,
|
||||
"learning_rate": 0.01872379806270421,
|
||||
"subsample": 0.6890079660561895,
|
||||
"colsample_bylevel": 0.7551225121854014,
|
||||
"colsample_bytree": 0.7860755604500558,
|
||||
"reg_alpha": 0.17028752704343114,
|
||||
"reg_lambda": 1.4375743264564231
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 7902,
|
||||
"max_leaves": 49,
|
||||
"min_child_weight": 0.038063497848955595,
|
||||
"learning_rate": 0.0009765625,
|
||||
"subsample": 0.9357800695141445,
|
||||
"colsample_bylevel": 0.47031312177249246,
|
||||
"colsample_bytree": 0.9053386579586192,
|
||||
"reg_alpha": 1.5286102593845932,
|
||||
"reg_lambda": 18.96811296717419
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 13499,
|
||||
"max_leaves": 60,
|
||||
"min_child_weight": 0.008494221584011285,
|
||||
"learning_rate": 0.006955765856675575,
|
||||
"subsample": 0.5965241023754743,
|
||||
"colsample_bylevel": 0.590641168068946,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.2522240954379289,
|
||||
"reg_lambda": 5.351809144038808
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 591,
|
||||
"max_leaves": 16651,
|
||||
"min_child_weight": 0.03356567864689129,
|
||||
"learning_rate": 0.002595066436678338,
|
||||
"subsample": 0.9114132805513452,
|
||||
"colsample_bylevel": 0.9503441844594458,
|
||||
"colsample_bytree": 0.5703338448066768,
|
||||
"reg_alpha": 0.010405212349127894,
|
||||
"reg_lambda": 0.05352660657433639
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 877,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 0.6205465771093738,
|
||||
"learning_rate": 0.013622118381700795,
|
||||
"subsample": 0.566692814245426,
|
||||
"colsample_bylevel": 0.8865741642101924,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.01386336444764391,
|
||||
"reg_lambda": 3.113947886074155
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 5457,
|
||||
"max_depth": 6,
|
||||
"min_child_weight": 0.19978269031877885,
|
||||
"learning_rate": 0.003906732665632749,
|
||||
"subsample": 0.8207785234496902,
|
||||
"colsample_bylevel": 0.8438751931476698,
|
||||
"colsample_bytree": 0.42202862997585794,
|
||||
"reg_alpha": 0.017372558844968737,
|
||||
"reg_lambda": 0.03977802121721031
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 3526,
|
||||
"max_depth": 13,
|
||||
"min_child_weight": 0.0994486725676356,
|
||||
"learning_rate": 0.0009765625,
|
||||
"subsample": 0.46123759274652554,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.4498813776397717,
|
||||
"reg_alpha": 0.002599398546499414,
|
||||
"reg_lambda": 0.028336396854402753
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 501,
|
||||
"max_features": 0.24484242524861066,
|
||||
"max_leaves": 1156,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 356,
|
||||
"max_features": 0.1,
|
||||
"max_leaves": 102,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1000,
|
||||
"max_features": 0.1779692423238241,
|
||||
"max_leaves": 7499,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1080,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 590,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.46132798093546956,
|
||||
"max_leaves": 12856,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 408,
|
||||
"max_features": 0.3629795757973625,
|
||||
"max_leaves": 81,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 553,
|
||||
"max_features": 0.9592132391435095,
|
||||
"max_leaves": 1127,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
28.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
42124.0,
|
||||
130.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.196467571930491,
|
||||
1.0923076923076922,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
5,
|
||||
18,
|
||||
19,
|
||||
4,
|
||||
8,
|
||||
3,
|
||||
9,
|
||||
7,
|
||||
10,
|
||||
6,
|
||||
21,
|
||||
2,
|
||||
20,
|
||||
17,
|
||||
13,
|
||||
16,
|
||||
15,
|
||||
1,
|
||||
14,
|
||||
12,
|
||||
0,
|
||||
11
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.096856898680088,
|
||||
-0.16153846153846155,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
5,
|
||||
7,
|
||||
9,
|
||||
11,
|
||||
8,
|
||||
1,
|
||||
18,
|
||||
15,
|
||||
12,
|
||||
3,
|
||||
2,
|
||||
10,
|
||||
20,
|
||||
4,
|
||||
6,
|
||||
13,
|
||||
17,
|
||||
14,
|
||||
19,
|
||||
16,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
8.658152122305575,
|
||||
0.38461538461538464,
|
||||
0.0,
|
||||
-0.7405797101449274
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
2,
|
||||
5,
|
||||
10,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
12,
|
||||
4,
|
||||
6,
|
||||
11,
|
||||
8,
|
||||
18,
|
||||
15,
|
||||
13,
|
||||
20,
|
||||
16,
|
||||
17,
|
||||
21,
|
||||
14,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.27281359794891274,
|
||||
-0.14615384615384616,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
8,
|
||||
11,
|
||||
0,
|
||||
5,
|
||||
1,
|
||||
15,
|
||||
13,
|
||||
16,
|
||||
10,
|
||||
9,
|
||||
20,
|
||||
7,
|
||||
17,
|
||||
12,
|
||||
4,
|
||||
3,
|
||||
21,
|
||||
18,
|
||||
6,
|
||||
14,
|
||||
19,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4125676573924604,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
19,
|
||||
15,
|
||||
11,
|
||||
17,
|
||||
8,
|
||||
14,
|
||||
13,
|
||||
16,
|
||||
3,
|
||||
18,
|
||||
21,
|
||||
6,
|
||||
9,
|
||||
10,
|
||||
20,
|
||||
5,
|
||||
7,
|
||||
1,
|
||||
0,
|
||||
12,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6409647706770487,
|
||||
1.5538461538461539,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
14,
|
||||
10,
|
||||
19,
|
||||
6,
|
||||
0,
|
||||
1,
|
||||
4,
|
||||
11,
|
||||
3,
|
||||
5,
|
||||
17,
|
||||
9,
|
||||
13,
|
||||
12,
|
||||
20,
|
||||
7,
|
||||
15,
|
||||
18,
|
||||
8,
|
||||
16,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.3515573069983855,
|
||||
0.16923076923076924,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
10,
|
||||
5,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
12,
|
||||
4,
|
||||
6,
|
||||
11,
|
||||
18,
|
||||
8,
|
||||
15,
|
||||
13,
|
||||
16,
|
||||
21,
|
||||
20,
|
||||
17,
|
||||
14,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6162045389801538,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
10,
|
||||
12,
|
||||
1,
|
||||
4,
|
||||
11,
|
||||
6,
|
||||
9,
|
||||
0,
|
||||
2,
|
||||
5,
|
||||
3,
|
||||
7,
|
||||
8,
|
||||
13,
|
||||
20,
|
||||
17,
|
||||
15,
|
||||
14,
|
||||
16,
|
||||
19,
|
||||
18,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5386240622922799,
|
||||
-0.09230769230769231,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
5,
|
||||
11,
|
||||
10,
|
||||
9,
|
||||
6,
|
||||
4,
|
||||
3,
|
||||
20,
|
||||
17,
|
||||
18,
|
||||
13,
|
||||
15,
|
||||
16,
|
||||
8,
|
||||
7,
|
||||
2,
|
||||
12,
|
||||
21,
|
||||
19,
|
||||
14
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41133320672300827,
|
||||
-0.18461538461538463,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
14,
|
||||
9,
|
||||
7,
|
||||
10,
|
||||
15,
|
||||
13,
|
||||
3,
|
||||
6,
|
||||
16,
|
||||
5,
|
||||
19,
|
||||
2,
|
||||
12,
|
||||
18,
|
||||
4,
|
||||
21,
|
||||
20,
|
||||
0,
|
||||
11,
|
||||
17,
|
||||
1,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.31155635742094767,
|
||||
12.36923076923077,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
2,
|
||||
6,
|
||||
10,
|
||||
3,
|
||||
0,
|
||||
9,
|
||||
20,
|
||||
5,
|
||||
1,
|
||||
18,
|
||||
11,
|
||||
8,
|
||||
17,
|
||||
4,
|
||||
13,
|
||||
15,
|
||||
12,
|
||||
14,
|
||||
16,
|
||||
19,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40594435476213087,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
9,
|
||||
5,
|
||||
6,
|
||||
1,
|
||||
0,
|
||||
13,
|
||||
15,
|
||||
7,
|
||||
19,
|
||||
4,
|
||||
16,
|
||||
3,
|
||||
10,
|
||||
12,
|
||||
11,
|
||||
18,
|
||||
14,
|
||||
8,
|
||||
17,
|
||||
20,
|
||||
21,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
20,
|
||||
17,
|
||||
0,
|
||||
1,
|
||||
18,
|
||||
3,
|
||||
13,
|
||||
9,
|
||||
10,
|
||||
5,
|
||||
11,
|
||||
15,
|
||||
2,
|
||||
4,
|
||||
12,
|
||||
16,
|
||||
14,
|
||||
19,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.6675766783781218,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
5,
|
||||
0,
|
||||
1,
|
||||
10,
|
||||
6,
|
||||
11,
|
||||
4,
|
||||
2,
|
||||
12,
|
||||
3,
|
||||
8,
|
||||
15,
|
||||
13,
|
||||
18,
|
||||
16,
|
||||
20,
|
||||
17,
|
||||
21,
|
||||
14,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.36356946158959264,
|
||||
0.8923076923076924,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
8,
|
||||
15,
|
||||
3,
|
||||
13,
|
||||
16,
|
||||
11,
|
||||
4,
|
||||
0,
|
||||
20,
|
||||
6,
|
||||
14,
|
||||
5,
|
||||
1,
|
||||
21,
|
||||
17,
|
||||
9,
|
||||
10,
|
||||
18,
|
||||
19,
|
||||
7,
|
||||
12,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38225239768303104,
|
||||
-0.05384615384615385,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
16,
|
||||
13,
|
||||
15,
|
||||
18,
|
||||
17,
|
||||
14,
|
||||
20,
|
||||
8,
|
||||
10,
|
||||
9,
|
||||
3,
|
||||
7,
|
||||
19,
|
||||
21,
|
||||
11,
|
||||
1,
|
||||
5,
|
||||
0,
|
||||
6,
|
||||
4,
|
||||
2,
|
||||
12
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3590352293229513,
|
||||
0.06153846153846154,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
10,
|
||||
4,
|
||||
5,
|
||||
17,
|
||||
19,
|
||||
20,
|
||||
12,
|
||||
18,
|
||||
6,
|
||||
13,
|
||||
16,
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
15,
|
||||
21,
|
||||
14,
|
||||
11,
|
||||
8,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3090399772101415,
|
||||
0.6923076923076923,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
10,
|
||||
1,
|
||||
12,
|
||||
5,
|
||||
3,
|
||||
4,
|
||||
0,
|
||||
11,
|
||||
20,
|
||||
8,
|
||||
17,
|
||||
13,
|
||||
6,
|
||||
15,
|
||||
16,
|
||||
21,
|
||||
18,
|
||||
2,
|
||||
14,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3118649700883107,
|
||||
-0.17692307692307693,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
20,
|
||||
18,
|
||||
21,
|
||||
17,
|
||||
7,
|
||||
9,
|
||||
15,
|
||||
13,
|
||||
1,
|
||||
16,
|
||||
4,
|
||||
12,
|
||||
5,
|
||||
0,
|
||||
10,
|
||||
14,
|
||||
6,
|
||||
11,
|
||||
8,
|
||||
3,
|
||||
2,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
9,
|
||||
10,
|
||||
0,
|
||||
5,
|
||||
1,
|
||||
12,
|
||||
3,
|
||||
4,
|
||||
2,
|
||||
21,
|
||||
11,
|
||||
16,
|
||||
18,
|
||||
20,
|
||||
15,
|
||||
8,
|
||||
17,
|
||||
13,
|
||||
14,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3178473079479632,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
18,
|
||||
17,
|
||||
20,
|
||||
1,
|
||||
5,
|
||||
21,
|
||||
0,
|
||||
8,
|
||||
4,
|
||||
3,
|
||||
10,
|
||||
12,
|
||||
9,
|
||||
13,
|
||||
11,
|
||||
6,
|
||||
16,
|
||||
15,
|
||||
7,
|
||||
19,
|
||||
14,
|
||||
2
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"lgbm/Airlines",
|
||||
"lgbm/riccardo",
|
||||
"lgbm/fried",
|
||||
"lgbm/Dionis",
|
||||
"lgbm/default",
|
||||
"xgboost/fabert",
|
||||
"xgboost/bng_lowbwt",
|
||||
"xgboost/pol",
|
||||
"xgboost/Amazon_employee_access",
|
||||
"xgb_limitdepth/Jannis",
|
||||
"xgb_limitdepth/adult",
|
||||
"xgb_limitdepth/Amazon_employee_access",
|
||||
"xgb_limitdepth/default",
|
||||
"rf/Amazon_employee_access",
|
||||
"rf/kc1",
|
||||
"rf/Helena",
|
||||
"rf/default",
|
||||
"extra_tree/segment",
|
||||
"extra_tree/Helena",
|
||||
"extra_tree/kr-vs-kp",
|
||||
"extra_tree/bank-marketing",
|
||||
"extra_tree/default"
|
||||
]
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,882 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 4797,
|
||||
"num_leaves": 122,
|
||||
"min_child_samples": 2,
|
||||
"learning_rate": 0.022635758411078528,
|
||||
"log_max_bin": 9,
|
||||
"colsample_bytree": 0.7019911744574896,
|
||||
"reg_alpha": 0.004252223402511765,
|
||||
"reg_lambda": 0.11288241427227624
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1009,
|
||||
"num_leaves": 42,
|
||||
"min_child_samples": 12,
|
||||
"learning_rate": 0.02167229637171611,
|
||||
"log_max_bin": 7,
|
||||
"colsample_bytree": 0.7385038460573171,
|
||||
"reg_alpha": 0.003607184551842614,
|
||||
"reg_lambda": 12.08340803550741
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 32767,
|
||||
"num_leaves": 372,
|
||||
"min_child_samples": 4,
|
||||
"learning_rate": 0.03517259015200922,
|
||||
"log_max_bin": 5,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.02271142170225636,
|
||||
"reg_lambda": 0.001963791798843179,
|
||||
"FLAML_sample_size": 830258
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 6357,
|
||||
"max_leaves": 206,
|
||||
"min_child_weight": 1.9495322566288034,
|
||||
"learning_rate": 0.0068766724195393905,
|
||||
"subsample": 0.9451618245005704,
|
||||
"colsample_bylevel": 0.9030482524943064,
|
||||
"colsample_bytree": 0.9278972006416252,
|
||||
"reg_alpha": 0.01857648400903689,
|
||||
"reg_lambda": 6.021166480604588,
|
||||
"FLAML_sample_size": 344444
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 23045,
|
||||
"max_leaves": 247,
|
||||
"min_child_weight": 0.004319397499079841,
|
||||
"learning_rate": 0.0032914413473281215,
|
||||
"subsample": 0.7334190564433234,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.03514226467919635,
|
||||
"reg_lambda": 1.2679661021665851
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1899,
|
||||
"max_leaves": 59,
|
||||
"min_child_weight": 0.013389019900720164,
|
||||
"learning_rate": 0.0028943401472847964,
|
||||
"subsample": 0.7808944208233943,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.9999355357362375,
|
||||
"reg_alpha": 0.7905117773932884,
|
||||
"reg_lambda": 2.916897119216104
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 5611,
|
||||
"max_leaves": 61,
|
||||
"min_child_weight": 0.01070518287797225,
|
||||
"learning_rate": 0.005485127037677848,
|
||||
"subsample": 0.4713518256961299,
|
||||
"colsample_bylevel": 0.9777437906530106,
|
||||
"colsample_bytree": 0.9519335125615331,
|
||||
"reg_alpha": 0.03621564207188963,
|
||||
"reg_lambda": 1.8045765669466283
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 4923,
|
||||
"max_depth": 12,
|
||||
"min_child_weight": 0.7625732991776795,
|
||||
"learning_rate": 0.009239549681857523,
|
||||
"subsample": 0.8193164619615052,
|
||||
"colsample_bylevel": 0.7785754297307862,
|
||||
"colsample_bytree": 0.788491073979525,
|
||||
"reg_alpha": 0.002282749364196872,
|
||||
"reg_lambda": 131.2194560716441
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2111,
|
||||
"max_depth": 9,
|
||||
"min_child_weight": 3.405822241186395,
|
||||
"learning_rate": 0.005804247705198151,
|
||||
"subsample": 0.37848422782052427,
|
||||
"colsample_bylevel": 0.8228350674288559,
|
||||
"colsample_bytree": 0.8813475713109656,
|
||||
"reg_alpha": 0.009761356063132219,
|
||||
"reg_lambda": 13.187783936727843,
|
||||
"FLAML_sample_size": 810000
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1499,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 0.07563529776156448,
|
||||
"learning_rate": 0.039042609221240955,
|
||||
"subsample": 0.7832981935783824,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 23.513066752844153
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 19722,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 6.46800727978204,
|
||||
"learning_rate": 0.0010837437950202355,
|
||||
"subsample": 0.49509562408032115,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.8826299329274134,
|
||||
"reg_alpha": 0.23887161121959208,
|
||||
"reg_lambda": 15.163773888208217
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 544,
|
||||
"max_depth": 12,
|
||||
"min_child_weight": 79.32555867011995,
|
||||
"learning_rate": 0.010128107120014433,
|
||||
"subsample": 0.9799974977817297,
|
||||
"colsample_bylevel": 0.881815418056542,
|
||||
"colsample_bytree": 0.9718556912196423,
|
||||
"reg_alpha": 72.63148950428749,
|
||||
"reg_lambda": 1.4601415712058006
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 960,
|
||||
"max_features": 0.694616932858775,
|
||||
"max_leaves": 8937
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 32767,
|
||||
"FLAML_sample_size": 830258
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.6683903035731483,
|
||||
"max_leaves": 591,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1233,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 6452
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 346,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 1007,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.5106397565689275,
|
||||
"max_leaves": 32767,
|
||||
"FLAML_sample_size": 319382
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
0.85
|
||||
],
|
||||
"scale": [
|
||||
463680.0,
|
||||
8.5,
|
||||
1.0,
|
||||
0.48611111111111116
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
6,
|
||||
12,
|
||||
1,
|
||||
16,
|
||||
20,
|
||||
7,
|
||||
13,
|
||||
9,
|
||||
8,
|
||||
4,
|
||||
11,
|
||||
0,
|
||||
14,
|
||||
18,
|
||||
15,
|
||||
5,
|
||||
17,
|
||||
10,
|
||||
21,
|
||||
2,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6972675120772946,
|
||||
10.588235294117647,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
19,
|
||||
18,
|
||||
21,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.05244133885438233,
|
||||
3.5294117647058822,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
14,
|
||||
17,
|
||||
15,
|
||||
16,
|
||||
10,
|
||||
8,
|
||||
18,
|
||||
2,
|
||||
19,
|
||||
20,
|
||||
4,
|
||||
21,
|
||||
13,
|
||||
9,
|
||||
5,
|
||||
7,
|
||||
11,
|
||||
6,
|
||||
12
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8618637853692201,
|
||||
-0.11764705882352941,
|
||||
0.0,
|
||||
-0.3771428571428571
|
||||
],
|
||||
"choice": [
|
||||
12,
|
||||
7,
|
||||
4,
|
||||
9,
|
||||
13,
|
||||
8,
|
||||
1,
|
||||
6,
|
||||
3,
|
||||
5,
|
||||
16,
|
||||
10,
|
||||
0,
|
||||
18,
|
||||
14,
|
||||
20,
|
||||
15,
|
||||
17,
|
||||
19,
|
||||
2,
|
||||
21
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.1472675120772947,
|
||||
-0.11764705882352941,
|
||||
0.0,
|
||||
-1.52
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
12,
|
||||
9,
|
||||
3,
|
||||
7,
|
||||
6,
|
||||
11,
|
||||
13,
|
||||
16,
|
||||
20,
|
||||
8,
|
||||
4,
|
||||
18,
|
||||
0,
|
||||
10,
|
||||
14,
|
||||
21,
|
||||
5,
|
||||
15,
|
||||
17,
|
||||
2,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.045171238785369223,
|
||||
-0.11764705882352941,
|
||||
0.0,
|
||||
-0.3771428571428571
|
||||
],
|
||||
"choice": [
|
||||
12,
|
||||
6,
|
||||
1,
|
||||
3,
|
||||
16,
|
||||
9,
|
||||
20,
|
||||
15,
|
||||
14,
|
||||
11,
|
||||
7,
|
||||
21,
|
||||
18,
|
||||
17,
|
||||
4,
|
||||
8,
|
||||
19,
|
||||
5,
|
||||
13,
|
||||
0,
|
||||
10,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8618637853692201,
|
||||
9.411764705882353,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
19,
|
||||
18,
|
||||
21,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.018758626639061422,
|
||||
-0.11764705882352941,
|
||||
0.0,
|
||||
-1.2914285714285714
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
3,
|
||||
12,
|
||||
9,
|
||||
1,
|
||||
16,
|
||||
20,
|
||||
13,
|
||||
7,
|
||||
11,
|
||||
8,
|
||||
18,
|
||||
4,
|
||||
14,
|
||||
10,
|
||||
15,
|
||||
0,
|
||||
17,
|
||||
21,
|
||||
5,
|
||||
19,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8618637853692201,
|
||||
0.9411764705882353,
|
||||
0.0,
|
||||
-0.6057142857142855
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
5,
|
||||
4,
|
||||
8,
|
||||
10,
|
||||
12,
|
||||
7,
|
||||
9,
|
||||
1,
|
||||
2,
|
||||
13,
|
||||
3,
|
||||
6,
|
||||
14,
|
||||
19,
|
||||
17,
|
||||
21,
|
||||
18,
|
||||
16,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8618637853692201,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.5428571428571427
|
||||
],
|
||||
"choice": [
|
||||
9,
|
||||
7,
|
||||
1,
|
||||
4,
|
||||
6,
|
||||
3,
|
||||
12,
|
||||
13,
|
||||
0,
|
||||
8,
|
||||
10,
|
||||
5,
|
||||
14,
|
||||
16,
|
||||
20,
|
||||
18,
|
||||
21,
|
||||
15,
|
||||
2,
|
||||
17,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.2647105762594893,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
12,
|
||||
6,
|
||||
1,
|
||||
3,
|
||||
13,
|
||||
7,
|
||||
16,
|
||||
9,
|
||||
20,
|
||||
0,
|
||||
8,
|
||||
4,
|
||||
11,
|
||||
14,
|
||||
18,
|
||||
5,
|
||||
10,
|
||||
15,
|
||||
17,
|
||||
21,
|
||||
2,
|
||||
19
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.058378623188405795,
|
||||
0.23529411764705882,
|
||||
0.0,
|
||||
-0.3771428571428571
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
9,
|
||||
1,
|
||||
11,
|
||||
8,
|
||||
0,
|
||||
4,
|
||||
5,
|
||||
6,
|
||||
3,
|
||||
10,
|
||||
2,
|
||||
13,
|
||||
12,
|
||||
19,
|
||||
18,
|
||||
21,
|
||||
15,
|
||||
14,
|
||||
17,
|
||||
20,
|
||||
16
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.03490769496204279,
|
||||
0.7058823529411765,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
11,
|
||||
5,
|
||||
4,
|
||||
9,
|
||||
1,
|
||||
8,
|
||||
3,
|
||||
6,
|
||||
0,
|
||||
10,
|
||||
2,
|
||||
17,
|
||||
12,
|
||||
15,
|
||||
14,
|
||||
16,
|
||||
13,
|
||||
19,
|
||||
18,
|
||||
21,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.03490769496204279,
|
||||
-0.23529411764705882,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
4,
|
||||
8,
|
||||
5,
|
||||
7,
|
||||
9,
|
||||
11,
|
||||
10,
|
||||
3,
|
||||
1,
|
||||
18,
|
||||
12,
|
||||
21,
|
||||
19,
|
||||
0,
|
||||
14,
|
||||
16,
|
||||
20,
|
||||
15,
|
||||
13,
|
||||
17,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.03906789164941339,
|
||||
-0.23529411764705882,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
4,
|
||||
7,
|
||||
5,
|
||||
11,
|
||||
1,
|
||||
8,
|
||||
10,
|
||||
9,
|
||||
6,
|
||||
12,
|
||||
3,
|
||||
13,
|
||||
14,
|
||||
15,
|
||||
17,
|
||||
16,
|
||||
2,
|
||||
21,
|
||||
18,
|
||||
19,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
18,
|
||||
19,
|
||||
20,
|
||||
10,
|
||||
15,
|
||||
17,
|
||||
5,
|
||||
11,
|
||||
14,
|
||||
4,
|
||||
7,
|
||||
9,
|
||||
21,
|
||||
8,
|
||||
3,
|
||||
6,
|
||||
13,
|
||||
1,
|
||||
16,
|
||||
12,
|
||||
0,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.050207039337474,
|
||||
0.9411764705882353,
|
||||
0.0,
|
||||
-0.7199999999999999
|
||||
],
|
||||
"choice": [
|
||||
17,
|
||||
15,
|
||||
14,
|
||||
16
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.686201690821256,
|
||||
-0.11764705882352941,
|
||||
0.0,
|
||||
-1.0628571428571427
|
||||
],
|
||||
"choice": [
|
||||
15,
|
||||
17,
|
||||
14,
|
||||
19,
|
||||
16,
|
||||
18,
|
||||
21,
|
||||
20
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.9104080400276053,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
10,
|
||||
2,
|
||||
5,
|
||||
8,
|
||||
0,
|
||||
4,
|
||||
19,
|
||||
7,
|
||||
9,
|
||||
13,
|
||||
17,
|
||||
15,
|
||||
18,
|
||||
21,
|
||||
1,
|
||||
14,
|
||||
12,
|
||||
20,
|
||||
6,
|
||||
3,
|
||||
16
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.050015096618357485,
|
||||
4.470588235294118,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
8,
|
||||
10,
|
||||
4,
|
||||
7,
|
||||
5,
|
||||
11,
|
||||
18,
|
||||
6,
|
||||
20,
|
||||
19,
|
||||
9,
|
||||
14,
|
||||
16,
|
||||
21,
|
||||
0,
|
||||
3,
|
||||
15,
|
||||
17,
|
||||
1,
|
||||
2,
|
||||
13,
|
||||
12
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.04660973084886128,
|
||||
-0.8235294117647058,
|
||||
0.0,
|
||||
-1.0628571428571427
|
||||
],
|
||||
"choice": [
|
||||
11,
|
||||
13,
|
||||
10,
|
||||
8,
|
||||
9,
|
||||
20,
|
||||
12,
|
||||
18,
|
||||
19,
|
||||
21
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"lgbm/houses",
|
||||
"lgbm/house_8L",
|
||||
"lgbm/poker",
|
||||
"lgbm/default",
|
||||
"xgboost/Albert",
|
||||
"xgboost/mv",
|
||||
"xgboost/bng_echomonths",
|
||||
"xgboost/house_16H",
|
||||
"xgb_limitdepth/higgs",
|
||||
"xgb_limitdepth/bng_pharynx",
|
||||
"xgb_limitdepth/connect-4",
|
||||
"xgb_limitdepth/house_16H",
|
||||
"xgb_limitdepth/bng_echomonths",
|
||||
"xgb_limitdepth/default",
|
||||
"rf/houses",
|
||||
"rf/poker",
|
||||
"rf/bank-marketing",
|
||||
"rf/default",
|
||||
"extra_tree/house_16H",
|
||||
"extra_tree/default",
|
||||
"extra_tree/dilbert",
|
||||
"extra_tree/particulate-matter"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,192 @@
|
|||
import sklearn.ensemble as ensemble
|
||||
from functools import wraps
|
||||
from flaml.data import CLASSIFICATION
|
||||
from .suggest import preprocess_and_suggest_hyperparams
|
||||
|
||||
DEFAULT_LOCATION = "default_location"
|
||||
|
||||
|
||||
def flamlize_estimator(super_class, name: str, task: str, alternatives=None):
|
||||
"""Enhance an estimator class with flaml's data-dependent default hyperparameter settings.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
import sklearn.ensemble as ensemble
|
||||
RandomForestRegressor = flamlize_estimator(
|
||||
ensemble.RandomForestRegressor, "rf", "regression"
|
||||
)
|
||||
```
|
||||
|
||||
Args:
|
||||
super_class: an scikit-learn compatible estimator class.
|
||||
name: a str of the estimator's name.
|
||||
task: a str of the task type.
|
||||
alternatives: (Optional) a list for alternative estimator names. For example,
|
||||
```[("max_depth", 0, "xgboost")]``` means if the "max_depth" is set to 0
|
||||
in the constructor, then look for the learned defaults for estimator "xgboost".
|
||||
"""
|
||||
|
||||
class EstimatorClass(super_class):
|
||||
"""**Enhanced with flaml's data-dependent default hyperparameter settings.**"""
|
||||
|
||||
@wraps(super_class.__init__)
|
||||
def __init__(self, **params):
|
||||
if DEFAULT_LOCATION in params:
|
||||
self._default_location = params.pop(DEFAULT_LOCATION)
|
||||
else:
|
||||
self._default_location = None
|
||||
self._params = params
|
||||
super().__init__(**params)
|
||||
|
||||
@wraps(super_class._get_param_names)
|
||||
@classmethod
|
||||
def _get_param_names(cls):
|
||||
return super_class._get_param_names()
|
||||
|
||||
def suggest_hyperparams(self, X, y):
|
||||
"""Suggest hyperparameters.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from flaml.default import LGBMRegressor
|
||||
|
||||
estimator = LGBMRegressor()
|
||||
hyperparams, estimator_name, X_transformed, y_transformed = estimator.fit(X_train, y_train)
|
||||
print(hyperparams)
|
||||
```
|
||||
|
||||
Args:
|
||||
X: A dataframe of training data in shape n*m.
|
||||
y: A series of labels in shape n*1.
|
||||
|
||||
Returns:
|
||||
hyperparams: A dict of the hyperparameter configurations.
|
||||
estimator_name: A str of the underlying estimator name, e.g., 'xgb_limitdepth'.
|
||||
X_transformed: the preprocessed X.
|
||||
y_transformed: the preprocessed y.
|
||||
"""
|
||||
estimator_name = name
|
||||
if alternatives:
|
||||
for alternative in alternatives:
|
||||
if self._params.get(alternative[0]) == alternative[1]:
|
||||
estimator_name = alternative[2]
|
||||
break
|
||||
estimator_name = (
|
||||
"choose_xgb"
|
||||
if (
|
||||
estimator_name == "xgb_limitdepth"
|
||||
and "max_depth" not in self._params
|
||||
)
|
||||
else estimator_name
|
||||
)
|
||||
(
|
||||
hyperparams,
|
||||
estimator_class,
|
||||
X_transformed,
|
||||
y_transformed,
|
||||
self._feature_transformer,
|
||||
self._label_transformer,
|
||||
) = preprocess_and_suggest_hyperparams(
|
||||
task, X, y, estimator_name, self._default_location
|
||||
)
|
||||
assert estimator_class == super_class
|
||||
hyperparams.update(self._params)
|
||||
return hyperparams, estimator_name, X_transformed, y_transformed
|
||||
|
||||
@wraps(super_class.fit)
|
||||
def fit(self, X, y, *args, **params):
|
||||
hyperparams, estimator_name, X, y_transformed = self.suggest_hyperparams(
|
||||
X, y
|
||||
)
|
||||
self.set_params(**hyperparams)
|
||||
if self._label_transformer and estimator_name in [
|
||||
"rf",
|
||||
"extra_tree",
|
||||
"xgboost",
|
||||
"xgb_limitdepth",
|
||||
"choose_xgb",
|
||||
]:
|
||||
# rf and et have trouble in handling boolean labels; xgboost requires integer labels
|
||||
fitted = super().fit(X, y_transformed, *args, **params)
|
||||
# if hasattr(self, "_classes"):
|
||||
# self._classes = self._label_transformer.classes_
|
||||
# else:
|
||||
self.classes_ = self._label_transformer.classes_
|
||||
if "xgb" not in estimator_name:
|
||||
# rf and et would do inverse transform automatically; xgb doesn't
|
||||
self._label_transformer = None
|
||||
else:
|
||||
# lgbm doesn't need label transformation except for non-str/num labels
|
||||
try:
|
||||
fitted = super().fit(X, y, *args, **params)
|
||||
self._label_transformer = None
|
||||
except ValueError:
|
||||
# Unknown label type: 'unknown'
|
||||
fitted = super().fit(X, y_transformed, *args, **params)
|
||||
self._classes = self._label_transformer.classes_
|
||||
return fitted
|
||||
|
||||
@wraps(super_class.predict)
|
||||
def predict(self, X, *args, **params):
|
||||
if name != "lgbm" or task not in CLASSIFICATION:
|
||||
X = self._feature_transformer.transform(X)
|
||||
y_pred = super().predict(X, *args, **params)
|
||||
if self._label_transformer and y_pred.ndim == 1:
|
||||
y_pred = self._label_transformer.inverse_transform(y_pred)
|
||||
return y_pred
|
||||
|
||||
if hasattr(super_class, "predict_proba"):
|
||||
|
||||
@wraps(super_class.predict_proba)
|
||||
def predict_proba(self, X, *args, **params):
|
||||
X_test = self._feature_transformer.transform(X)
|
||||
y_pred = super().predict_proba(X_test, *args, **params)
|
||||
return y_pred
|
||||
|
||||
EstimatorClass.__doc__ += " " + super_class.__doc__
|
||||
EstimatorClass.__name__ = super_class.__name__
|
||||
return EstimatorClass
|
||||
|
||||
|
||||
RandomForestRegressor = flamlize_estimator(
|
||||
ensemble.RandomForestRegressor, "rf", "regression"
|
||||
)
|
||||
RandomForestClassifier = flamlize_estimator(
|
||||
ensemble.RandomForestClassifier, "rf", "classification"
|
||||
)
|
||||
ExtraTreesRegressor = flamlize_estimator(
|
||||
ensemble.ExtraTreesRegressor, "extra_tree", "regression"
|
||||
)
|
||||
ExtraTreesClassifier = flamlize_estimator(
|
||||
ensemble.ExtraTreesClassifier, "extra_tree", "classification"
|
||||
)
|
||||
|
||||
try:
|
||||
import lightgbm
|
||||
|
||||
LGBMRegressor = flamlize_estimator(lightgbm.LGBMRegressor, "lgbm", "regression")
|
||||
LGBMClassifier = flamlize_estimator(
|
||||
lightgbm.LGBMClassifier, "lgbm", "classification"
|
||||
)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
import xgboost
|
||||
|
||||
XGBRegressor = flamlize_estimator(
|
||||
xgboost.XGBRegressor,
|
||||
"xgb_limitdepth",
|
||||
"regression",
|
||||
[("max_depth", 0, "xgboost")],
|
||||
)
|
||||
XGBClassifier = flamlize_estimator(
|
||||
xgboost.XGBClassifier,
|
||||
"xgb_limitdepth",
|
||||
"classification",
|
||||
[("max_depth", 0, "xgboost")],
|
||||
)
|
||||
except ImportError:
|
||||
pass
|
|
@ -0,0 +1,358 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1080,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 590,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.46132798093546956,
|
||||
"max_leaves": 12856,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 408,
|
||||
"max_features": 0.3629795757973625,
|
||||
"max_leaves": 81,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 553,
|
||||
"max_features": 0.9592132391435095,
|
||||
"max_leaves": 1127,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
28.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
42124.0,
|
||||
130.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.196467571930491,
|
||||
1.0923076923076922,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.096856898680088,
|
||||
-0.16153846153846155,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
8.658152122305575,
|
||||
0.38461538461538464,
|
||||
0.0,
|
||||
-0.7405797101449274
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.27281359794891274,
|
||||
-0.14615384615384616,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4125676573924604,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6409647706770487,
|
||||
1.5538461538461539,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.3515573069983855,
|
||||
0.16923076923076924,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6162045389801538,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5386240622922799,
|
||||
-0.09230769230769231,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41133320672300827,
|
||||
-0.18461538461538463,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.31155635742094767,
|
||||
12.36923076923077,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40594435476213087,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.6675766783781218,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.36356946158959264,
|
||||
0.8923076923076924,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38225239768303104,
|
||||
-0.05384615384615385,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3590352293229513,
|
||||
0.06153846153846154,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3090399772101415,
|
||||
0.6923076923076923,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3118649700883107,
|
||||
-0.17692307692307693,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3178473079479632,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"segment",
|
||||
"Helena",
|
||||
"kr-vs-kp",
|
||||
"bank-marketing",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,307 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1074,
|
||||
"max_features": 0.6008299059364026,
|
||||
"max_leaves": 9287
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 833,
|
||||
"max_features": 0.055027081530106846,
|
||||
"max_leaves": 1361,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.9560062760906606,
|
||||
"max_leaves": 32767,
|
||||
"criterion": "entropy",
|
||||
"FLAML_sample_size": 470620
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 812,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 1474,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 18344
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
24668.5,
|
||||
54.0,
|
||||
7.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
57198.0,
|
||||
770.5,
|
||||
6.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
8.710820308402392,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8148148148148149
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6701545508584216,
|
||||
0.9474367293964958,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
4,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5945575020105598,
|
||||
-0.03504218040233614,
|
||||
15.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.8862285394594217,
|
||||
0.0,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
9.2744970798183,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.48133676002657433,
|
||||
-0.058403634003893576,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.4862145529563971,
|
||||
0.16353017521090202,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40409629707332423,
|
||||
-0.06229720960415315,
|
||||
-0.5,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
2,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41428896115248787,
|
||||
1.0408825438027256,
|
||||
0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6317091506696039,
|
||||
-0.015574302401038288,
|
||||
-0.6666666666666666,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
2.5256327060350423,
|
||||
-0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.30168012867582783,
|
||||
0.9682024659312135,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.2739344033008147,
|
||||
-0.06229720960415315,
|
||||
-0.6666666666666666,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.39981293052204625,
|
||||
0.21025308241401688,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3949351375922235,
|
||||
-0.04931862426995458,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41797790132522117,
|
||||
-0.04672290720311486,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
3,
|
||||
2,
|
||||
0,
|
||||
5
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"houses",
|
||||
"fabert",
|
||||
"Covertype",
|
||||
"Amazon_employee_access",
|
||||
"fried",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,309 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1233,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 6452
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 346,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 1007,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "extra_tree",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.5106397565689275,
|
||||
"max_leaves": 32767,
|
||||
"FLAML_sample_size": 319382
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
474977.25,
|
||||
7.5,
|
||||
1.0,
|
||||
0.5
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6806831274550518,
|
||||
12.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.05119403087200492,
|
||||
4.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.817579684079606,
|
||||
-0.13333333333333333,
|
||||
0.0,
|
||||
-0.6666666666666667
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.14376478031316237,
|
||||
-0.13333333333333333,
|
||||
0.0,
|
||||
-1.7777777777777777
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.044096848849076456,
|
||||
-0.13333333333333333,
|
||||
0.0,
|
||||
-0.6666666666666667
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.817579684079606,
|
||||
10.666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.01831245601763032,
|
||||
-0.13333333333333333,
|
||||
0.0,
|
||||
-1.5555555555555556
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.817579684079606,
|
||||
1.0666666666666667,
|
||||
0.0,
|
||||
-0.8888888888888888
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.817579684079606,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.8
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.2584144819567674,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.034077421602824134,
|
||||
0.8,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.034077421602824134,
|
||||
-0.26666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.038138668746766295,
|
||||
-0.26666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.6000000000000001
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6698805048031248,
|
||||
-0.13333333333333333,
|
||||
0.0,
|
||||
-1.3333333333333335
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8649693222149062,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.0488254963790371,
|
||||
5.066666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.04550112663290715,
|
||||
-0.9333333333333333,
|
||||
0.0,
|
||||
-1.3333333333333335
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"house_16H",
|
||||
"default",
|
||||
"dilbert",
|
||||
"particulate-matter"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,97 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.preprocessing import RobustScaler
|
||||
from sklearn.metrics import pairwise_distances
|
||||
|
||||
|
||||
def _augment(row):
|
||||
max, avg, id = row.max(), row.mean(), row.index[0]
|
||||
return row.apply(lambda x: (x, max, avg, id))
|
||||
|
||||
|
||||
def construct_portfolio(regret_matrix, meta_features, regret_bound):
|
||||
"""The portfolio construction algorithm.
|
||||
|
||||
(Reference)[https://arxiv.org/abs/2202.09927].
|
||||
|
||||
Args:
|
||||
regret_matrix: A dataframe of regret matrix.
|
||||
meta_features: None or a dataframe of metafeatures matrix.
|
||||
When set to None, the algorithm uses greedy strategy.
|
||||
Otherwise, the algorithm uses greedy strategy with feedback
|
||||
from the nearest neighbor predictor.
|
||||
regret_bound: A float of the regret bound.
|
||||
|
||||
Returns:
|
||||
A list of configuration names.
|
||||
"""
|
||||
configs = []
|
||||
all_configs = set(regret_matrix.index.tolist())
|
||||
tasks = regret_matrix.columns
|
||||
# pre-processing
|
||||
if meta_features is not None:
|
||||
scaler = RobustScaler()
|
||||
meta_features = meta_features.loc[tasks]
|
||||
meta_features.loc[:, :] = scaler.fit_transform(meta_features)
|
||||
nearest_task = {}
|
||||
for t in tasks:
|
||||
other_meta_features = meta_features.drop(t)
|
||||
dist = pd.DataFrame(
|
||||
pairwise_distances(
|
||||
meta_features.loc[t].to_numpy().reshape(1, -1),
|
||||
other_meta_features,
|
||||
metric="l2",
|
||||
),
|
||||
columns=other_meta_features.index,
|
||||
)
|
||||
nearest_task[t] = dist.idxmin(axis=1)
|
||||
regret_matrix = regret_matrix.apply(_augment, axis=1)
|
||||
print(regret_matrix)
|
||||
|
||||
def loss(configs):
|
||||
"""Loss of config set `configs`, according to nearest neighbor config predictor."""
|
||||
if meta_features is not None:
|
||||
r = []
|
||||
best_config_per_task = regret_matrix.loc[configs, :].min()
|
||||
for t in tasks:
|
||||
config = best_config_per_task[nearest_task[t]].iloc[0][-1]
|
||||
r.append(regret_matrix[t][config][0])
|
||||
else:
|
||||
r = regret_matrix.loc[configs].min()
|
||||
excessive_regret = (np.array(r) - regret_bound).clip(min=0).sum()
|
||||
avg_regret = np.array(r).mean()
|
||||
return excessive_regret, avg_regret
|
||||
|
||||
prev = np.inf
|
||||
i = 0
|
||||
eps = 1e-5
|
||||
while True:
|
||||
candidates = [configs + [d] for d in all_configs.difference(configs)]
|
||||
losses, avg_regret = tuple(zip(*(loss(x) for x in candidates)))
|
||||
sorted_losses = np.sort(losses)
|
||||
if sorted_losses[1] - sorted_losses[0] < eps:
|
||||
minloss = np.nanmin(losses)
|
||||
print(
|
||||
f"tie detected at loss = {sorted_losses[0]}, using alternative metric."
|
||||
)
|
||||
tied = np.flatnonzero(losses - minloss < eps)
|
||||
losses = [(avg_regret[i], i) for i in tied]
|
||||
minloss, ind = min(losses)
|
||||
if minloss > prev - eps:
|
||||
print(
|
||||
f"May be overfitting at k = {i + 1}, current = {minloss:.5f}, "
|
||||
f"prev = {prev:.5f}. Stopping."
|
||||
)
|
||||
break
|
||||
configs = candidates[ind]
|
||||
prev = minloss
|
||||
else:
|
||||
configs = candidates[np.nanargmin(losses)]
|
||||
i += 1
|
||||
if sorted_losses[0] <= eps:
|
||||
print(
|
||||
f"Reached target regret bound of {regret_bound}! k = {i}. Declining to pick further!"
|
||||
)
|
||||
break
|
||||
|
||||
return configs
|
|
@ -0,0 +1,367 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2541,
|
||||
"num_leaves": 1667,
|
||||
"min_child_samples": 29,
|
||||
"learning_rate": 0.0016660662914022302,
|
||||
"log_max_bin": 8,
|
||||
"colsample_bytree": 0.5157078343718623,
|
||||
"reg_alpha": 0.045792841240713165,
|
||||
"reg_lambda": 0.0012362651138125363,
|
||||
"FLAML_sample_size": 436899
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 141,
|
||||
"num_leaves": 139,
|
||||
"min_child_samples": 8,
|
||||
"learning_rate": 0.04824748268727149,
|
||||
"log_max_bin": 9,
|
||||
"colsample_bytree": 0.5261441571042451,
|
||||
"reg_alpha": 0.002896920833899335,
|
||||
"reg_lambda": 0.024463247502165594
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 31204,
|
||||
"num_leaves": 4,
|
||||
"min_child_samples": 3,
|
||||
"learning_rate": 0.009033979476164342,
|
||||
"log_max_bin": 10,
|
||||
"colsample_bytree": 0.5393339924944204,
|
||||
"reg_alpha": 15.800090067239827,
|
||||
"reg_lambda": 34.82471227276953
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 362,
|
||||
"num_leaves": 1208,
|
||||
"min_child_samples": 8,
|
||||
"learning_rate": 0.02070742242160566,
|
||||
"log_max_bin": 4,
|
||||
"colsample_bytree": 0.37915528071680865,
|
||||
"reg_alpha": 0.002982599447751338,
|
||||
"reg_lambda": 1.136605174453919,
|
||||
"FLAML_sample_size": 337147
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
28.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
42124.0,
|
||||
130.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.196467571930491,
|
||||
1.0923076923076922,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.096856898680088,
|
||||
-0.16153846153846155,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
8.658152122305575,
|
||||
0.38461538461538464,
|
||||
0.0,
|
||||
-0.7405797101449274
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.27281359794891274,
|
||||
-0.14615384615384616,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4125676573924604,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6409647706770487,
|
||||
1.5538461538461539,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.3515573069983855,
|
||||
0.16923076923076924,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6162045389801538,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5386240622922799,
|
||||
-0.09230769230769231,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41133320672300827,
|
||||
-0.18461538461538463,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.31155635742094767,
|
||||
12.36923076923077,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40594435476213087,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.6675766783781218,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.36356946158959264,
|
||||
0.8923076923076924,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38225239768303104,
|
||||
-0.05384615384615385,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3590352293229513,
|
||||
0.06153846153846154,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3090399772101415,
|
||||
0.6923076923076923,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3118649700883107,
|
||||
-0.17692307692307693,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3178473079479632,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
4
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Airlines",
|
||||
"riccardo",
|
||||
"fried",
|
||||
"Dionis",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,413 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 134,
|
||||
"num_leaves": 225,
|
||||
"min_child_samples": 21,
|
||||
"learning_rate": 0.10182098014295998,
|
||||
"log_max_bin": 5,
|
||||
"colsample_bytree": 0.6103565306428956,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 40.413729576022625
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 3726,
|
||||
"num_leaves": 155,
|
||||
"min_child_samples": 4,
|
||||
"learning_rate": 0.040941607728296484,
|
||||
"log_max_bin": 5,
|
||||
"colsample_bytree": 0.5326256194627191,
|
||||
"reg_alpha": 0.7408711930398492,
|
||||
"reg_lambda": 0.5467731065349226
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 573,
|
||||
"num_leaves": 16,
|
||||
"min_child_samples": 52,
|
||||
"learning_rate": 0.2422782244991656,
|
||||
"log_max_bin": 7,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.03433194930183514,
|
||||
"reg_lambda": 0.03870494540146326
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2931,
|
||||
"num_leaves": 106,
|
||||
"min_child_samples": 49,
|
||||
"learning_rate": 0.007146230961642236,
|
||||
"log_max_bin": 7,
|
||||
"colsample_bytree": 0.46947896116006055,
|
||||
"reg_alpha": 0.37428758811879526,
|
||||
"reg_lambda": 23.639977131692564
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 241,
|
||||
"num_leaves": 58,
|
||||
"min_child_samples": 2,
|
||||
"learning_rate": 0.022730855281657265,
|
||||
"log_max_bin": 5,
|
||||
"colsample_bytree": 0.5620897082415793,
|
||||
"reg_alpha": 0.0031614554887399314,
|
||||
"reg_lambda": 0.02175056245188971
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 8353,
|
||||
"num_leaves": 371,
|
||||
"min_child_samples": 71,
|
||||
"learning_rate": 0.017965875630873252,
|
||||
"log_max_bin": 10,
|
||||
"colsample_bytree": 0.9002082433803926,
|
||||
"reg_alpha": 0.4864366003694002,
|
||||
"reg_lambda": 0.024138585745106363,
|
||||
"FLAML_sample_size": 470619
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 320,
|
||||
"num_leaves": 24,
|
||||
"min_child_samples": 53,
|
||||
"learning_rate": 0.019316895546068795,
|
||||
"log_max_bin": 6,
|
||||
"colsample_bytree": 0.3955693254372702,
|
||||
"reg_alpha": 0.0013785083170001627,
|
||||
"reg_lambda": 0.04644365636517757
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 733,
|
||||
"num_leaves": 11,
|
||||
"min_child_samples": 94,
|
||||
"learning_rate": 0.06276798296942972,
|
||||
"log_max_bin": 6,
|
||||
"colsample_bytree": 0.6341928918435795,
|
||||
"reg_alpha": 0.5811038918218691,
|
||||
"reg_lambda": 43.304997517523944
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
40337.0,
|
||||
54.0,
|
||||
7.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
58722.0,
|
||||
766.0,
|
||||
6.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
8.217925138789552,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8148148148148149
|
||||
],
|
||||
"choice": [
|
||||
5,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
7,
|
||||
4,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
5.691767991553421,
|
||||
0.007832898172323759,
|
||||
58.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
4,
|
||||
7,
|
||||
6,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.385937127482034,
|
||||
0.9530026109660574,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
7,
|
||||
0,
|
||||
4,
|
||||
1,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3123020333094922,
|
||||
-0.03524804177545692,
|
||||
15.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
7,
|
||||
6,
|
||||
1,
|
||||
4,
|
||||
5,
|
||||
2,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5964033922550321,
|
||||
0.0,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
7,
|
||||
4,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5336500800381458,
|
||||
9.328981723237598,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
4,
|
||||
1,
|
||||
2,
|
||||
7,
|
||||
6,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.20201968597799802,
|
||||
-0.0587467362924282,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
6,
|
||||
1,
|
||||
7,
|
||||
5,
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.20677088655018563,
|
||||
0.16449086161879894,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
5,
|
||||
7,
|
||||
4,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6604339089268076,
|
||||
-0.06266318537859007,
|
||||
-0.5,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6703620448894793,
|
||||
1.0469973890339426,
|
||||
0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.34848949286468445,
|
||||
-0.015665796344647518,
|
||||
-0.6666666666666666,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
5,
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5336500800381458,
|
||||
2.5404699738903394,
|
||||
-0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5606757263036,
|
||||
0.9738903394255874,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
-0.06266318537859007,
|
||||
-0.6666666666666666,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
5,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6562617077075031,
|
||||
0.21148825065274152,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
6,
|
||||
7,
|
||||
5,
|
||||
3,
|
||||
1,
|
||||
4,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6515105071353156,
|
||||
-0.04960835509138381,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
1,
|
||||
3,
|
||||
7,
|
||||
5,
|
||||
4,
|
||||
0,
|
||||
2,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6739552467559007,
|
||||
-0.04699738903394256,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
7,
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
4,
|
||||
5,
|
||||
8
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Helena",
|
||||
"connect-4",
|
||||
"jungle_chess_2pcs_raw_endgame_complete",
|
||||
"Jannis",
|
||||
"fabert",
|
||||
"Covertype",
|
||||
"segment",
|
||||
"APSFailure",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,278 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 4797,
|
||||
"num_leaves": 122,
|
||||
"min_child_samples": 2,
|
||||
"learning_rate": 0.022635758411078528,
|
||||
"log_max_bin": 9,
|
||||
"colsample_bytree": 0.7019911744574896,
|
||||
"reg_alpha": 0.004252223402511765,
|
||||
"reg_lambda": 0.11288241427227624
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1009,
|
||||
"num_leaves": 42,
|
||||
"min_child_samples": 12,
|
||||
"learning_rate": 0.02167229637171611,
|
||||
"log_max_bin": 7,
|
||||
"colsample_bytree": 0.7385038460573171,
|
||||
"reg_alpha": 0.003607184551842614,
|
||||
"reg_lambda": 12.08340803550741
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 32767,
|
||||
"num_leaves": 372,
|
||||
"min_child_samples": 4,
|
||||
"learning_rate": 0.03517259015200922,
|
||||
"log_max_bin": 5,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.02271142170225636,
|
||||
"reg_lambda": 0.001963791798843179,
|
||||
"FLAML_sample_size": 830258
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "lgbm",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
140856.0,
|
||||
3.0,
|
||||
1.0,
|
||||
0.33333333333333337
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.17263020389617767,
|
||||
10.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
-0.3333333333333333,
|
||||
0.0,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.48478588061566424,
|
||||
-0.3333333333333333,
|
||||
0.0,
|
||||
-2.666666666666666
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.14869796103822344,
|
||||
-0.3333333333333333,
|
||||
0.0,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.06175100812176975,
|
||||
-0.3333333333333333,
|
||||
0.0,
|
||||
-2.333333333333333
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
2.6666666666666665,
|
||||
0.0,
|
||||
-1.333333333333333
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
0.0,
|
||||
0.0,
|
||||
-2.6999999999999997
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.8713934798659624,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.19217498722099166,
|
||||
0.6666666666666666,
|
||||
0.0,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.11491168285341058,
|
||||
2.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.11491168285341058,
|
||||
-0.6666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.1286065201340376,
|
||||
-0.6666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.9
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.288819787584483,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.16464332367808257,
|
||||
12.666666666666666,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"houses",
|
||||
"house_8L",
|
||||
"poker",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,234 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import json
|
||||
from sklearn.preprocessing import RobustScaler
|
||||
from flaml.default import greedy
|
||||
from flaml.default.regret import load_result, build_regret
|
||||
|
||||
regret_bound = 0.01
|
||||
|
||||
|
||||
def config_predictor_tuple(tasks, configs, meta_features, regret_matrix):
|
||||
"""Config predictor represented in tuple.
|
||||
|
||||
The returned tuple consists of (meta_features, preferences, proc).
|
||||
|
||||
Returns:
|
||||
meta_features_norm: A dataframe of normalized meta features, each column for a task.
|
||||
preferences: A dataframe of sorted configuration indicies by their performance per task (column).
|
||||
regret_matrix: A dataframe of the configuration(row)-task(column) regret matrix.
|
||||
"""
|
||||
# pre-processing
|
||||
scaler = RobustScaler()
|
||||
meta_features_norm = meta_features.loc[tasks] # this makes a copy
|
||||
meta_features_norm.loc[:, :] = scaler.fit_transform(meta_features_norm)
|
||||
|
||||
proc = {
|
||||
"center": scaler.center_.tolist(),
|
||||
"scale": scaler.scale_.tolist(),
|
||||
}
|
||||
|
||||
# best model for each dataset in training
|
||||
# choices = regret_matrix[tasks].loc[configs].reset_index(drop=True).idxmin()
|
||||
|
||||
# break ties using the order in configs
|
||||
regret = (
|
||||
regret_matrix[tasks]
|
||||
.loc[configs]
|
||||
.reset_index(drop=True)
|
||||
.apply(lambda row: row.apply(lambda x: (x, row.name)), axis=1)
|
||||
)
|
||||
print(regret)
|
||||
preferences = np.argsort(regret, axis=0)
|
||||
print(preferences)
|
||||
return (meta_features_norm, preferences, proc)
|
||||
|
||||
|
||||
def build_portfolio(meta_features, regret, strategy):
|
||||
"""Build a portfolio from meta features and regret matrix.
|
||||
|
||||
Args:
|
||||
meta_features: A dataframe of metafeatures matrix.
|
||||
regret: A dataframe of regret matrix.
|
||||
strategy: A str of the strategy, one of ("greedy", "greedy-feedback").
|
||||
"""
|
||||
assert strategy in ("greedy", "greedy-feedback")
|
||||
if strategy == "greedy":
|
||||
portfolio = greedy.construct_portfolio(regret, None, regret_bound)
|
||||
elif strategy == "greedy-feedback":
|
||||
portfolio = greedy.construct_portfolio(regret, meta_features, regret_bound)
|
||||
if "default" not in portfolio and "default" in regret.index:
|
||||
portfolio += ["default"]
|
||||
return portfolio
|
||||
|
||||
|
||||
def load_json(filename):
|
||||
"""Returns the contents of json file filename."""
|
||||
with open(filename, "r") as f:
|
||||
return json.load(f)
|
||||
|
||||
|
||||
def _filter(preference, regret):
|
||||
"""Remove choices after default or have NaN regret."""
|
||||
try:
|
||||
last = regret.index.get_loc("default") # len(preference) - 1
|
||||
preference = preference[: preference[preference == last].index[0] + 1]
|
||||
except KeyError: # no "default"
|
||||
pass
|
||||
finally:
|
||||
regret = regret.reset_index(drop=True)
|
||||
preference = preference[regret[preference].notna().to_numpy()]
|
||||
# regret = regret[preference].reset_index(drop=True)
|
||||
# dup = regret[regret.duplicated()]
|
||||
# if not dup.empty:
|
||||
# # break ties using the order in configs
|
||||
# unique = dup.drop_duplicates()
|
||||
# for u in unique:
|
||||
# subset = regret == u
|
||||
# preference[subset].sort_values(inplace=True)
|
||||
# # raise ValueError(preference)
|
||||
return preference.tolist()
|
||||
|
||||
|
||||
def serialize(configs, regret, meta_features, output_file, config_path):
|
||||
"""Store to disk all information FLAML-metalearn needs at runtime.
|
||||
|
||||
configs: names of model configs
|
||||
regret: regret matrix
|
||||
meta_features: task metafeatures
|
||||
output_file: filename
|
||||
config_path: path containing config json files
|
||||
"""
|
||||
output_file = Path(output_file)
|
||||
# delete if exists
|
||||
try:
|
||||
output_file.unlink()
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
meta_features_norm, preferences, proc = config_predictor_tuple(
|
||||
regret.columns, configs, meta_features, regret
|
||||
)
|
||||
portfolio = [load_json(config_path.joinpath(m + ".json")) for m in configs]
|
||||
regret = regret.loc[configs]
|
||||
meta_predictor = {
|
||||
"version": "default",
|
||||
"portfolio": portfolio,
|
||||
"preprocessing": proc,
|
||||
"neighbors": [
|
||||
{"features": tuple(x), "choice": _filter(preferences[y], regret[y])}
|
||||
for x, y in zip(
|
||||
meta_features_norm.to_records(index=False), preferences.columns
|
||||
)
|
||||
],
|
||||
"configsource": list(configs),
|
||||
}
|
||||
|
||||
with open(output_file, "w+") as f:
|
||||
json.dump(meta_predictor, f, indent=4)
|
||||
return meta_predictor
|
||||
|
||||
|
||||
# def analyze(regret_matrix, meta_predictor):
|
||||
# tasks = regret_matrix.columns
|
||||
# neighbors = meta_predictor["neighbors"]
|
||||
# from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
# nn = NearestNeighbors(n_neighbors=1)
|
||||
# for i, task in enumerate(neighbors):
|
||||
# other_tasks = [j for j in range(len(neighbors)) if j != i]
|
||||
# # find the nn and the regret
|
||||
# nn.fit([neighbors[j]["features"] for j in other_tasks])
|
||||
# dist, ind = nn.kneighbors(
|
||||
# np.array(task["features"]).reshape(1, -1), return_distance=True
|
||||
# )
|
||||
# ind = other_tasks[int(ind.item())]
|
||||
# choice = int(neighbors[ind]["choice"][0])
|
||||
# r = regret_matrix.iloc[choice, i]
|
||||
# if r > regret_bound:
|
||||
# label = "outlier"
|
||||
# else:
|
||||
# label = "normal"
|
||||
# print(tasks[i], label, tasks[ind], "dist", dist, "regret", r)
|
||||
# # find the best model and the regret
|
||||
# regrets = regret_matrix.iloc[other_tasks, i]
|
||||
# best = regrets.min()
|
||||
# if best > regret_bound:
|
||||
# print(tasks[i], "best_regret", best, "task", regrets.idxmin())
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Build a portfolio.")
|
||||
parser.add_argument(
|
||||
"--strategy", help="One of {greedy, greedy-feedback}", default="greedy"
|
||||
)
|
||||
parser.add_argument("--input", help="Input path")
|
||||
parser.add_argument("--metafeatures", help="CSV of task metafeatures")
|
||||
parser.add_argument("--exclude", help="One task name to exclude (for LOO purposes)")
|
||||
parser.add_argument("--output", help="Location to write portfolio JSON")
|
||||
parser.add_argument("--task", help="Task to merge portfolios", default="binary")
|
||||
parser.add_argument(
|
||||
"--estimator",
|
||||
help="Estimators to merge portfolios",
|
||||
default=["lgbm", "xgboost"],
|
||||
nargs="+",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
meta_features = pd.read_csv(args.metafeatures, index_col=0).groupby(level=0).first()
|
||||
if args.exclude:
|
||||
meta_features.drop(args.exclude, inplace=True)
|
||||
|
||||
baseline_best = None
|
||||
all_results = None
|
||||
for estimator in args.estimator:
|
||||
# produce regret
|
||||
all, baseline = load_result(
|
||||
f"{args.input}/{estimator}/results.csv", args.task, "result"
|
||||
)
|
||||
regret = build_regret(all, baseline)
|
||||
regret = regret.replace(np.inf, np.nan).dropna(axis=1, how="all")
|
||||
|
||||
if args.exclude:
|
||||
regret = regret.loc[[i for i in regret.index if args.exclude not in i]]
|
||||
regret = regret[[c for c in regret.columns if args.exclude not in c]]
|
||||
|
||||
print(
|
||||
f"Regret matrix complete: {100 * regret.count().sum() / regret.shape[0] / regret.shape[1]}%"
|
||||
)
|
||||
print(f"Num models considered: {regret.shape[0]}")
|
||||
|
||||
configs = build_portfolio(meta_features, regret, args.strategy)
|
||||
meta_predictor = serialize(
|
||||
configs,
|
||||
regret,
|
||||
meta_features,
|
||||
f"{args.output}/{estimator}/{args.task}.json",
|
||||
Path(f"{args.input}/{estimator}"),
|
||||
)
|
||||
configsource = meta_predictor["configsource"]
|
||||
all = all.loc[configsource]
|
||||
all.rename({x: f"{estimator}/{x}" for x in regret.index.values}, inplace=True)
|
||||
baseline_best = (
|
||||
baseline
|
||||
if baseline_best is None
|
||||
else pd.DataFrame({0: baseline_best, 1: baseline}).max(1)
|
||||
)
|
||||
all_results = all if all_results is None else pd.concat([all_results, all])
|
||||
# analyze(regret, meta_predictor)
|
||||
regrets = build_regret(all_results, baseline_best)
|
||||
if len(args.estimator) > 1:
|
||||
meta_predictor = serialize(
|
||||
regrets.index,
|
||||
regrets,
|
||||
meta_features,
|
||||
f"{args.output}/all/{args.task}.json",
|
||||
Path(args.input),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# execute only if run as a script
|
||||
main()
|
|
@ -0,0 +1,50 @@
|
|||
import argparse
|
||||
from os import path
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def build_regret(all, baseline):
|
||||
all = all[all.columns.intersection(baseline.index)]
|
||||
return baseline - all
|
||||
|
||||
|
||||
def write_regret(regret, filename):
|
||||
regret.to_csv(filename)
|
||||
|
||||
|
||||
def load_result(filename, task_type, metric):
|
||||
df = pd.read_csv(filename)
|
||||
df = df.loc[
|
||||
(df[metric].notnull()) & (df.type == task_type),
|
||||
["task", "fold", "params", metric],
|
||||
]
|
||||
df["params"] = df["params"].apply(
|
||||
lambda x: path.splitext(path.basename(eval(x)["_modeljson"]))[0]
|
||||
)
|
||||
baseline = (
|
||||
df.loc[df["task"] == df["params"], ["task", metric]]
|
||||
.groupby("task")
|
||||
.mean()[metric]
|
||||
)
|
||||
df = df.pivot_table(index="params", columns="task", values=metric)
|
||||
return df, baseline
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Build a regret matrix.")
|
||||
parser.add_argument("--result_csv", help="File of experiment results")
|
||||
parser.add_argument("--task_type", help="Type of task")
|
||||
parser.add_argument(
|
||||
"--metric", help="Metric for calculating regret", default="result"
|
||||
)
|
||||
parser.add_argument("--output", help="Location to write regret CSV to")
|
||||
args = parser.parse_args()
|
||||
|
||||
all, baseline = load_result(args.result_csv, args.task_type, args.metric)
|
||||
regret = build_regret(all, baseline)
|
||||
write_regret(regret, args.output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# execute only if run as a script
|
||||
main()
|
|
@ -0,0 +1,330 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 501,
|
||||
"max_features": 0.24484242524861066,
|
||||
"max_leaves": 1156,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 356,
|
||||
"max_features": 0.1,
|
||||
"max_leaves": 102,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1000,
|
||||
"max_features": 0.1779692423238241,
|
||||
"max_leaves": 7499,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
28.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
42124.0,
|
||||
130.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.196467571930491,
|
||||
1.0923076923076922,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.096856898680088,
|
||||
-0.16153846153846155,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
8.658152122305575,
|
||||
0.38461538461538464,
|
||||
0.0,
|
||||
-0.7405797101449274
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.27281359794891274,
|
||||
-0.14615384615384616,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4125676573924604,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6409647706770487,
|
||||
1.5538461538461539,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.3515573069983855,
|
||||
0.16923076923076924,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6162045389801538,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5386240622922799,
|
||||
-0.09230769230769231,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41133320672300827,
|
||||
-0.18461538461538463,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.31155635742094767,
|
||||
12.36923076923077,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40594435476213087,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.6675766783781218,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.36356946158959264,
|
||||
0.8923076923076924,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38225239768303104,
|
||||
-0.05384615384615385,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3590352293229513,
|
||||
0.06153846153846154,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3090399772101415,
|
||||
0.6923076923076923,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3118649700883107,
|
||||
-0.17692307692307693,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3178473079479632,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Amazon_employee_access",
|
||||
"kc1",
|
||||
"Helena",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,325 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1000,
|
||||
"max_features": 0.1779692423238241,
|
||||
"max_leaves": 7499,
|
||||
"criterion": "gini"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 400,
|
||||
"max_features": 0.8961466398827462,
|
||||
"max_leaves": 25095,
|
||||
"criterion": "entropy",
|
||||
"FLAML_sample_size": 470620
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 470,
|
||||
"max_features": 0.12698484669953783,
|
||||
"max_leaves": 31499,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 632,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 1360,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1713,
|
||||
"max_features": 0.40966311008832224,
|
||||
"max_leaves": 10210,
|
||||
"criterion": "entropy",
|
||||
"FLAML_sample_size": 105352
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
40337.0,
|
||||
54.0,
|
||||
7.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
58722.0,
|
||||
766.0,
|
||||
6.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
8.217925138789552,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8148148148148149
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
5.691767991553421,
|
||||
0.007832898172323759,
|
||||
58.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.385937127482034,
|
||||
0.9530026109660574,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3123020333094922,
|
||||
-0.03524804177545692,
|
||||
15.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5964033922550321,
|
||||
0.0,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5336500800381458,
|
||||
9.328981723237598,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.20201968597799802,
|
||||
-0.0587467362924282,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.20677088655018563,
|
||||
0.16449086161879894,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6604339089268076,
|
||||
-0.06266318537859007,
|
||||
-0.5,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6703620448894793,
|
||||
1.0469973890339426,
|
||||
0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.34848949286468445,
|
||||
-0.015665796344647518,
|
||||
-0.6666666666666666,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
2,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5336500800381458,
|
||||
2.5404699738903394,
|
||||
-0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.5606757263036,
|
||||
0.9738903394255874,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
-0.06266318537859007,
|
||||
-0.6666666666666666,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
4,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6562617077075031,
|
||||
0.21148825065274152,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6515105071353156,
|
||||
-0.04960835509138381,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.6739552467559007,
|
||||
-0.04699738903394256,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
4,
|
||||
5
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Helena",
|
||||
"Covertype",
|
||||
"Fashion-MNIST",
|
||||
"jungle_chess_2pcs_raw_endgame_complete",
|
||||
"MiniBooNE",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,290 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 960,
|
||||
"max_features": 0.694616932858775,
|
||||
"max_leaves": 8937
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 1.0,
|
||||
"max_leaves": 32767,
|
||||
"FLAML_sample_size": 830258
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2047,
|
||||
"max_features": 0.6683903035731483,
|
||||
"max_leaves": 591,
|
||||
"criterion": "entropy"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "rf",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
0.85
|
||||
],
|
||||
"scale": [
|
||||
460950.5,
|
||||
5.5,
|
||||
1.0,
|
||||
0.48611111111111116
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.052751868150701646,
|
||||
5.454545454545454,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8728887375108607,
|
||||
-0.18181818181818182,
|
||||
0.0,
|
||||
-0.3771428571428571
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.14813955077605948,
|
||||
-0.18181818181818182,
|
||||
0.0,
|
||||
-1.52
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.04543871847410948,
|
||||
-0.18181818181818182,
|
||||
0.0,
|
||||
-0.3771428571428571
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.018869705098486712,
|
||||
-0.18181818181818182,
|
||||
0.0,
|
||||
-1.2914285714285714
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8728887375108607,
|
||||
1.4545454545454546,
|
||||
0.0,
|
||||
-0.6057142857142855
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.8728887375108607,
|
||||
0.0,
|
||||
0.0,
|
||||
-1.5428571428571427
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.266278049378404,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.035114399485411125,
|
||||
1.0909090909090908,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.035114399485411125,
|
||||
-0.36363636363636365,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.03929923061152987,
|
||||
-0.36363636363636365,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.056425798431719,
|
||||
1.4545454545454546,
|
||||
0.0,
|
||||
-0.7199999999999999
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6902650067631991,
|
||||
-0.18181818181818182,
|
||||
0.0,
|
||||
-1.0628571428571427
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.92172044503694,
|
||||
0.0,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.050311259018050745,
|
||||
6.909090909090909,
|
||||
0.0,
|
||||
0.3085714285714286
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
3
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"houses",
|
||||
"poker",
|
||||
"bank-marketing",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,223 @@
|
|||
import numpy as np
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
import logging
|
||||
import pathlib
|
||||
import json
|
||||
from flaml.data import CLASSIFICATION, DataTransformer
|
||||
from flaml.ml import get_estimator_class, get_classification_objective
|
||||
|
||||
LOCATION = pathlib.Path(__file__).parent.resolve()
|
||||
logger = logging.getLogger(__name__)
|
||||
CONFIG_PREDICTORS = {}
|
||||
|
||||
|
||||
def meta_feature(task, X_train, y_train):
|
||||
is_classification = task in CLASSIFICATION
|
||||
n_row = X_train.shape[0]
|
||||
n_feat = X_train.shape[1]
|
||||
n_class = len(np.unique(y_train)) if is_classification else 0
|
||||
percent_num = X_train.select_dtypes(include=np.number).shape[1] / n_feat
|
||||
return (n_row, n_feat, n_class, percent_num)
|
||||
|
||||
|
||||
def load_config_predictor(estimator_name, task, location=None):
|
||||
key = f"{estimator_name}_{task}"
|
||||
predictor = CONFIG_PREDICTORS.get(key)
|
||||
if predictor:
|
||||
return predictor
|
||||
task = "multiclass" if task == "multi" else task
|
||||
try:
|
||||
location = location or LOCATION
|
||||
with open(f"{location}/{estimator_name}/{task}.json", "r") as f:
|
||||
CONFIG_PREDICTORS[key] = predictor = json.load(f)
|
||||
except FileNotFoundError:
|
||||
raise FileNotFoundError(
|
||||
f"Portfolio has not been built for {estimator_name} on {task} task."
|
||||
)
|
||||
return predictor
|
||||
|
||||
|
||||
def suggest_config(task, X, y, estimator_or_predictor, location=None, k=None):
|
||||
"""Suggest a list of configs for the given task and training data.
|
||||
|
||||
The returned configs can be used as starting points for AutoML.fit().
|
||||
`FLAML_sample_size` is removed from the configs.
|
||||
"""
|
||||
task = (
|
||||
get_classification_objective(len(np.unique(y)))
|
||||
if task == "classification"
|
||||
else task
|
||||
)
|
||||
predictor = (
|
||||
load_config_predictor(estimator_or_predictor, task, location)
|
||||
if isinstance(estimator_or_predictor, str)
|
||||
else estimator_or_predictor
|
||||
)
|
||||
assert predictor["version"] == "default"
|
||||
prep = predictor["preprocessing"]
|
||||
feature = meta_feature(task, X, y)
|
||||
feature = (np.array(feature) - np.array(prep["center"])) / np.array(prep["scale"])
|
||||
neighbors = predictor["neighbors"]
|
||||
nn = NearestNeighbors(n_neighbors=1)
|
||||
nn.fit([x["features"] for x in neighbors])
|
||||
dist, ind = nn.kneighbors(feature.reshape(1, -1), return_distance=True)
|
||||
logger.info(f"metafeature distance: {dist.item()}")
|
||||
ind = int(ind.item())
|
||||
choice = neighbors[ind]["choice"] if k is None else neighbors[ind]["choice"][:k]
|
||||
configs = [predictor["portfolio"][x] for x in choice]
|
||||
for config in configs:
|
||||
hyperparams = config["hyperparameters"]
|
||||
if hyperparams and "FLAML_sample_size" in hyperparams:
|
||||
hyperparams.pop("FLAML_sample_size")
|
||||
return configs
|
||||
|
||||
|
||||
def suggest_learner(
|
||||
task, X, y, estimator_or_predictor="all", estimator_list=None, location=None
|
||||
):
|
||||
"""Suggest best learner within estimator_list."""
|
||||
configs = suggest_config(task, X, y, estimator_or_predictor, location)
|
||||
if not estimator_list:
|
||||
return configs[0]["class"]
|
||||
for c in configs:
|
||||
if c["class"] in estimator_list:
|
||||
return c["class"]
|
||||
return estimator_list[0]
|
||||
|
||||
|
||||
def suggest_hyperparams(task, X, y, estimator_or_predictor, location=None):
|
||||
"""Suggest hyperparameter configurations and an estimator class.
|
||||
|
||||
The configurations can be used to initialize the estimator class like lightgbm.LGBMRegressor.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
hyperparams, estimator_class = suggest_hyperparams("regression", X_train, y_train, "lgbm")
|
||||
model = estimator_class(**hyperparams) # estimator_class is LGBMRegressor
|
||||
model.fit(X_train, y_train)
|
||||
```
|
||||
|
||||
Args:
|
||||
task: A string of the task type, e.g.,
|
||||
'classification', 'regression', 'ts_forecast', 'rank',
|
||||
'seq-classification', 'seq-regression'.
|
||||
X: A dataframe of training data in shape n*m.
|
||||
For 'ts_forecast' task, the first column of X_train
|
||||
must be the timestamp column (datetime type). Other
|
||||
columns in the dataframe are assumed to be exogenous
|
||||
variables (categorical or numeric).
|
||||
y: A series of labels in shape n*1.
|
||||
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
|
||||
If a dict, it contains:
|
||||
- "version": a str of the version number.
|
||||
- "preprocessing": a dictionary containing:
|
||||
* "center": a list of meta feature value offsets for normalization.
|
||||
* "scale": a list of meta feature scales to normalize each dimension.
|
||||
- "neighbors": a list of dictionaries. Each dictionary contains:
|
||||
* "features": a list of the normalized meta features for a neighbor.
|
||||
* "choice": an integer of the configuration id in the portfolio.
|
||||
- "portfolio": a list of dictionaries, each corresponding to a configuration:
|
||||
* "class": a str of the learner name.
|
||||
* "hyperparameters": a dict of the config. The key "FLAML_sample_size" will be ignored.
|
||||
location: (Optional) A str of the location containing mined portfolio file.
|
||||
Only valid when the portfolio is a str, by default the location is flaml/default.
|
||||
|
||||
Returns:
|
||||
hyperparams: A dict of the hyperparameter configurations.
|
||||
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
|
||||
"""
|
||||
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
|
||||
0
|
||||
]
|
||||
estimator = config["class"]
|
||||
model_class = get_estimator_class(task, estimator)
|
||||
hyperparams = config["hyperparameters"]
|
||||
model = model_class(task=task, **hyperparams)
|
||||
estimator_class = model.estimator_class
|
||||
hyperparams = hyperparams and model.params
|
||||
return hyperparams, estimator_class
|
||||
|
||||
|
||||
def preprocess_and_suggest_hyperparams(
|
||||
task,
|
||||
X,
|
||||
y,
|
||||
estimator_or_predictor,
|
||||
location=None,
|
||||
):
|
||||
"""Preprocess the data and suggest hyperparameters.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
hyperparams, estimator_class, X, y, feature_transformer, label_transformer = \
|
||||
preprocess_and_suggest_hyperparams("classification", X_train, y_train, "xgb_limitdepth")
|
||||
model = estimator_class(**hyperparams) # estimator_class is XGBClassifier
|
||||
model.fit(X, y)
|
||||
X_test = feature_transformer.transform(X_test)
|
||||
y_pred = label_transformer.inverse_transform(pd.Series(model.predict(X_test).astype(int)))
|
||||
```
|
||||
|
||||
Args:
|
||||
task: A string of the task type, e.g.,
|
||||
'classification', 'regression', 'ts_forecast', 'rank',
|
||||
'seq-classification', 'seq-regression'.
|
||||
X: A dataframe of training data in shape n*m.
|
||||
For 'ts_forecast' task, the first column of X_train
|
||||
must be the timestamp column (datetime type). Other
|
||||
columns in the dataframe are assumed to be exogenous
|
||||
variables (categorical or numeric).
|
||||
y: A series of labels in shape n*1.
|
||||
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
|
||||
"choose_xgb" means choosing between xgb_limitdepth and xgboost.
|
||||
If a dict, it contains:
|
||||
- "version": a str of the version number.
|
||||
- "preprocessing": a dictionary containing:
|
||||
* "center": a list of meta feature value offsets for normalization.
|
||||
* "scale": a list of meta feature scales to normalize each dimension.
|
||||
- "neighbors": a list of dictionaries. Each dictionary contains:
|
||||
* "features": a list of the normalized meta features for a neighbor.
|
||||
* "choice": a integer of the configuration id in the portfolio.
|
||||
- "portfolio": a list of dictionaries, each corresponding to a configuration:
|
||||
* "class": a str of the learner name.
|
||||
* "hyperparameters": a dict of the config. They key "FLAML_sample_size" will be ignored.
|
||||
location: (Optional) A str of the location containing mined portfolio file.
|
||||
Only valid when the portfolio is a str, by default the location is flaml/default.
|
||||
|
||||
Returns:
|
||||
hyperparams: A dict of the hyperparameter configurations.
|
||||
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
|
||||
X: the preprocessed X.
|
||||
y: the preprocessed y.
|
||||
feature_transformer: a data transformer that can be applied to X_test.
|
||||
label_transformer: a label transformer that can be applied to y_test.
|
||||
"""
|
||||
dt = DataTransformer()
|
||||
X, y = dt.fit_transform(X, y, task)
|
||||
if "choose_xgb" == estimator_or_predictor:
|
||||
# choose between xgb_limitdepth and xgboost
|
||||
estimator_or_predictor = suggest_learner(
|
||||
task,
|
||||
X,
|
||||
y,
|
||||
estimator_list=["xgb_limitdepth", "xgboost"],
|
||||
location=location,
|
||||
)
|
||||
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
|
||||
0
|
||||
]
|
||||
estimator = config["class"]
|
||||
model_class = get_estimator_class(task, estimator)
|
||||
hyperparams = config["hyperparameters"]
|
||||
model = model_class(task=task, **hyperparams)
|
||||
estimator_class = model.estimator_class
|
||||
X = model._preprocess(X)
|
||||
hyperparams = hyperparams and model.params
|
||||
|
||||
class AutoMLTransformer:
|
||||
def transform(self, X):
|
||||
return model._preprocess(dt.transform(X))
|
||||
|
||||
transformer = AutoMLTransformer()
|
||||
return hyperparams, estimator_class, X, y, transformer, dt.label_transformer
|
|
@ -0,0 +1,326 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 877,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 0.6205465771093738,
|
||||
"learning_rate": 0.013622118381700795,
|
||||
"subsample": 0.566692814245426,
|
||||
"colsample_bylevel": 0.8865741642101924,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.01386336444764391,
|
||||
"reg_lambda": 3.113947886074155
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 5457,
|
||||
"max_depth": 6,
|
||||
"min_child_weight": 0.19978269031877885,
|
||||
"learning_rate": 0.003906732665632749,
|
||||
"subsample": 0.8207785234496902,
|
||||
"colsample_bylevel": 0.8438751931476698,
|
||||
"colsample_bytree": 0.42202862997585794,
|
||||
"reg_alpha": 0.017372558844968737,
|
||||
"reg_lambda": 0.03977802121721031
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 3526,
|
||||
"max_depth": 13,
|
||||
"min_child_weight": 0.0994486725676356,
|
||||
"learning_rate": 0.0009765625,
|
||||
"subsample": 0.46123759274652554,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.4498813776397717,
|
||||
"reg_alpha": 0.002599398546499414,
|
||||
"reg_lambda": 0.028336396854402753
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
21.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
39542.5,
|
||||
143.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.2745779857115762,
|
||||
1.0419580419580419,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.821306189542897,
|
||||
-0.0979020979020979,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.290624012138838,
|
||||
-0.08391608391608392,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4395018018587596,
|
||||
-0.04895104895104895,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.68280963520263,
|
||||
1.4615384615384615,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.65643295188721,
|
||||
-0.04895104895104895,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5737876967819435,
|
||||
-0.03496503496503497,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4381867610798508,
|
||||
-0.11888111888111888,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3318960611999747,
|
||||
11.293706293706293,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.432446102294999,
|
||||
-0.006993006993006993,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
29.895104895104897,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.7764430675855092,
|
||||
0.04895104895104895,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3873047986343807,
|
||||
0.8601398601398601,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40720743503824997,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38247455269646585,
|
||||
0.1048951048951049,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.32921540115066067,
|
||||
0.6783216783216783,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3322248213947019,
|
||||
-0.11188811188811189,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
29.895104895104897,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3385977113232598,
|
||||
-0.006993006993006993,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Jannis",
|
||||
"adult",
|
||||
"Amazon_employee_access",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,354 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1191,
|
||||
"max_depth": 13,
|
||||
"min_child_weight": 6.4007885677724605,
|
||||
"learning_rate": 0.037622775650237326,
|
||||
"subsample": 1.0,
|
||||
"colsample_bylevel": 0.3697773165627811,
|
||||
"colsample_bytree": 0.813871237069598,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 1.075702708240612
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1499,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 0.07563529776156448,
|
||||
"learning_rate": 0.039042609221240955,
|
||||
"subsample": 0.7832981935783824,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 23.513066752844153
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 313,
|
||||
"max_depth": 7,
|
||||
"min_child_weight": 30.424259012001368,
|
||||
"learning_rate": 0.08466828646360688,
|
||||
"subsample": 0.9897083979469301,
|
||||
"colsample_bylevel": 0.6769490906308069,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.0014544085935366477,
|
||||
"reg_lambda": 34.09911172306857
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 566,
|
||||
"max_depth": 13,
|
||||
"min_child_weight": 0.013176186839973599,
|
||||
"learning_rate": 0.09285619488896565,
|
||||
"subsample": 0.5897287493640815,
|
||||
"colsample_bylevel": 0.923664288991597,
|
||||
"colsample_bytree": 0.8244714790646485,
|
||||
"reg_alpha": 0.023484974838756726,
|
||||
"reg_lambda": 0.5690298249126402,
|
||||
"FLAML_sample_size": 470620
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 971,
|
||||
"max_depth": 8,
|
||||
"min_child_weight": 0.0044052948947322645,
|
||||
"learning_rate": 0.15171239415469703,
|
||||
"subsample": 0.8340342805529243,
|
||||
"colsample_bylevel": 0.9489310919814007,
|
||||
"colsample_bytree": 0.022724724669028674,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 0.0025897714798936954
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 464,
|
||||
"max_depth": 2,
|
||||
"min_child_weight": 0.0068282719220722,
|
||||
"learning_rate": 0.07962498837600937,
|
||||
"subsample": 0.47139986510869014,
|
||||
"colsample_bylevel": 0.4814471959023239,
|
||||
"colsample_bytree": 0.6050207253592859,
|
||||
"reg_alpha": 0.0010290828959872173,
|
||||
"reg_lambda": 0.0103104214002687
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1799,
|
||||
"max_depth": 3,
|
||||
"min_child_weight": 0.0010034151843327725,
|
||||
"learning_rate": 0.03453775119035777,
|
||||
"subsample": 0.31322065037892344,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.2219038021462818,
|
||||
"reg_alpha": 0.03885163786709896,
|
||||
"reg_lambda": 1.1077175359756786
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
24668.5,
|
||||
54.0,
|
||||
7.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
57198.0,
|
||||
770.5,
|
||||
6.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
8.710820308402392,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8148148148148149
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6701545508584216,
|
||||
0.9474367293964958,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
7,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5945575020105598,
|
||||
-0.03504218040233614,
|
||||
15.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
7,
|
||||
6,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.8862285394594217,
|
||||
0.0,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
9.2744970798183,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
7,
|
||||
6,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.48133676002657433,
|
||||
-0.058403634003893576,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.4862145529563971,
|
||||
0.16353017521090202,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40409629707332423,
|
||||
-0.06229720960415315,
|
||||
-0.5,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41428896115248787,
|
||||
1.0408825438027256,
|
||||
0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
5,
|
||||
3,
|
||||
1,
|
||||
7,
|
||||
6,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6317091506696039,
|
||||
-0.015574302401038288,
|
||||
-0.6666666666666666,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
2.5256327060350423,
|
||||
-0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
5,
|
||||
3,
|
||||
7,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.30168012867582783,
|
||||
0.9682024659312135,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.2739344033008147,
|
||||
-0.06229720960415315,
|
||||
-0.6666666666666666,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.39981293052204625,
|
||||
0.21025308241401688,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3949351375922235,
|
||||
-0.04931862426995458,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
0,
|
||||
7,
|
||||
1,
|
||||
3,
|
||||
4
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41797790132522117,
|
||||
-0.04672290720311486,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
1,
|
||||
7,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
4
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"guillermo",
|
||||
"connect-4",
|
||||
"Helena",
|
||||
"Covertype",
|
||||
"default",
|
||||
"cnae-9",
|
||||
"vehicle",
|
||||
"mfeat-factors"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,347 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 4923,
|
||||
"max_depth": 12,
|
||||
"min_child_weight": 0.7625732991776795,
|
||||
"learning_rate": 0.009239549681857523,
|
||||
"subsample": 0.8193164619615052,
|
||||
"colsample_bylevel": 0.7785754297307862,
|
||||
"colsample_bytree": 0.788491073979525,
|
||||
"reg_alpha": 0.002282749364196872,
|
||||
"reg_lambda": 131.2194560716441
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2111,
|
||||
"max_depth": 9,
|
||||
"min_child_weight": 3.405822241186395,
|
||||
"learning_rate": 0.005804247705198151,
|
||||
"subsample": 0.37848422782052427,
|
||||
"colsample_bylevel": 0.8228350674288559,
|
||||
"colsample_bytree": 0.8813475713109656,
|
||||
"reg_alpha": 0.009761356063132219,
|
||||
"reg_lambda": 13.187783936727843,
|
||||
"FLAML_sample_size": 810000
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1499,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 0.07563529776156448,
|
||||
"learning_rate": 0.039042609221240955,
|
||||
"subsample": 0.7832981935783824,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.0009765625,
|
||||
"reg_lambda": 23.513066752844153
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 19722,
|
||||
"max_depth": 11,
|
||||
"min_child_weight": 6.46800727978204,
|
||||
"learning_rate": 0.0010837437950202355,
|
||||
"subsample": 0.49509562408032115,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.8826299329274134,
|
||||
"reg_alpha": 0.23887161121959208,
|
||||
"reg_lambda": 15.163773888208217
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 544,
|
||||
"max_depth": 12,
|
||||
"min_child_weight": 79.32555867011995,
|
||||
"learning_rate": 0.010128107120014433,
|
||||
"subsample": 0.9799974977817297,
|
||||
"colsample_bylevel": 0.881815418056542,
|
||||
"colsample_bytree": 0.9718556912196423,
|
||||
"reg_alpha": 72.63148950428749,
|
||||
"reg_lambda": 1.4601415712058006
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgb_limitdepth",
|
||||
"hyperparameters": {}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
140856.0,
|
||||
1.0,
|
||||
1.0,
|
||||
0.4444444444444444
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.17263020389617767,
|
||||
30.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
-1.0,
|
||||
0.0,
|
||||
-0.7500000000000001
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.48478588061566424,
|
||||
-1.0,
|
||||
0.0,
|
||||
-2.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
3,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.14869796103822344,
|
||||
-1.0,
|
||||
0.0,
|
||||
-0.7500000000000001
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.06175100812176975,
|
||||
-1.0,
|
||||
0.0,
|
||||
-1.7500000000000002
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
8.0,
|
||||
0.0,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.129018288180837,
|
||||
0.0,
|
||||
0.0,
|
||||
-2.0250000000000004
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.8713934798659624,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.11491168285341058,
|
||||
6.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.11491168285341058,
|
||||
-2.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.1286065201340376,
|
||||
-2.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
4,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.6750000000000002
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
6.288819787584483,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.16464332367808257,
|
||||
38.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
1,
|
||||
5
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.15343329357641847,
|
||||
-7.0,
|
||||
0.0,
|
||||
-1.5000000000000002
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
5
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"higgs",
|
||||
"bng_pharynx",
|
||||
"connect-4",
|
||||
"house_16H",
|
||||
"bng_echomonths",
|
||||
"default"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,372 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 319,
|
||||
"max_leaves": 1312,
|
||||
"min_child_weight": 0.001,
|
||||
"learning_rate": 0.01872379806270421,
|
||||
"subsample": 0.6890079660561895,
|
||||
"colsample_bylevel": 0.7551225121854014,
|
||||
"colsample_bytree": 0.7860755604500558,
|
||||
"reg_alpha": 0.17028752704343114,
|
||||
"reg_lambda": 1.4375743264564231
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 7902,
|
||||
"max_leaves": 49,
|
||||
"min_child_weight": 0.038063497848955595,
|
||||
"learning_rate": 0.0009765625,
|
||||
"subsample": 0.9357800695141445,
|
||||
"colsample_bylevel": 0.47031312177249246,
|
||||
"colsample_bytree": 0.9053386579586192,
|
||||
"reg_alpha": 1.5286102593845932,
|
||||
"reg_lambda": 18.96811296717419
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 13499,
|
||||
"max_leaves": 60,
|
||||
"min_child_weight": 0.008494221584011285,
|
||||
"learning_rate": 0.006955765856675575,
|
||||
"subsample": 0.5965241023754743,
|
||||
"colsample_bylevel": 0.590641168068946,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.2522240954379289,
|
||||
"reg_lambda": 5.351809144038808
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 591,
|
||||
"max_leaves": 16651,
|
||||
"min_child_weight": 0.03356567864689129,
|
||||
"learning_rate": 0.002595066436678338,
|
||||
"subsample": 0.9114132805513452,
|
||||
"colsample_bylevel": 0.9503441844594458,
|
||||
"colsample_bytree": 0.5703338448066768,
|
||||
"reg_alpha": 0.010405212349127894,
|
||||
"reg_lambda": 0.05352660657433639
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
18000.0,
|
||||
28.0,
|
||||
2.0,
|
||||
0.7565217391304347
|
||||
],
|
||||
"scale": [
|
||||
42124.0,
|
||||
130.0,
|
||||
1.0,
|
||||
0.5714285714285715
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
1.196467571930491,
|
||||
1.0923076923076922,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
11.096856898680088,
|
||||
-0.16153846153846155,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
8.658152122305575,
|
||||
0.38461538461538464,
|
||||
0.0,
|
||||
-0.7405797101449274
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.27281359794891274,
|
||||
-0.14615384615384616,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.4125676573924604,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6409647706770487,
|
||||
1.5538461538461539,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.3515573069983855,
|
||||
0.16923076923076924,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6162045389801538,
|
||||
-0.1076923076923077,
|
||||
0.0,
|
||||
-0.5739130434782609
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5386240622922799,
|
||||
-0.09230769230769231,
|
||||
0.0,
|
||||
-0.5582880434782608
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41133320672300827,
|
||||
-0.18461538461538463,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.31155635742094767,
|
||||
12.36923076923077,
|
||||
0.0,
|
||||
0.3865087169129372
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
1,
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40594435476213087,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
-0.7114130434782607
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
1.6675766783781218,
|
||||
0.0,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.36356946158959264,
|
||||
0.8923076923076924,
|
||||
0.0,
|
||||
-1.2266908212560386
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.38225239768303104,
|
||||
-0.05384615384615385,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3590352293229513,
|
||||
0.06153846153846154,
|
||||
0.0,
|
||||
-1.3239130434782607
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3090399772101415,
|
||||
0.6923076923076923,
|
||||
0.0,
|
||||
-0.003997789240972687
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3118649700883107,
|
||||
-0.17692307692307693,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
32.83076923076923,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3178473079479632,
|
||||
-0.06153846153846154,
|
||||
0.0,
|
||||
0.4260869565217391
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
2
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"fabert",
|
||||
"bng_lowbwt",
|
||||
"pol",
|
||||
"Amazon_employee_access"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,509 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 392,
|
||||
"max_leaves": 46,
|
||||
"min_child_weight": 0.20655273911443411,
|
||||
"learning_rate": 0.08039123467849849,
|
||||
"subsample": 0.6482821473906787,
|
||||
"colsample_bylevel": 0.5448604029329934,
|
||||
"colsample_bytree": 0.4211786481671673,
|
||||
"reg_alpha": 0.029040644754759502,
|
||||
"reg_lambda": 4.60220206538413
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 6357,
|
||||
"max_leaves": 206,
|
||||
"min_child_weight": 1.9495322566288034,
|
||||
"learning_rate": 0.0068766724195393905,
|
||||
"subsample": 0.9451618245005704,
|
||||
"colsample_bylevel": 0.9030482524943064,
|
||||
"colsample_bytree": 0.9278972006416252,
|
||||
"reg_alpha": 0.01857648400903689,
|
||||
"reg_lambda": 6.021166480604588,
|
||||
"FLAML_sample_size": 344444
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1067,
|
||||
"max_leaves": 55,
|
||||
"min_child_weight": 1.578700876556201,
|
||||
"learning_rate": 0.01882776721912098,
|
||||
"subsample": 0.6486829588043383,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.6470978147570122,
|
||||
"reg_alpha": 0.2623396481373557,
|
||||
"reg_lambda": 12.320026567378322
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 765,
|
||||
"max_leaves": 6,
|
||||
"min_child_weight": 0.001,
|
||||
"learning_rate": 1.0,
|
||||
"subsample": 0.9833803894285497,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.0012553728257619922,
|
||||
"reg_lambda": 0.03280542610559108
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 2866,
|
||||
"max_leaves": 2954,
|
||||
"min_child_weight": 0.003652484923138387,
|
||||
"learning_rate": 0.006320484540131336,
|
||||
"subsample": 0.45886345839532916,
|
||||
"colsample_bylevel": 0.4143419565729296,
|
||||
"colsample_bytree": 0.9117641224108227,
|
||||
"reg_alpha": 0.2873746517375349,
|
||||
"reg_lambda": 17.04964039639045
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 512,
|
||||
"max_leaves": 3194,
|
||||
"min_child_weight": 0.004561511536080627,
|
||||
"learning_rate": 0.05288849444758447,
|
||||
"subsample": 0.8653058105000044,
|
||||
"colsample_bylevel": 0.8833689901424637,
|
||||
"colsample_bytree": 0.9505209943737727,
|
||||
"reg_alpha": 0.0037017878164852017,
|
||||
"reg_lambda": 2.1872397928745113,
|
||||
"FLAML_sample_size": 470620
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 335,
|
||||
"max_leaves": 37,
|
||||
"min_child_weight": 0.0013851539632487603,
|
||||
"learning_rate": 0.2593737370075479,
|
||||
"subsample": 0.9810091528571387,
|
||||
"colsample_bylevel": 0.9484250613084422,
|
||||
"colsample_bytree": 0.192606132199437,
|
||||
"reg_alpha": 0.10585986776049093,
|
||||
"reg_lambda": 0.017684465384509407
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 8315,
|
||||
"max_leaves": 4,
|
||||
"min_child_weight": 0.7673654415794792,
|
||||
"learning_rate": 0.002432260930606481,
|
||||
"subsample": 0.8476000618302348,
|
||||
"colsample_bylevel": 0.8815698870579244,
|
||||
"colsample_bytree": 0.7057137578225323,
|
||||
"reg_alpha": 0.0016838090603716895,
|
||||
"reg_lambda": 0.28815989841009226
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 319,
|
||||
"max_leaves": 1312,
|
||||
"min_child_weight": 0.001,
|
||||
"learning_rate": 0.01872379806270421,
|
||||
"subsample": 0.6890079660561895,
|
||||
"colsample_bylevel": 0.7551225121854014,
|
||||
"colsample_bytree": 0.7860755604500558,
|
||||
"reg_alpha": 0.17028752704343114,
|
||||
"reg_lambda": 1.4375743264564231
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 5739,
|
||||
"max_leaves": 5,
|
||||
"min_child_weight": 0.1359602026207002,
|
||||
"learning_rate": 0.14496176867613397,
|
||||
"subsample": 0.864897070662231,
|
||||
"colsample_bylevel": 0.01,
|
||||
"colsample_bytree": 0.9394057513384305,
|
||||
"reg_alpha": 0.001103317921178771,
|
||||
"reg_lambda": 0.1655504349283218
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 3369,
|
||||
"max_leaves": 23,
|
||||
"min_child_weight": 0.006136645605168392,
|
||||
"learning_rate": 0.05726537983358939,
|
||||
"subsample": 1.0,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.40981311572427176,
|
||||
"reg_lambda": 4.343877111132155
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
24668.5,
|
||||
54.0,
|
||||
7.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
57198.0,
|
||||
770.5,
|
||||
6.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
8.710820308402392,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8148148148148149
|
||||
],
|
||||
"choice": [
|
||||
5,
|
||||
4,
|
||||
1,
|
||||
8,
|
||||
10,
|
||||
2,
|
||||
0,
|
||||
6,
|
||||
9,
|
||||
7,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6701545508584216,
|
||||
0.9474367293964958,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
6,
|
||||
10,
|
||||
8,
|
||||
9
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.5945575020105598,
|
||||
-0.03504218040233614,
|
||||
15.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
7,
|
||||
8,
|
||||
5,
|
||||
10,
|
||||
9,
|
||||
6
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.8862285394594217,
|
||||
0.0,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
8,
|
||||
0,
|
||||
4,
|
||||
10,
|
||||
1,
|
||||
9,
|
||||
6,
|
||||
7,
|
||||
5,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
9.2744970798183,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
6
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.48133676002657433,
|
||||
-0.058403634003893576,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
10,
|
||||
3,
|
||||
0,
|
||||
5,
|
||||
1,
|
||||
7,
|
||||
6,
|
||||
2,
|
||||
4,
|
||||
9,
|
||||
8
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.4862145529563971,
|
||||
0.16353017521090202,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
10,
|
||||
8,
|
||||
6,
|
||||
5,
|
||||
9,
|
||||
7
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.40409629707332423,
|
||||
-0.06229720960415315,
|
||||
-0.5,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
9,
|
||||
5,
|
||||
10,
|
||||
1,
|
||||
7,
|
||||
2,
|
||||
8,
|
||||
4,
|
||||
6,
|
||||
0
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41428896115248787,
|
||||
1.0408825438027256,
|
||||
0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
6,
|
||||
9,
|
||||
0,
|
||||
5,
|
||||
10,
|
||||
4,
|
||||
8,
|
||||
7,
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.6317091506696039,
|
||||
-0.015574302401038288,
|
||||
-0.6666666666666666,
|
||||
-1.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
10,
|
||||
4,
|
||||
5,
|
||||
8,
|
||||
6,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
9,
|
||||
7
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.2739344033008147,
|
||||
2.5256327060350423,
|
||||
-0.3333333333333333,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
3,
|
||||
9,
|
||||
6,
|
||||
10,
|
||||
5,
|
||||
8,
|
||||
7
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.30168012867582783,
|
||||
0.9682024659312135,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
8,
|
||||
4,
|
||||
0,
|
||||
2,
|
||||
10,
|
||||
1,
|
||||
5,
|
||||
6,
|
||||
9,
|
||||
7,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.2739344033008147,
|
||||
-0.06229720960415315,
|
||||
-0.6666666666666666,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
10,
|
||||
3,
|
||||
9,
|
||||
1,
|
||||
4,
|
||||
2,
|
||||
8,
|
||||
5,
|
||||
0,
|
||||
7,
|
||||
6
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.39981293052204625,
|
||||
0.21025308241401688,
|
||||
0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
9,
|
||||
1,
|
||||
7,
|
||||
5,
|
||||
10,
|
||||
6,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.3949351375922235,
|
||||
-0.04931862426995458,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
7,
|
||||
8,
|
||||
4,
|
||||
5,
|
||||
6,
|
||||
10,
|
||||
9,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.41797790132522117,
|
||||
-0.04672290720311486,
|
||||
-0.5,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
7,
|
||||
4,
|
||||
8,
|
||||
2,
|
||||
0,
|
||||
5,
|
||||
10,
|
||||
1,
|
||||
6,
|
||||
9,
|
||||
3
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"segment",
|
||||
"Albert",
|
||||
"Helena",
|
||||
"car",
|
||||
"house_8L",
|
||||
"Covertype",
|
||||
"cnae-9",
|
||||
"KDDCup09_appetency",
|
||||
"fabert",
|
||||
"dilbert",
|
||||
"jungle_chess_2pcs_raw_endgame_complete"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,308 @@
|
|||
{
|
||||
"version": "default",
|
||||
"portfolio": [
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 6357,
|
||||
"max_leaves": 206,
|
||||
"min_child_weight": 1.9495322566288034,
|
||||
"learning_rate": 0.0068766724195393905,
|
||||
"subsample": 0.9451618245005704,
|
||||
"colsample_bylevel": 0.9030482524943064,
|
||||
"colsample_bytree": 0.9278972006416252,
|
||||
"reg_alpha": 0.01857648400903689,
|
||||
"reg_lambda": 6.021166480604588,
|
||||
"FLAML_sample_size": 344444
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 23045,
|
||||
"max_leaves": 247,
|
||||
"min_child_weight": 0.004319397499079841,
|
||||
"learning_rate": 0.0032914413473281215,
|
||||
"subsample": 0.7334190564433234,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 1.0,
|
||||
"reg_alpha": 0.03514226467919635,
|
||||
"reg_lambda": 1.2679661021665851
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 1899,
|
||||
"max_leaves": 59,
|
||||
"min_child_weight": 0.013389019900720164,
|
||||
"learning_rate": 0.0028943401472847964,
|
||||
"subsample": 0.7808944208233943,
|
||||
"colsample_bylevel": 1.0,
|
||||
"colsample_bytree": 0.9999355357362375,
|
||||
"reg_alpha": 0.7905117773932884,
|
||||
"reg_lambda": 2.916897119216104
|
||||
}
|
||||
},
|
||||
{
|
||||
"class": "xgboost",
|
||||
"hyperparameters": {
|
||||
"n_estimators": 5611,
|
||||
"max_leaves": 61,
|
||||
"min_child_weight": 0.01070518287797225,
|
||||
"learning_rate": 0.005485127037677848,
|
||||
"subsample": 0.4713518256961299,
|
||||
"colsample_bylevel": 0.9777437906530106,
|
||||
"colsample_bytree": 0.9519335125615331,
|
||||
"reg_alpha": 0.03621564207188963,
|
||||
"reg_lambda": 1.8045765669466283
|
||||
}
|
||||
}
|
||||
],
|
||||
"preprocessing": {
|
||||
"center": [
|
||||
36691.0,
|
||||
10.0,
|
||||
0.0,
|
||||
1.0
|
||||
],
|
||||
"scale": [
|
||||
324551.25,
|
||||
2.5,
|
||||
1.0,
|
||||
0.36111111111111116
|
||||
]
|
||||
},
|
||||
"neighbors": [
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.07492191140844474,
|
||||
12.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
1,
|
||||
3,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.6600082421497375,
|
||||
-0.4,
|
||||
0.0,
|
||||
-0.923076923076923
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.21039820367353385,
|
||||
-0.4,
|
||||
0.0,
|
||||
-2.4615384615384612
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
2,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.06453526215043079,
|
||||
-0.4,
|
||||
0.0,
|
||||
-0.923076923076923
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.026800081651203008,
|
||||
-0.4,
|
||||
0.0,
|
||||
-2.1538461538461537
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.6600082421497375,
|
||||
3.2,
|
||||
0.0,
|
||||
-1.2307692307692306
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.6600082421497375,
|
||||
0.0,
|
||||
0.0,
|
||||
-2.492307692307692
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
2,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.3781868040871819,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
1
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
0,
|
||||
1,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.04987193856132121,
|
||||
2.4,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.04987193856132121,
|
||||
-0.8,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
3
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.0558155299047531,
|
||||
-0.8,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.8307692307692308
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
2.729362465866331,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2
|
||||
]
|
||||
},
|
||||
{
|
||||
"features": [
|
||||
-0.07145558675247746,
|
||||
15.2,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"choice": [
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
2
|
||||
]
|
||||
}
|
||||
],
|
||||
"configsource": [
|
||||
"Albert",
|
||||
"mv",
|
||||
"bng_echomonths",
|
||||
"house_16H"
|
||||
]
|
||||
}
|
|
@ -784,6 +784,7 @@ class LGBMEstimator(BaseEstimator):
|
|||
|
||||
ITER_HP = "n_estimators"
|
||||
HAS_CALLBACK = True
|
||||
DEFAULT_ITER = 100
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, **params):
|
||||
|
@ -887,7 +888,7 @@ class LGBMEstimator(BaseEstimator):
|
|||
def fit(self, X_train, y_train, budget=None, **kwargs):
|
||||
start_time = time.time()
|
||||
deadline = start_time + budget if budget else np.inf
|
||||
n_iter = self.params[self.ITER_HP]
|
||||
n_iter = self.params.get(self.ITER_HP, self.DEFAULT_ITER)
|
||||
trained = False
|
||||
if not self.HAS_CALLBACK:
|
||||
mem0 = psutil.virtual_memory().available if psutil is not None else 1
|
||||
|
@ -996,6 +997,8 @@ class LGBMEstimator(BaseEstimator):
|
|||
class XGBoostEstimator(SKLearnEstimator):
|
||||
"""The class for tuning XGBoost regressor, not using sklearn API."""
|
||||
|
||||
DEFAULT_ITER = 10
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, **params):
|
||||
upper = min(32768, int(data_size[0]))
|
||||
|
@ -1146,6 +1149,8 @@ class XGBoostEstimator(SKLearnEstimator):
|
|||
class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
|
||||
"""The class for tuning XGBoost with unlimited depth, using sklearn API."""
|
||||
|
||||
DEFAULT_ITER = 10
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, **params):
|
||||
space = XGBoostEstimator.search_space(data_size)
|
||||
|
@ -1352,6 +1357,7 @@ class CatBoostEstimator(BaseEstimator):
|
|||
"""The class for tuning CatBoost."""
|
||||
|
||||
ITER_HP = "n_estimators"
|
||||
DEFAULT_ITER = 1000
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, **params):
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
Dataset,NumberOfInstances,NumberOfFeatures,NumberOfClasses,PercentageOfNumericFeatures
|
||||
2dplanes,36691,10,0,1.0
|
||||
adult,43957,14,2,0.42857142857142855
|
||||
Airlines,485444,7,2,0.42857142857142855
|
||||
Albert,382716,78,2,0.3333333333333333
|
||||
Amazon_employee_access,29492,9,2,0.0
|
||||
bng_breastTumor,104976,9,0,0.1111111111111111
|
||||
bng_pbc,900000,18,0,0.5555555555555556
|
||||
car,1555,6,4,0.0
|
||||
connect-4,60801,42,3,0.0
|
||||
dilbert,9000,2000,5,1.0
|
||||
Dionis,374569,60,355,1.0
|
||||
poker,922509,10,0,1.0
|
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 16, "max_features": 1.0, "max_leaves": 54}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 8194, "criterion": "gini", "FLAML_sample_size": 436899}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1733, "max_features": 0.3841826938360253, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 812, "max_features": 1.0, "max_leaves": 1474, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 859, "max_features": 1.0, "max_leaves": 967, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 90, "max_features": 1.0, "max_leaves": 1301, "FLAML_sample_size": 94478}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1211, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 333, "max_features": 1.0, "max_leaves": 201, "criterion": "gini"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 229, "max_features": 0.5372053700721111, "max_leaves": 11150, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 346, "max_features": 1.0, "max_leaves": 1007, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1416, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
|
@ -0,0 +1,142 @@
|
|||
task,fold,type,result,params
|
||||
2dplanes,0,regression,0.946503,{'_modeljson': 'et/2dplanes.json'}
|
||||
2dplanes,0,regression,0.945047,{'_modeljson': 'et/adult.json'}
|
||||
2dplanes,0,regression,0.933571,{'_modeljson': 'et/Airlines.json'}
|
||||
2dplanes,0,regression,0.919021,{'_modeljson': 'et/Albert.json'}
|
||||
2dplanes,0,regression,0.944532,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
2dplanes,0,regression,0.94471,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
2dplanes,0,regression,0.914912,{'_modeljson': 'et/bng_pbc.json'}
|
||||
2dplanes,0,regression,0.946045,{'_modeljson': 'et/car.json'}
|
||||
2dplanes,0,regression,0.935777,{'_modeljson': 'et/connect-4.json'}
|
||||
2dplanes,0,regression,0.91501,{'_modeljson': 'et/default.json'}
|
||||
2dplanes,0,regression,0.94497,{'_modeljson': 'et/dilbert.json'}
|
||||
2dplanes,0,regression,0.914907,{'_modeljson': 'et/poker.json'}
|
||||
adult,0,binary,0.902771,{'_modeljson': 'et/2dplanes.json'}
|
||||
adult,0,binary,0.919086,{'_modeljson': 'et/adult.json'}
|
||||
adult,0,binary,0.906742,{'_modeljson': 'et/Airlines.json'}
|
||||
adult,0,binary,0.897039,{'_modeljson': 'et/Albert.json'}
|
||||
adult,0,binary,0.919317,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.918404,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
adult,0,binary,0.895193,{'_modeljson': 'et/bng_pbc.json'}
|
||||
adult,0,binary,0.912965,{'_modeljson': 'et/car.json'}
|
||||
adult,0,binary,0.904228,{'_modeljson': 'et/connect-4.json'}
|
||||
adult,0,binary,0.893933,{'_modeljson': 'et/default.json'}
|
||||
adult,0,binary,0.918539,{'_modeljson': 'et/dilbert.json'}
|
||||
adult,0,binary,0.895813,{'_modeljson': 'et/poker.json'}
|
||||
Airlines,0,binary,0.683928,{'_modeljson': 'et/2dplanes.json'}
|
||||
Airlines,0,binary,0.709673,{'_modeljson': 'et/adult.json'}
|
||||
Airlines,0,binary,0.724391,{'_modeljson': 'et/Airlines.json'}
|
||||
Airlines,0,binary,0.707411,{'_modeljson': 'et/Albert.json'}
|
||||
Airlines,0,binary,0.713548,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
Airlines,0,binary,0.712774,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
Airlines,0,binary,0.708477,{'_modeljson': 'et/bng_pbc.json'}
|
||||
Airlines,0,binary,0.695604,{'_modeljson': 'et/car.json'}
|
||||
Airlines,0,binary,0.719631,{'_modeljson': 'et/connect-4.json'}
|
||||
Airlines,0,binary,0.619025,{'_modeljson': 'et/default.json'}
|
||||
Airlines,0,binary,0.710038,{'_modeljson': 'et/dilbert.json'}
|
||||
Airlines,0,binary,0.708628,{'_modeljson': 'et/poker.json'}
|
||||
Albert,0,binary,0.707126,{'_modeljson': 'et/2dplanes.json'}
|
||||
Albert,0,binary,0.727819,{'_modeljson': 'et/adult.json'}
|
||||
Albert,0,binary,0.733953,{'_modeljson': 'et/Airlines.json'}
|
||||
Albert,0,binary,0.739138,{'_modeljson': 'et/Albert.json'}
|
||||
Albert,0,binary,0.729251,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
Albert,0,binary,0.728612,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
Albert,0,binary,0.736396,{'_modeljson': 'et/bng_pbc.json'}
|
||||
Albert,0,binary,0.719311,{'_modeljson': 'et/car.json'}
|
||||
Albert,0,binary,0.735032,{'_modeljson': 'et/connect-4.json'}
|
||||
Albert,0,binary,0.725017,{'_modeljson': 'et/default.json'}
|
||||
Albert,0,binary,0.728108,{'_modeljson': 'et/dilbert.json'}
|
||||
Albert,0,binary,0.736668,{'_modeljson': 'et/poker.json'}
|
||||
Amazon_employee_access,0,binary,0.708259,{'_modeljson': 'et/2dplanes.json'}
|
||||
Amazon_employee_access,0,binary,0.872603,{'_modeljson': 'et/adult.json'}
|
||||
Amazon_employee_access,0,binary,0.839293,{'_modeljson': 'et/Airlines.json'}
|
||||
Amazon_employee_access,0,binary,0.834606,{'_modeljson': 'et/Albert.json'}
|
||||
Amazon_employee_access,0,binary,0.873141,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
Amazon_employee_access,0,binary,0.860569,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
Amazon_employee_access,0,binary,0.834654,{'_modeljson': 'et/bng_pbc.json'}
|
||||
Amazon_employee_access,0,binary,0.81679,{'_modeljson': 'et/car.json'}
|
||||
Amazon_employee_access,0,binary,0.831975,{'_modeljson': 'et/connect-4.json'}
|
||||
Amazon_employee_access,0,binary,0.839651,{'_modeljson': 'et/default.json'}
|
||||
Amazon_employee_access,0,binary,0.868815,{'_modeljson': 'et/dilbert.json'}
|
||||
Amazon_employee_access,0,binary,0.841461,{'_modeljson': 'et/poker.json'}
|
||||
bng_breastTumor,0,regression,0.137191,{'_modeljson': 'et/2dplanes.json'}
|
||||
bng_breastTumor,0,regression,0.181002,{'_modeljson': 'et/adult.json'}
|
||||
bng_breastTumor,0,regression,0.163121,{'_modeljson': 'et/Airlines.json'}
|
||||
bng_breastTumor,0,regression,0.116596,{'_modeljson': 'et/Albert.json'}
|
||||
bng_breastTumor,0,regression,0.181745,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
bng_breastTumor,0,regression,0.180948,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
bng_breastTumor,0,regression,0.0784668,{'_modeljson': 'et/bng_pbc.json'}
|
||||
bng_breastTumor,0,regression,0.168552,{'_modeljson': 'et/car.json'}
|
||||
bng_breastTumor,0,regression,0.165576,{'_modeljson': 'et/connect-4.json'}
|
||||
bng_breastTumor,0,regression,-0.28734,{'_modeljson': 'et/default.json'}
|
||||
bng_breastTumor,0,regression,0.1822,{'_modeljson': 'et/dilbert.json'}
|
||||
bng_breastTumor,0,regression,0.0780929,{'_modeljson': 'et/poker.json'}
|
||||
bng_pbc,0,regression,0.332032,{'_modeljson': 'et/2dplanes.json'}
|
||||
bng_pbc,0,regression,0.3879,{'_modeljson': 'et/adult.json'}
|
||||
bng_pbc,0,regression,0.411442,{'_modeljson': 'et/Airlines.json'}
|
||||
bng_pbc,0,regression,0.400094,{'_modeljson': 'et/Albert.json'}
|
||||
bng_pbc,0,regression,0.394067,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
bng_pbc,0,regression,0.391695,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
bng_pbc,0,regression,0.421267,{'_modeljson': 'et/bng_pbc.json'}
|
||||
bng_pbc,0,regression,0.361909,{'_modeljson': 'et/car.json'}
|
||||
bng_pbc,0,regression,0.402332,{'_modeljson': 'et/connect-4.json'}
|
||||
bng_pbc,0,regression,0.418622,{'_modeljson': 'et/default.json'}
|
||||
bng_pbc,0,regression,0.388768,{'_modeljson': 'et/dilbert.json'}
|
||||
bng_pbc,0,regression,0.421152,{'_modeljson': 'et/poker.json'}
|
||||
car,0,multiclass,-0.0815482,{'_modeljson': 'et/2dplanes.json'}
|
||||
car,0,multiclass,-0.218552,{'_modeljson': 'et/adult.json'}
|
||||
car,0,multiclass,-0.0474428,{'_modeljson': 'et/Airlines.json'}
|
||||
car,0,multiclass,-0.108586,{'_modeljson': 'et/Albert.json'}
|
||||
car,0,multiclass,-0.218073,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
car,0,multiclass,-0.0397411,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
car,0,multiclass,-0.0485655,{'_modeljson': 'et/bng_pbc.json'}
|
||||
car,0,multiclass,-0.0524496,{'_modeljson': 'et/car.json'}
|
||||
car,0,multiclass,-0.0690461,{'_modeljson': 'et/connect-4.json'}
|
||||
car,0,multiclass,-0.111939,{'_modeljson': 'et/default.json'}
|
||||
car,0,multiclass,-0.218153,{'_modeljson': 'et/dilbert.json'}
|
||||
car,0,multiclass,-0.0502018,{'_modeljson': 'et/poker.json'}
|
||||
connect-4,0,multiclass,-0.706448,{'_modeljson': 'et/2dplanes.json'}
|
||||
connect-4,0,multiclass,-0.54998,{'_modeljson': 'et/adult.json'}
|
||||
connect-4,0,multiclass,-0.495074,{'_modeljson': 'et/Airlines.json'}
|
||||
connect-4,0,multiclass,-0.468797,{'_modeljson': 'et/Albert.json'}
|
||||
connect-4,0,multiclass,-0.528177,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
connect-4,0,multiclass,-0.545043,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
connect-4,0,multiclass,-0.57415,{'_modeljson': 'et/bng_pbc.json'}
|
||||
connect-4,0,multiclass,-0.639965,{'_modeljson': 'et/car.json'}
|
||||
connect-4,0,multiclass,-0.459906,{'_modeljson': 'et/connect-4.json'}
|
||||
connect-4,0,multiclass,-0.540561,{'_modeljson': 'et/default.json'}
|
||||
connect-4,0,multiclass,-0.547218,{'_modeljson': 'et/dilbert.json'}
|
||||
connect-4,0,multiclass,-0.573145,{'_modeljson': 'et/poker.json'}
|
||||
dilbert,0,multiclass,-0.626964,{'_modeljson': 'et/2dplanes.json'}
|
||||
dilbert,0,multiclass,-0.230603,{'_modeljson': 'et/adult.json'}
|
||||
dilbert,0,multiclass,-0.246071,{'_modeljson': 'et/Airlines.json'}
|
||||
dilbert,0,multiclass,-0.237068,{'_modeljson': 'et/Albert.json'}
|
||||
dilbert,0,multiclass,-0.230785,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
dilbert,0,multiclass,-0.253409,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
dilbert,0,multiclass,-0.247331,{'_modeljson': 'et/bng_pbc.json'}
|
||||
dilbert,0,multiclass,-0.383859,{'_modeljson': 'et/car.json'}
|
||||
dilbert,0,multiclass,-0.234819,{'_modeljson': 'et/connect-4.json'}
|
||||
dilbert,0,multiclass,-0.308227,{'_modeljson': 'et/default.json'}
|
||||
dilbert,0,multiclass,-0.231163,{'_modeljson': 'et/dilbert.json'}
|
||||
dilbert,0,multiclass,-0.245383,{'_modeljson': 'et/poker.json'}
|
||||
Dionis,0,multiclass,-3.354,{'_modeljson': 'et/2dplanes.json'}
|
||||
Dionis,0,multiclass,-1.56815,{'_modeljson': 'et/adult.json'}
|
||||
Dionis,0,multiclass,-0.758098,{'_modeljson': 'et/Airlines.json'}
|
||||
Dionis,0,multiclass,-1.36204,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
Dionis,0,multiclass,-1.40398,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
Dionis,0,multiclass,-2.44773,{'_modeljson': 'et/car.json'}
|
||||
Dionis,0,multiclass,-0.759589,{'_modeljson': 'et/connect-4.json'}
|
||||
Dionis,0,multiclass,-0.789821,{'_modeljson': 'et/default.json'}
|
||||
Dionis,0,multiclass,-1.54593,{'_modeljson': 'et/dilbert.json'}
|
||||
poker,0,regression,0.103608,{'_modeljson': 'et/2dplanes.json'}
|
||||
poker,0,regression,0.314258,{'_modeljson': 'et/adult.json'}
|
||||
poker,0,regression,0.531285,{'_modeljson': 'et/Airlines.json'}
|
||||
poker,0,regression,0.30208,{'_modeljson': 'et/Albert.json'}
|
||||
poker,0,regression,0.358474,{'_modeljson': 'et/Amazon_employee_access.json'}
|
||||
poker,0,regression,0.344292,{'_modeljson': 'et/bng_breastTumor.json'}
|
||||
poker,0,regression,0.663188,{'_modeljson': 'et/bng_pbc.json'}
|
||||
poker,0,regression,0.180103,{'_modeljson': 'et/car.json'}
|
||||
poker,0,regression,0.394291,{'_modeljson': 'et/connect-4.json'}
|
||||
poker,0,regression,0.753355,{'_modeljson': 'et/default.json'}
|
||||
poker,0,regression,0.317809,{'_modeljson': 'et/dilbert.json'}
|
||||
poker,0,regression,0.663812,{'_modeljson': 'et/poker.json'}
|
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 103, "num_leaves": 33, "min_child_samples": 4, "learning_rate": 0.05800185361316003, "log_max_bin": 6, "colsample_bytree": 1.0, "reg_alpha": 1.5987124004961213, "reg_lambda": 10.56445079499673}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 733, "num_leaves": 11, "min_child_samples": 94, "learning_rate": 0.06276798296942972, "log_max_bin": 6, "colsample_bytree": 0.6341928918435795, "reg_alpha": 0.5811038918218691, "reg_lambda": 43.304997517523944}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 2541, "num_leaves": 1667, "min_child_samples": 29, "learning_rate": 0.0016660662914022302, "log_max_bin": 8, "colsample_bytree": 0.5157078343718623, "reg_alpha": 0.045792841240713165, "reg_lambda": 0.0012362651138125363, "FLAML_sample_size": 436899}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 12659, "num_leaves": 566, "min_child_samples": 51, "learning_rate": 0.0017248557932071625, "log_max_bin": 10, "colsample_bytree": 0.35373661752616337, "reg_alpha": 0.004824272162679245, "reg_lambda": 8.51563063056529, "FLAML_sample_size": 344444}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 198, "num_leaves": 6241, "min_child_samples": 3, "learning_rate": 0.003807690748728824, "log_max_bin": 10, "colsample_bytree": 0.3192882305722113, "reg_alpha": 0.024630507311503163, "reg_lambda": 0.06738306675149014}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 362, "num_leaves": 1208, "min_child_samples": 8, "learning_rate": 0.02070742242160566, "log_max_bin": 4, "colsample_bytree": 0.37915528071680865, "reg_alpha": 0.002982599447751338, "reg_lambda": 1.136605174453919, "FLAML_sample_size": 337147}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 11842, "num_leaves": 31, "min_child_samples": 3, "learning_rate": 0.0015861878568503534, "log_max_bin": 8, "colsample_bytree": 0.3814347840573729, "reg_alpha": 0.0009765625, "reg_lambda": 0.011319689446351965}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 644, "num_leaves": 40, "min_child_samples": 38, "learning_rate": 0.06007328261566753, "log_max_bin": 5, "colsample_bytree": 0.6950692048656423, "reg_alpha": 0.0009765625, "reg_lambda": 9.849318389111616, "FLAML_sample_size": 94478}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 27202, "num_leaves": 848, "min_child_samples": 2, "learning_rate": 0.0019296395751528979, "log_max_bin": 5, "colsample_bytree": 0.7328229531785452, "reg_alpha": 6.112225454676263, "reg_lambda": 0.08606162543586986, "FLAML_sample_size": 810000}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 311, "num_leaves": 4, "min_child_samples": 5, "learning_rate": 0.5547292134798673, "log_max_bin": 3, "colsample_bytree": 0.9917614238487915, "reg_alpha": 0.0009765625, "reg_lambda": 0.0019177370889840813}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 3726, "num_leaves": 155, "min_child_samples": 4, "learning_rate": 0.040941607728296484, "log_max_bin": 5, "colsample_bytree": 0.5326256194627191, "reg_alpha": 0.7408711930398492, "reg_lambda": 0.5467731065349226}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 7325, "num_leaves": 15, "min_child_samples": 6, "learning_rate": 0.009932524214971736, "log_max_bin": 6, "colsample_bytree": 0.8592091503131608, "reg_alpha": 0.0009997224940106115, "reg_lambda": 0.04069855891326503}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 32767, "num_leaves": 372, "min_child_samples": 4, "learning_rate": 0.03517259015200922, "log_max_bin": 5, "colsample_bytree": 1.0, "reg_alpha": 0.02271142170225636, "reg_lambda": 0.001963791798843179, "FLAML_sample_size": 830258}}
|
|
@ -0,0 +1,167 @@
|
|||
task,fold,type,result,params
|
||||
2dplanes,0,regression,0.946366,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
2dplanes,0,regression,0.907774,{'_modeljson': 'lgbm/adult.json'}
|
||||
2dplanes,0,regression,0.901643,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
2dplanes,0,regression,0.915098,{'_modeljson': 'lgbm/Albert.json'}
|
||||
2dplanes,0,regression,0.302328,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
2dplanes,0,regression,0.94523,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
2dplanes,0,regression,0.945698,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
2dplanes,0,regression,0.946194,{'_modeljson': 'lgbm/car.json'}
|
||||
2dplanes,0,regression,0.945549,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
2dplanes,0,regression,0.946232,{'_modeljson': 'lgbm/default.json'}
|
||||
2dplanes,0,regression,0.945594,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
2dplanes,0,regression,0.836996,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
2dplanes,0,regression,0.917152,{'_modeljson': 'lgbm/poker.json'}
|
||||
adult,0,binary,0.927203,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
adult,0,binary,0.932072,{'_modeljson': 'lgbm/adult.json'}
|
||||
adult,0,binary,0.926563,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
adult,0,binary,0.928604,{'_modeljson': 'lgbm/Albert.json'}
|
||||
adult,0,binary,0.911171,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.930645,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
adult,0,binary,0.928603,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
adult,0,binary,0.915825,{'_modeljson': 'lgbm/car.json'}
|
||||
adult,0,binary,0.919499,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
adult,0,binary,0.930109,{'_modeljson': 'lgbm/default.json'}
|
||||
adult,0,binary,0.932453,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
adult,0,binary,0.921959,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
adult,0,binary,0.910763,{'_modeljson': 'lgbm/poker.json'}
|
||||
Airlines,0,binary,0.705404,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
Airlines,0,binary,0.714521,{'_modeljson': 'lgbm/adult.json'}
|
||||
Airlines,0,binary,0.732288,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
Airlines,0,binary,0.710273,{'_modeljson': 'lgbm/Albert.json'}
|
||||
Airlines,0,binary,0.707107,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
Airlines,0,binary,0.718682,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
Airlines,0,binary,0.724703,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
Airlines,0,binary,0.690574,{'_modeljson': 'lgbm/car.json'}
|
||||
Airlines,0,binary,0.725808,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
Airlines,0,binary,0.710419,{'_modeljson': 'lgbm/default.json'}
|
||||
Airlines,0,binary,0.710419,{'_modeljson': 'lgbm/default.json'}
|
||||
Airlines,0,binary,0.718609,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
Airlines,0,binary,0.716213,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
Airlines,0,binary,0.654868,{'_modeljson': 'lgbm/poker.json'}
|
||||
Albert,0,binary,0.744825,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
Albert,0,binary,0.758979,{'_modeljson': 'lgbm/adult.json'}
|
||||
Albert,0,binary,0.758364,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
Albert,0,binary,0.770923,{'_modeljson': 'lgbm/Albert.json'}
|
||||
Albert,0,binary,0.745091,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
Albert,0,binary,0.754523,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
Albert,0,binary,0.759939,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
Albert,0,binary,0.765119,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
Albert,0,binary,0.745067,{'_modeljson': 'lgbm/car.json'}
|
||||
Albert,0,binary,0.762311,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
Albert,0,binary,0.753181,{'_modeljson': 'lgbm/default.json'}
|
||||
Albert,0,binary,0.753181,{'_modeljson': 'lgbm/default.json'}
|
||||
Albert,0,binary,0.760248,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
Albert,0,binary,0.758111,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
Albert,0,binary,0.761768,{'_modeljson': 'lgbm/poker.json'}
|
||||
Amazon_employee_access,0,binary,0.811238,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
Amazon_employee_access,0,binary,0.867285,{'_modeljson': 'lgbm/adult.json'}
|
||||
Amazon_employee_access,0,binary,0.8888,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
Amazon_employee_access,0,binary,0.881302,{'_modeljson': 'lgbm/Albert.json'}
|
||||
Amazon_employee_access,0,binary,0.891085,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
Amazon_employee_access,0,binary,0.816736,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
Amazon_employee_access,0,binary,0.861187,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
Amazon_employee_access,0,binary,0.848348,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
Amazon_employee_access,0,binary,0.760891,{'_modeljson': 'lgbm/car.json'}
|
||||
Amazon_employee_access,0,binary,0.872951,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
Amazon_employee_access,0,binary,0.851183,{'_modeljson': 'lgbm/default.json'}
|
||||
Amazon_employee_access,0,binary,0.851183,{'_modeljson': 'lgbm/default.json'}
|
||||
Amazon_employee_access,0,binary,0.851173,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
Amazon_employee_access,0,binary,0.843577,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
Amazon_employee_access,0,binary,0.866543,{'_modeljson': 'lgbm/poker.json'}
|
||||
bng_breastTumor,0,regression,0.186246,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
bng_breastTumor,0,regression,0.181787,{'_modeljson': 'lgbm/adult.json'}
|
||||
bng_breastTumor,0,regression,0.177175,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
bng_breastTumor,0,regression,0.169053,{'_modeljson': 'lgbm/Albert.json'}
|
||||
bng_breastTumor,0,regression,0.0734972,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
bng_breastTumor,0,regression,0.192189,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
bng_breastTumor,0,regression,0.195887,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
bng_breastTumor,0,regression,0.144786,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
bng_breastTumor,0,regression,0.168074,{'_modeljson': 'lgbm/car.json'}
|
||||
bng_breastTumor,0,regression,0.159819,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
bng_breastTumor,0,regression,0.192813,{'_modeljson': 'lgbm/default.json'}
|
||||
bng_breastTumor,0,regression,0.192813,{'_modeljson': 'lgbm/default.json'}
|
||||
bng_breastTumor,0,regression,0.193994,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
bng_breastTumor,0,regression,0.162977,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
bng_breastTumor,0,regression,-0.0283641,{'_modeljson': 'lgbm/poker.json'}
|
||||
bng_pbc,0,regression,0.415569,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
bng_pbc,0,regression,0.421659,{'_modeljson': 'lgbm/adult.json'}
|
||||
bng_pbc,0,regression,0.433399,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
bng_pbc,0,regression,0.429397,{'_modeljson': 'lgbm/Albert.json'}
|
||||
bng_pbc,0,regression,0.218693,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
bng_pbc,0,regression,0.426949,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
bng_pbc,0,regression,0.444361,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
bng_pbc,0,regression,0.459898,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
bng_pbc,0,regression,0.404274,{'_modeljson': 'lgbm/car.json'}
|
||||
bng_pbc,0,regression,0.453742,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
bng_pbc,0,regression,0.425581,{'_modeljson': 'lgbm/default.json'}
|
||||
bng_pbc,0,regression,0.425581,{'_modeljson': 'lgbm/default.json'}
|
||||
bng_pbc,0,regression,0.440833,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
bng_pbc,0,regression,0.42319,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
bng_pbc,0,regression,0.440263,{'_modeljson': 'lgbm/poker.json'}
|
||||
car,0,multiclass,-0.126115,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
car,0,multiclass,-0.20528,{'_modeljson': 'lgbm/adult.json'}
|
||||
car,0,multiclass,-0.189212,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
car,0,multiclass,-0.233147,{'_modeljson': 'lgbm/Albert.json'}
|
||||
car,0,multiclass,-0.598807,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
car,0,multiclass,-0.119622,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
car,0,multiclass,-0.0372956,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
car,0,multiclass,-0.179642,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
car,0,multiclass,-0.000121047,{'_modeljson': 'lgbm/car.json'}
|
||||
car,0,multiclass,-0.050453,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
car,0,multiclass,-0.00234879,{'_modeljson': 'lgbm/default.json'}
|
||||
car,0,multiclass,-0.00234879,{'_modeljson': 'lgbm/default.json'}
|
||||
car,0,multiclass,-0.000295737,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
car,0,multiclass,-0.297016,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
car,0,multiclass,-0.00178529,{'_modeljson': 'lgbm/poker.json'}
|
||||
connect-4,0,multiclass,-0.527657,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
connect-4,0,multiclass,-0.462894,{'_modeljson': 'lgbm/adult.json'}
|
||||
connect-4,0,multiclass,-0.449048,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
connect-4,0,multiclass,-0.393871,{'_modeljson': 'lgbm/Albert.json'}
|
||||
connect-4,0,multiclass,-0.73746,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
connect-4,0,multiclass,-0.485399,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
connect-4,0,multiclass,-0.393378,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
connect-4,0,multiclass,-0.388117,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
connect-4,0,multiclass,-0.484577,{'_modeljson': 'lgbm/car.json'}
|
||||
connect-4,0,multiclass,-0.32741,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
connect-4,0,multiclass,-0.482328,{'_modeljson': 'lgbm/default.json'}
|
||||
connect-4,0,multiclass,-0.482328,{'_modeljson': 'lgbm/default.json'}
|
||||
connect-4,0,multiclass,-0.413426,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
connect-4,0,multiclass,-0.438676,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
connect-4,0,multiclass,-0.489035,{'_modeljson': 'lgbm/poker.json'}
|
||||
dilbert,0,multiclass,-0.134669,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
dilbert,0,multiclass,-0.0405039,{'_modeljson': 'lgbm/adult.json'}
|
||||
dilbert,0,multiclass,-0.0888238,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
dilbert,0,multiclass,-0.0618876,{'_modeljson': 'lgbm/Albert.json'}
|
||||
dilbert,0,multiclass,-0.0653412,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
dilbert,0,multiclass,-0.0484292,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
dilbert,0,multiclass,-0.126248,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
dilbert,0,multiclass,-0.0473867,{'_modeljson': 'lgbm/car.json'}
|
||||
dilbert,0,multiclass,-0.0759236,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
dilbert,0,multiclass,-0.0490604,{'_modeljson': 'lgbm/default.json'}
|
||||
dilbert,0,multiclass,-0.0490604,{'_modeljson': 'lgbm/default.json'}
|
||||
dilbert,0,multiclass,-0.034108,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
dilbert,0,multiclass,-0.0661046,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
dilbert,0,multiclass,-0.0744684,{'_modeljson': 'lgbm/poker.json'}
|
||||
Dionis,0,multiclass,-0.395452,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
Dionis,0,multiclass,-1.40235,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
Dionis,0,multiclass,-0.306241,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
Dionis,0,multiclass,-33.7902,{'_modeljson': 'lgbm/car.json'}
|
||||
Dionis,0,multiclass,-27.9456,{'_modeljson': 'lgbm/default.json'}
|
||||
Dionis,0,multiclass,-28.095,{'_modeljson': 'lgbm/default.json'}
|
||||
Dionis,0,multiclass,-0.318142,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
poker,0,regression,0.203695,{'_modeljson': 'lgbm/2dplanes.json'}
|
||||
poker,0,regression,0.424513,{'_modeljson': 'lgbm/adult.json'}
|
||||
poker,0,regression,0.490528,{'_modeljson': 'lgbm/Airlines.json'}
|
||||
poker,0,regression,0.767652,{'_modeljson': 'lgbm/Albert.json'}
|
||||
poker,0,regression,0.0592655,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
|
||||
poker,0,regression,0.393168,{'_modeljson': 'lgbm/APSFailure.json'}
|
||||
poker,0,regression,0.614152,{'_modeljson': 'lgbm/bng_breastTumor.json'}
|
||||
poker,0,regression,0.854134,{'_modeljson': 'lgbm/bng_pbc.json'}
|
||||
poker,0,regression,0.197075,{'_modeljson': 'lgbm/car.json'}
|
||||
poker,0,regression,0.879695,{'_modeljson': 'lgbm/connect-4.json'}
|
||||
poker,0,regression,0.284102,{'_modeljson': 'lgbm/default.json'}
|
||||
poker,0,regression,0.284102,{'_modeljson': 'lgbm/default.json'}
|
||||
poker,0,regression,0.433648,{'_modeljson': 'lgbm/dilbert.json'}
|
||||
poker,0,regression,0.657666,{'_modeljson': 'lgbm/Dionis.json'}
|
||||
poker,0,regression,0.940835,{'_modeljson': 'lgbm/poker.json'}
|
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 38, "max_features": 1.0, "max_leaves": 58}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 418, "max_features": 0.5303485415288045, "max_leaves": 6452, "criterion": "entropy", "FLAML_sample_size": 436899}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.10091610074262287, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 501, "max_features": 0.24484242524861066, "max_leaves": 1156, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 510, "max_features": 0.12094682590862652, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 337147}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 1212, "max_features": 0.3129111648657632, "max_leaves": 779, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 288, "max_features": 0.6436380990499977, "max_leaves": 1823, "FLAML_sample_size": 94478}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.3158919059422144, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 792, "max_features": 1.0, "max_leaves": 67, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 1907, "max_features": 0.3728618389498168, "max_leaves": 11731, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 350, "max_features": 0.748250835121453, "max_leaves": 433, "criterion": "entropy"}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
|
@ -0,0 +1,145 @@
|
|||
task,fold,type,result,metric,params,info
|
||||
2dplanes,0,regression,0.946488,r2,{'_modeljson': 'rf/2dplanes.json'},
|
||||
2dplanes,0,regression,0.936392,r2,{'_modeljson': 'rf/adult.json'},
|
||||
2dplanes,0,regression,0.940486,r2,{'_modeljson': 'rf/Airlines.json'},
|
||||
2dplanes,0,regression,0.924025,r2,{'_modeljson': 'rf/Albert.json'},
|
||||
2dplanes,0,regression,0.911362,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
2dplanes,0,regression,0.944353,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
2dplanes,0,regression,0.932343,r2,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
2dplanes,0,regression,0.946423,r2,{'_modeljson': 'rf/car.json'},
|
||||
2dplanes,0,regression,0.937309,r2,{'_modeljson': 'rf/connect-4.json'},
|
||||
2dplanes,0,regression,0.930126,r2,{'_modeljson': 'rf/default.json'},
|
||||
2dplanes,0,regression,0.945707,r2,{'_modeljson': 'rf/dilbert.json'},
|
||||
2dplanes,0,regression,0.923313,r2,{'_modeljson': 'rf/Dionis.json'},
|
||||
2dplanes,0,regression,0.930579,r2,{'_modeljson': 'rf/poker.json'},
|
||||
adult,0,binary,0.912946,auc,{'_modeljson': 'rf/2dplanes.json'},
|
||||
adult,0,binary,0.91978,auc,{'_modeljson': 'rf/adult.json'},
|
||||
adult,0,binary,0.910127,auc,{'_modeljson': 'rf/Airlines.json'},
|
||||
adult,0,binary,0.910553,auc,{'_modeljson': 'rf/Albert.json'},
|
||||
adult,0,binary,0.919662,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
adult,0,binary,0.915769,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
adult,0,binary,0.91003,auc,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
adult,0,binary,0.914697,auc,{'_modeljson': 'rf/car.json'},
|
||||
adult,0,binary,0.911118,auc,{'_modeljson': 'rf/connect-4.json'},
|
||||
adult,0,binary,0.907368,auc,{'_modeljson': 'rf/default.json'},
|
||||
adult,0,binary,0.919216,auc,{'_modeljson': 'rf/dilbert.json'},
|
||||
adult,0,binary,0.910528,auc,{'_modeljson': 'rf/Dionis.json'},
|
||||
adult,0,binary,0.904508,auc,{'_modeljson': 'rf/poker.json'},
|
||||
Airlines,0,binary,0.687817,auc,{'_modeljson': 'rf/2dplanes.json'},
|
||||
Airlines,0,binary,0.712804,auc,{'_modeljson': 'rf/adult.json'},
|
||||
Airlines,0,binary,0.727357,auc,{'_modeljson': 'rf/Airlines.json'},
|
||||
Airlines,0,binary,0.705541,auc,{'_modeljson': 'rf/Albert.json'},
|
||||
Airlines,0,binary,0.71012,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
Airlines,0,binary,0.722532,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
Airlines,0,binary,0.709287,auc,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
Airlines,0,binary,0.688678,auc,{'_modeljson': 'rf/car.json'},
|
||||
Airlines,0,binary,0.725288,auc,{'_modeljson': 'rf/connect-4.json'},
|
||||
Airlines,0,binary,0.657276,auc,{'_modeljson': 'rf/default.json'},
|
||||
Airlines,0,binary,0.708515,auc,{'_modeljson': 'rf/dilbert.json'},
|
||||
Airlines,0,binary,0.705826,auc,{'_modeljson': 'rf/Dionis.json'},
|
||||
Airlines,0,binary,0.699484,auc,{'_modeljson': 'rf/poker.json'},
|
||||
Albert,0,binary,0.712348,auc,{'_modeljson': 'rf/2dplanes.json'},
|
||||
Albert,0,binary,0.72836,auc,{'_modeljson': 'rf/adult.json'},
|
||||
Albert,0,binary,0.734105,auc,{'_modeljson': 'rf/Airlines.json'},
|
||||
Albert,0,binary,0.737119,auc,{'_modeljson': 'rf/Albert.json'},
|
||||
Albert,0,binary,0.729216,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
Albert,0,binary,0.731546,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
Albert,0,binary,0.734847,auc,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
Albert,0,binary,0.713965,auc,{'_modeljson': 'rf/car.json'},
|
||||
Albert,0,binary,0.735372,auc,{'_modeljson': 'rf/connect-4.json'},
|
||||
Albert,0,binary,0.728232,auc,{'_modeljson': 'rf/default.json'},
|
||||
Albert,0,binary,0.726823,auc,{'_modeljson': 'rf/dilbert.json'},
|
||||
Albert,0,binary,0.735994,auc,{'_modeljson': 'rf/Dionis.json'},
|
||||
Amazon_employee_access,0,binary,0.728779,auc,{'_modeljson': 'rf/2dplanes.json'},
|
||||
Amazon_employee_access,0,binary,0.87801,auc,{'_modeljson': 'rf/adult.json'},
|
||||
Amazon_employee_access,0,binary,0.88085,auc,{'_modeljson': 'rf/Airlines.json'},
|
||||
Amazon_employee_access,0,binary,0.881869,auc,{'_modeljson': 'rf/Albert.json'},
|
||||
Amazon_employee_access,0,binary,0.881463,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
Amazon_employee_access,0,binary,0.882723,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
Amazon_employee_access,0,binary,0.88299,auc,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
Amazon_employee_access,0,binary,0.808575,auc,{'_modeljson': 'rf/car.json'},
|
||||
Amazon_employee_access,0,binary,0.881209,auc,{'_modeljson': 'rf/connect-4.json'},
|
||||
Amazon_employee_access,0,binary,0.877507,auc,{'_modeljson': 'rf/default.json'},
|
||||
Amazon_employee_access,0,binary,0.875146,auc,{'_modeljson': 'rf/dilbert.json'},
|
||||
Amazon_employee_access,0,binary,0.878121,auc,{'_modeljson': 'rf/Dionis.json'},
|
||||
Amazon_employee_access,0,binary,0.886312,auc,{'_modeljson': 'rf/poker.json'},
|
||||
bng_breastTumor,0,regression,0.153657,r2,{'_modeljson': 'rf/2dplanes.json'},
|
||||
bng_breastTumor,0,regression,0.156403,r2,{'_modeljson': 'rf/adult.json'},
|
||||
bng_breastTumor,0,regression,0.174569,r2,{'_modeljson': 'rf/Airlines.json'},
|
||||
bng_breastTumor,0,regression,0.0441869,r2,{'_modeljson': 'rf/Albert.json'},
|
||||
bng_breastTumor,0,regression,0.157992,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
bng_breastTumor,0,regression,0.186635,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
bng_breastTumor,0,regression,0.0527547,r2,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
bng_breastTumor,0,regression,0.158852,r2,{'_modeljson': 'rf/car.json'},
|
||||
bng_breastTumor,0,regression,0.150611,r2,{'_modeljson': 'rf/connect-4.json'},
|
||||
bng_breastTumor,0,regression,-0.02142,r2,{'_modeljson': 'rf/default.json'},
|
||||
bng_breastTumor,0,regression,0.183562,r2,{'_modeljson': 'rf/dilbert.json'},
|
||||
bng_breastTumor,0,regression,0.0414589,r2,{'_modeljson': 'rf/Dionis.json'},
|
||||
bng_breastTumor,0,regression,0.00390625,r2,{'_modeljson': 'rf/poker.json'},
|
||||
bng_pbc,0,regression,0.344043,r2,{'_modeljson': 'rf/2dplanes.json'},
|
||||
bng_pbc,0,regression,0.402376,r2,{'_modeljson': 'rf/adult.json'},
|
||||
bng_pbc,0,regression,0.423262,r2,{'_modeljson': 'rf/Airlines.json'},
|
||||
bng_pbc,0,regression,0.386142,r2,{'_modeljson': 'rf/Albert.json'},
|
||||
bng_pbc,0,regression,0.403857,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
bng_pbc,0,regression,0.413944,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
bng_pbc,0,regression,0.43206,r2,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
bng_pbc,0,regression,0.348594,r2,{'_modeljson': 'rf/car.json'},
|
||||
bng_pbc,0,regression,0.427588,r2,{'_modeljson': 'rf/connect-4.json'},
|
||||
bng_pbc,0,regression,0.415337,r2,{'_modeljson': 'rf/default.json'},
|
||||
bng_pbc,0,regression,0.393936,r2,{'_modeljson': 'rf/dilbert.json'},
|
||||
bng_pbc,0,regression,0.415246,r2,{'_modeljson': 'rf/Dionis.json'},
|
||||
car,0,multiclass,-0.0575382,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
|
||||
car,0,multiclass,-0.155878,neg_logloss,{'_modeljson': 'rf/adult.json'},
|
||||
car,0,multiclass,-0.0691041,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
|
||||
car,0,multiclass,-0.156607,neg_logloss,{'_modeljson': 'rf/Albert.json'},
|
||||
car,0,multiclass,-0.156968,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
car,0,multiclass,-0.0692317,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
car,0,multiclass,-0.159856,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
car,0,multiclass,-0.046769,neg_logloss,{'_modeljson': 'rf/car.json'},
|
||||
car,0,multiclass,-0.0981933,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
|
||||
car,0,multiclass,-0.0971712,neg_logloss,{'_modeljson': 'rf/default.json'},
|
||||
car,0,multiclass,-0.0564843,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
|
||||
car,0,multiclass,-0.157771,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
|
||||
car,0,multiclass,-0.0511764,neg_logloss,{'_modeljson': 'rf/poker.json'},
|
||||
connect-4,0,multiclass,-0.725888,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
|
||||
connect-4,0,multiclass,-0.576056,neg_logloss,{'_modeljson': 'rf/adult.json'},
|
||||
connect-4,0,multiclass,-0.48458,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
|
||||
connect-4,0,multiclass,-0.505598,neg_logloss,{'_modeljson': 'rf/Albert.json'},
|
||||
connect-4,0,multiclass,-0.568184,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
connect-4,0,multiclass,-0.537511,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
connect-4,0,multiclass,-0.479022,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
connect-4,0,multiclass,-0.713123,neg_logloss,{'_modeljson': 'rf/car.json'},
|
||||
connect-4,0,multiclass,-0.475306,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
|
||||
connect-4,0,multiclass,-0.518061,neg_logloss,{'_modeljson': 'rf/default.json'},
|
||||
connect-4,0,multiclass,-0.599112,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
|
||||
connect-4,0,multiclass,-0.503642,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
|
||||
connect-4,0,multiclass,-0.57852,neg_logloss,{'_modeljson': 'rf/poker.json'},
|
||||
dilbert,0,multiclass,-0.557959,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
|
||||
dilbert,0,multiclass,-0.294462,neg_logloss,{'_modeljson': 'rf/adult.json'},
|
||||
dilbert,0,multiclass,-0.293928,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
|
||||
dilbert,0,multiclass,-0.299661,neg_logloss,{'_modeljson': 'rf/Albert.json'},
|
||||
dilbert,0,multiclass,-0.294668,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
dilbert,0,multiclass,-0.314706,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
dilbert,0,multiclass,-0.313807,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
dilbert,0,multiclass,-0.51482,neg_logloss,{'_modeljson': 'rf/car.json'},
|
||||
dilbert,0,multiclass,-0.293982,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
|
||||
dilbert,0,multiclass,-0.343209,neg_logloss,{'_modeljson': 'rf/default.json'},
|
||||
dilbert,0,multiclass,-0.2945,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
|
||||
dilbert,0,multiclass,-0.298305,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
|
||||
Dionis,0,multiclass,-3.55264,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
|
||||
Dionis,0,multiclass,-1.07117,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
Dionis,0,multiclass,-0.784388,neg_logloss,{'_modeljson': 'rf/default.json'},
|
||||
Dionis,0,multiclass,-0.580332,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
|
||||
poker,0,regression,0.125176,r2,{'_modeljson': 'rf/2dplanes.json'},
|
||||
poker,0,regression,0.148019,r2,{'_modeljson': 'rf/adult.json'},
|
||||
poker,0,regression,0.322507,r2,{'_modeljson': 'rf/Airlines.json'},
|
||||
poker,0,regression,0.172264,r2,{'_modeljson': 'rf/Albert.json'},
|
||||
poker,0,regression,0.113673,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
|
||||
poker,0,regression,0.243427,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
|
||||
poker,0,regression,0.379662,r2,{'_modeljson': 'rf/bng_pbc.json'},
|
||||
poker,0,regression,0.133342,r2,{'_modeljson': 'rf/car.json'},
|
||||
poker,0,regression,0.296597,r2,{'_modeljson': 'rf/connect-4.json'},
|
||||
poker,0,regression,0.608532,r2,{'_modeljson': 'rf/default.json'},
|
||||
poker,0,regression,0.192625,r2,{'_modeljson': 'rf/dilbert.json'},
|
||||
poker,0,regression,0.172139,r2,{'_modeljson': 'rf/Dionis.json'},
|
||||
poker,0,regression,0.528869,r2,{'_modeljson': 'rf/poker.json'},
|
|
|
@ -0,0 +1,222 @@
|
|||
import sys
|
||||
from sklearn.datasets import load_iris, fetch_california_housing, load_breast_cancer
|
||||
from sklearn.model_selection import train_test_split
|
||||
import pandas as pd
|
||||
from flaml import AutoML
|
||||
from flaml.default import (
|
||||
portfolio,
|
||||
regret,
|
||||
preprocess_and_suggest_hyperparams,
|
||||
suggest_hyperparams,
|
||||
suggest_learner,
|
||||
)
|
||||
|
||||
|
||||
def test_build_portfolio(path="test/default", strategy="greedy"):
|
||||
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task binary --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
|
||||
portfolio.main()
|
||||
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task multiclass --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
|
||||
portfolio.main()
|
||||
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task regression --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
|
||||
portfolio.main()
|
||||
|
||||
|
||||
def test_greedy_feedback(path="test/default", strategy="greedy-feedback"):
|
||||
# sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task binary --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
|
||||
# portfolio.main()
|
||||
# sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task multiclass --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
|
||||
# portfolio.main()
|
||||
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task regression --estimator lgbm --strategy {strategy}".split()
|
||||
portfolio.main()
|
||||
|
||||
|
||||
def test_iris(as_frame=True):
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 2,
|
||||
"metric": "accuracy",
|
||||
"task": "classification",
|
||||
"log_file_name": "test/iris.log",
|
||||
"n_jobs": 1,
|
||||
"starting_points": "data",
|
||||
}
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||||
automl.fit(X_train, y_train, **automl_settings)
|
||||
automl_settings["starting_points"] = "data:test/default"
|
||||
automl.fit(X_train, y_train, **automl_settings)
|
||||
|
||||
|
||||
def test_housing(as_frame=True):
|
||||
automl = AutoML()
|
||||
automl_settings = {
|
||||
"time_budget": 2,
|
||||
"task": "regression",
|
||||
"estimator_list": ["xgboost", "lgbm"],
|
||||
"log_file_name": "test/housing.log",
|
||||
"n_jobs": 1,
|
||||
"starting_points": "data",
|
||||
"max_iter": 0,
|
||||
}
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=as_frame)
|
||||
automl.fit(X_train, y_train, **automl_settings)
|
||||
|
||||
|
||||
def test_regret():
|
||||
sys.argv = "regret.py --result_csv test/default/lgbm/results.csv --task_type binary --output test/default/lgbm/binary_regret.csv".split()
|
||||
regret.main()
|
||||
|
||||
|
||||
def test_suggest_classification():
|
||||
location = "test/default"
|
||||
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
|
||||
suggested = suggest_hyperparams(
|
||||
"classification", X_train, y_train, "lgbm", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = preprocess_and_suggest_hyperparams(
|
||||
"classification", X_train, y_train, "xgboost", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = suggest_hyperparams(
|
||||
"classification", X_train, y_train, "xgb_limitdepth", location=location
|
||||
)
|
||||
print(suggested)
|
||||
|
||||
X, y = load_iris(return_X_y=True, as_frame=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.33, random_state=42
|
||||
)
|
||||
(
|
||||
hyperparams,
|
||||
estimator_class,
|
||||
X,
|
||||
y,
|
||||
feature_transformer,
|
||||
label_transformer,
|
||||
) = preprocess_and_suggest_hyperparams(
|
||||
"classification", X_train, y_train, "lgbm", location=location
|
||||
)
|
||||
model = estimator_class(**hyperparams) # estimator_class is LGBMClassifier
|
||||
model.fit(X, y)
|
||||
X_test = feature_transformer.transform(X_test)
|
||||
y_pred = label_transformer.inverse_transform(
|
||||
pd.Series(model.predict(X_test).astype(int))
|
||||
)
|
||||
print(y_pred)
|
||||
suggested = suggest_hyperparams(
|
||||
"classification", X_train, y_train, "xgboost", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = preprocess_and_suggest_hyperparams(
|
||||
"classification", X_train, y_train, "xgb_limitdepth", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = suggest_hyperparams(
|
||||
"classification", X_train, y_train, "xgb_limitdepth", location=location
|
||||
)
|
||||
suggested = suggest_learner(
|
||||
"classification",
|
||||
X_train,
|
||||
y_train,
|
||||
estimator_list=["xgboost", "xgb_limitdepth"],
|
||||
location=location,
|
||||
)
|
||||
print(suggested)
|
||||
|
||||
|
||||
def test_suggest_regression():
|
||||
location = "test/default"
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
suggested = suggest_hyperparams(
|
||||
"regression", X_train, y_train, "lgbm", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = preprocess_and_suggest_hyperparams(
|
||||
"regression", X_train, y_train, "xgboost", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = suggest_hyperparams(
|
||||
"regression", X_train, y_train, "xgb_limitdepth", location=location
|
||||
)
|
||||
print(suggested)
|
||||
suggested = suggest_learner("regression", X_train, y_train, location=location)
|
||||
print(suggested)
|
||||
|
||||
|
||||
def test_rf():
|
||||
from flaml.default.estimator import RandomForestRegressor, RandomForestClassifier
|
||||
|
||||
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
|
||||
rf = RandomForestClassifier()
|
||||
rf.fit(X_train[:100], y_train[:100])
|
||||
rf.predict(X_train)
|
||||
rf.predict_proba(X_train)
|
||||
print(rf)
|
||||
|
||||
location = "test/default"
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
rf = RandomForestRegressor(default_location=location)
|
||||
rf.fit(X_train[:100], y_train[:100])
|
||||
rf.predict(X_train)
|
||||
print(rf)
|
||||
|
||||
|
||||
def test_extratrees():
|
||||
from flaml.default.estimator import ExtraTreesRegressor, ExtraTreesClassifier
|
||||
|
||||
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
|
||||
classifier = ExtraTreesClassifier()
|
||||
classifier.fit(X_train[:100], y_train[:100])
|
||||
classifier.predict(X_train)
|
||||
classifier.predict_proba(X_train)
|
||||
print(classifier)
|
||||
|
||||
location = "test/default"
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
regressor = ExtraTreesRegressor(default_location=location)
|
||||
regressor.fit(X_train[:100], y_train[:100])
|
||||
regressor.predict(X_train)
|
||||
print(regressor)
|
||||
|
||||
|
||||
def test_lgbm():
|
||||
from flaml.default.estimator import LGBMRegressor, LGBMClassifier
|
||||
|
||||
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
|
||||
classifier = LGBMClassifier(n_jobs=1)
|
||||
classifier.fit(X_train, y_train)
|
||||
classifier.predict(X_train, pred_contrib=True)
|
||||
classifier.predict_proba(X_train)
|
||||
print(classifier.get_params())
|
||||
print(classifier)
|
||||
print(classifier.classes_)
|
||||
|
||||
location = "test/default"
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
regressor = LGBMRegressor(default_location=location)
|
||||
regressor.fit(X_train, y_train)
|
||||
regressor.predict(X_train)
|
||||
print(regressor)
|
||||
|
||||
|
||||
def test_xgboost():
|
||||
from flaml.default.estimator import XGBRegressor, XGBClassifier
|
||||
|
||||
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
|
||||
classifier = XGBClassifier(max_depth=0)
|
||||
classifier.fit(X_train[:100], y_train[:100])
|
||||
classifier.predict(X_train)
|
||||
classifier.predict_proba(X_train)
|
||||
print(classifier)
|
||||
print(classifier.classes_)
|
||||
|
||||
location = "test/default"
|
||||
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
regressor = XGBRegressor(default_location=location)
|
||||
regressor.fit(X_train[:100], y_train[:100])
|
||||
regressor.predict(X_train)
|
||||
print(regressor)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_build_portfolio("flaml/default")
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 2704, "max_depth": 2, "min_child_weight": 0.23751738294732322, "learning_rate": 0.019828117294812268, "subsample": 0.8798706041292946, "colsample_bylevel": 0.978891799553329, "colsample_bytree": 1.0, "reg_alpha": 0.3023181744217667, "reg_lambda": 101.10719177747677}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3573, "max_depth": 13, "min_child_weight": 2.921657581984971, "learning_rate": 0.00699976723859477, "subsample": 0.6110504706508572, "colsample_bylevel": 0.9998661537469163, "colsample_bytree": 0.5457693412489456, "reg_alpha": 0.05315763138176945, "reg_lambda": 23.067599600958623, "FLAML_sample_size": 436899}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3526, "max_depth": 13, "min_child_weight": 0.0994486725676356, "learning_rate": 0.0009765625, "subsample": 0.46123759274652554, "colsample_bylevel": 1.0, "colsample_bytree": 0.4498813776397717, "reg_alpha": 0.002599398546499414, "reg_lambda": 0.028336396854402753}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 5457, "max_depth": 6, "min_child_weight": 0.19978269031877885, "learning_rate": 0.003906732665632749, "subsample": 0.8207785234496902, "colsample_bylevel": 0.8438751931476698, "colsample_bytree": 0.42202862997585794, "reg_alpha": 0.017372558844968737, "reg_lambda": 0.03977802121721031}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 7782, "max_depth": 7, "min_child_weight": 0.3794874452608909, "learning_rate": 0.006733035771172325, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 0.5611305922560855, "reg_alpha": 8.203853065625196, "reg_lambda": 56.48543538808782, "FLAML_sample_size": 94478}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1013, "max_depth": 15, "min_child_weight": 57.33124114425335, "learning_rate": 0.009706354607542536, "subsample": 1.0, "colsample_bylevel": 0.7925997002174675, "colsample_bytree": 0.874062117666267, "reg_alpha": 0.7965442116152655, "reg_lambda": 2.769937488341342, "FLAML_sample_size": 810000}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 624, "max_depth": 3, "min_child_weight": 0.0017043575728019624, "learning_rate": 0.8481863978692453, "subsample": 0.9897901748446495, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 0.008686469265798288}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1499, "max_depth": 11, "min_child_weight": 0.07563529776156448, "learning_rate": 0.039042609221240955, "subsample": 0.7832981935783824, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 23.513066752844153}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 405, "max_depth": 4, "min_child_weight": 0.2264977130755997, "learning_rate": 0.3390883186947167, "subsample": 0.8078627200173096, "colsample_bylevel": 0.8570282862730856, "colsample_bytree": 0.8280063772581445, "reg_alpha": 0.007634576038353066, "reg_lambda": 1.7101180066063097}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3234, "max_depth": 13, "min_child_weight": 0.07784911437942721, "learning_rate": 0.0565426521738442, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.007928962402687697, "reg_lambda": 3.881249823648859, "FLAML_sample_size": 830258}}
|
|
@ -0,0 +1,116 @@
|
|||
task,fold,type,result,params
|
||||
2dplanes,0,regression,0.946567,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
2dplanes,0,regression,0.94503,{'_modeljson': 'xgblimit/adult.json'}
|
||||
2dplanes,0,regression,0.945074,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
2dplanes,0,regression,0.806694,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
2dplanes,0,regression,0.945799,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
2dplanes,0,regression,0.944103,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
2dplanes,0,regression,0.945327,{'_modeljson': 'xgblimit/car.json'}
|
||||
2dplanes,0,regression,0.923926,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
2dplanes,0,regression,0.944454,{'_modeljson': 'xgblimit/default.json'}
|
||||
2dplanes,0,regression,0.945212,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
2dplanes,0,regression,0.910852,{'_modeljson': 'xgblimit/poker.json'}
|
||||
adult,0,binary,0.923082,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
adult,0,binary,0.932355,{'_modeljson': 'xgblimit/adult.json'}
|
||||
adult,0,binary,0.928373,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
adult,0,binary,0.927574,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.929427,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
adult,0,binary,0.92204,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
adult,0,binary,0.721115,{'_modeljson': 'xgblimit/car.json'}
|
||||
adult,0,binary,0.921465,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
adult,0,binary,0.931234,{'_modeljson': 'xgblimit/default.json'}
|
||||
adult,0,binary,0.927801,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
adult,0,binary,0.916878,{'_modeljson': 'xgblimit/poker.json'}
|
||||
Airlines,0,binary,0.699604,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
Airlines,0,binary,0.711053,{'_modeljson': 'xgblimit/adult.json'}
|
||||
Airlines,0,binary,0.732443,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
Airlines,0,binary,0.72875,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
Airlines,0,binary,0.725056,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
Airlines,0,binary,0.730476,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
Airlines,0,binary,0.71788,{'_modeljson': 'xgblimit/car.json'}
|
||||
Airlines,0,binary,0.72604,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
Airlines,0,binary,0.719845,{'_modeljson': 'xgblimit/default.json'}
|
||||
Airlines,0,binary,0.719302,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
Airlines,0,binary,0.684382,{'_modeljson': 'xgblimit/poker.json'}
|
||||
Albert,0,binary,0.743682,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
Albert,0,binary,0.759246,{'_modeljson': 'xgblimit/adult.json'}
|
||||
Albert,0,binary,0.766177,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
Albert,0,binary,0.74969,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
Albert,0,binary,0.766961,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
Albert,0,binary,0.764534,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
Albert,0,binary,0.753311,{'_modeljson': 'xgblimit/car.json'}
|
||||
Albert,0,binary,0.765229,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
Albert,0,binary,0.757802,{'_modeljson': 'xgblimit/default.json'}
|
||||
Albert,0,binary,0.7596,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
Albert,0,binary,0.761456,{'_modeljson': 'xgblimit/poker.json'}
|
||||
Amazon_employee_access,0,binary,0.759779,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
Amazon_employee_access,0,binary,0.876747,{'_modeljson': 'xgblimit/adult.json'}
|
||||
Amazon_employee_access,0,binary,0.864954,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
Amazon_employee_access,0,binary,0.894651,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
Amazon_employee_access,0,binary,0.845645,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
Amazon_employee_access,0,binary,0.789099,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
Amazon_employee_access,0,binary,0.550859,{'_modeljson': 'xgblimit/car.json'}
|
||||
Amazon_employee_access,0,binary,0.870599,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgblimit/default.json'}
|
||||
Amazon_employee_access,0,binary,0.86385,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
Amazon_employee_access,0,binary,0.864415,{'_modeljson': 'xgblimit/poker.json'}
|
||||
bng_breastTumor,0,regression,0.163382,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
bng_breastTumor,0,regression,0.1789,{'_modeljson': 'xgblimit/adult.json'}
|
||||
bng_breastTumor,0,regression,0.188483,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
bng_breastTumor,0,regression,0.159704,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
bng_breastTumor,0,regression,0.1953,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
bng_breastTumor,0,regression,0.191805,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
bng_breastTumor,0,regression,0.12139,{'_modeljson': 'xgblimit/car.json'}
|
||||
bng_breastTumor,0,regression,0.163165,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgblimit/default.json'}
|
||||
bng_breastTumor,0,regression,0.183899,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
bng_breastTumor,0,regression,0.108646,{'_modeljson': 'xgblimit/poker.json'}
|
||||
bng_pbc,0,regression,0.384556,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
bng_pbc,0,regression,0.42041,{'_modeljson': 'xgblimit/adult.json'}
|
||||
bng_pbc,0,regression,0.449808,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
bng_pbc,0,regression,0.409944,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
bng_pbc,0,regression,0.439854,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
bng_pbc,0,regression,0.457955,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
bng_pbc,0,regression,0.418702,{'_modeljson': 'xgblimit/car.json'}
|
||||
bng_pbc,0,regression,0.455731,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgblimit/default.json'}
|
||||
bng_pbc,0,regression,0.423052,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
bng_pbc,0,regression,0.447478,{'_modeljson': 'xgblimit/poker.json'}
|
||||
car,0,multiclass,-0.18106,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
car,0,multiclass,-0.170386,{'_modeljson': 'xgblimit/adult.json'}
|
||||
car,0,multiclass,-0.169973,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
car,0,multiclass,-0.498314,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
car,0,multiclass,-0.230405,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
car,0,multiclass,-0.330863,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
car,0,multiclass,-8.16E-05,{'_modeljson': 'xgblimit/car.json'}
|
||||
car,0,multiclass,-0.0239037,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
car,0,multiclass,-0.010029,{'_modeljson': 'xgblimit/default.json'}
|
||||
car,0,multiclass,-0.00720156,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
car,0,multiclass,-0.00360416,{'_modeljson': 'xgblimit/poker.json'}
|
||||
connect-4,0,multiclass,-0.597091,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
connect-4,0,multiclass,-0.484427,{'_modeljson': 'xgblimit/adult.json'}
|
||||
connect-4,0,multiclass,-0.387769,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
connect-4,0,multiclass,-0.553347,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
connect-4,0,multiclass,-0.425107,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
connect-4,0,multiclass,-0.441974,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
connect-4,0,multiclass,-0.410519,{'_modeljson': 'xgblimit/car.json'}
|
||||
connect-4,0,multiclass,-0.342773,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgblimit/default.json'}
|
||||
connect-4,0,multiclass,-0.416631,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
connect-4,0,multiclass,-0.466644,{'_modeljson': 'xgblimit/poker.json'}
|
||||
dilbert,0,multiclass,-0.189149,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
dilbert,0,multiclass,-0.184569,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
dilbert,0,multiclass,-0.0485906,{'_modeljson': 'xgblimit/car.json'}
|
||||
dilbert,0,multiclass,-0.0643938,{'_modeljson': 'xgblimit/default.json'}
|
||||
dilbert,0,multiclass,-0.0425865,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
poker,0,regression,0.194424,{'_modeljson': 'xgblimit/2dplanes.json'}
|
||||
poker,0,regression,0.443714,{'_modeljson': 'xgblimit/adult.json'}
|
||||
poker,0,regression,0.837273,{'_modeljson': 'xgblimit/Airlines.json'}
|
||||
poker,0,regression,0.354783,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
|
||||
poker,0,regression,0.749681,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
|
||||
poker,0,regression,0.782336,{'_modeljson': 'xgblimit/bng_pbc.json'}
|
||||
poker,0,regression,0.640848,{'_modeljson': 'xgblimit/car.json'}
|
||||
poker,0,regression,0.924649,{'_modeljson': 'xgblimit/connect-4.json'}
|
||||
poker,0,regression,0.635679,{'_modeljson': 'xgblimit/default.json'}
|
||||
poker,0,regression,0.672338,{'_modeljson': 'xgblimit/dilbert.json'}
|
||||
poker,0,regression,0.92563,{'_modeljson': 'xgblimit/poker.json'}
|
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6705, "max_leaves": 24, "min_child_weight": 58.562722088466444, "learning_rate": 0.0009765625, "subsample": 0.8993009465247683, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.2679275019160531, "reg_lambda": 91.95034898844547}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 17309, "max_leaves": 1146, "min_child_weight": 0.0193980002033358, "learning_rate": 0.0009765625, "subsample": 0.4169778612218198, "colsample_bylevel": 1.0, "colsample_bytree": 0.5504959296065052, "reg_alpha": 0.00505548829948545, "reg_lambda": 21.287234956122028, "FLAML_sample_size": 436899}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6357, "max_leaves": 206, "min_child_weight": 1.9495322566288034, "learning_rate": 0.0068766724195393905, "subsample": 0.9451618245005704, "colsample_bylevel": 0.9030482524943064, "colsample_bytree": 0.9278972006416252, "reg_alpha": 0.01857648400903689, "reg_lambda": 6.021166480604588, "FLAML_sample_size": 344444}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 591, "max_leaves": 16651, "min_child_weight": 0.03356567864689129, "learning_rate": 0.002595066436678338, "subsample": 0.9114132805513452, "colsample_bylevel": 0.9503441844594458, "colsample_bytree": 0.5703338448066768, "reg_alpha": 0.010405212349127894, "reg_lambda": 0.05352660657433639}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 23282, "max_leaves": 19, "min_child_weight": 0.02198438885474473, "learning_rate": 0.001700636796132106, "subsample": 1.0, "colsample_bylevel": 0.8954745234489918, "colsample_bytree": 0.22331977285961732, "reg_alpha": 0.4115502489939291, "reg_lambda": 0.015523027968801352}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 4038, "max_leaves": 89, "min_child_weight": 0.23500921146599626, "learning_rate": 0.0039779941096963365, "subsample": 0.9421092355451888, "colsample_bylevel": 0.7772326835688742, "colsample_bytree": 0.6864341727912397, "reg_alpha": 4.8782018848557, "reg_lambda": 0.7531969031616396, "FLAML_sample_size": 94478}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 32767, "max_leaves": 623, "min_child_weight": 0.03783048691639616, "learning_rate": 0.0021758863899615554, "subsample": 0.9086242379539484, "colsample_bylevel": 0.5880499360809446, "colsample_bytree": 1.0, "reg_alpha": 0.0037398450188259108, "reg_lambda": 16.894310259361305, "FLAML_sample_size": 810000}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 765, "max_leaves": 6, "min_child_weight": 0.001, "learning_rate": 1.0, "subsample": 0.9833803894285497, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0012553728257619922, "reg_lambda": 0.03280542610559108}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6458, "max_leaves": 196, "min_child_weight": 0.020541449256787844, "learning_rate": 0.0067240405208345, "subsample": 0.5764514509827234, "colsample_bylevel": 1.0, "colsample_bytree": 0.9478632468968712, "reg_alpha": 0.08196899811780128, "reg_lambda": 1.3914579996946315}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 5739, "max_leaves": 5, "min_child_weight": 0.1359602026207002, "learning_rate": 0.14496176867613397, "subsample": 0.864897070662231, "colsample_bylevel": 0.01, "colsample_bytree": 0.9394057513384305, "reg_alpha": 0.001103317921178771, "reg_lambda": 0.1655504349283218}}
|
|
@ -0,0 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6866, "max_leaves": 238, "min_child_weight": 0.1000665069590469, "learning_rate": 0.05522440252112267, "subsample": 0.9621433799637473, "colsample_bylevel": 0.8366787895853636, "colsample_bytree": 1.0, "reg_alpha": 0.002455941636379231, "reg_lambda": 0.02487031358204277, "FLAML_sample_size": 830258}}
|
|
@ -0,0 +1,222 @@
|
|||
task,fold,type,result,params
|
||||
2dplanes,0,regression,0.946474,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
2dplanes,0,regression,0.849793,{'_modeljson': 'xgb/adult.json'}
|
||||
2dplanes,0,regression,0.940611,{'_modeljson': 'xgb/Albert.json'}
|
||||
2dplanes,0,regression,0.68908,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
2dplanes,0,regression,0.945551,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
2dplanes,0,regression,0.929904,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
2dplanes,0,regression,0.944099,{'_modeljson': 'xgb/car.json'}
|
||||
2dplanes,0,regression,0.938336,{'_modeljson': 'xgb/connect-4.json'}
|
||||
2dplanes,0,regression,0.944454,{'_modeljson': 'xgb/default.json'}
|
||||
2dplanes,0,regression,0.945477,{'_modeljson': 'xgb/dilbert.json'}
|
||||
2dplanes,0,regression,0.91563,{'_modeljson': 'xgb/poker.json'}
|
||||
dilbert,0,multiclass,-0.362419,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
dilbert,0,multiclass,-0.515024,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
dilbert,0,multiclass,-0.158604,{'_modeljson': 'xgb/car.json'}
|
||||
dilbert,0,multiclass,-0.0643938,{'_modeljson': 'xgb/default.json'}
|
||||
dilbert,0,multiclass,-0.0383872,{'_modeljson': 'xgb/dilbert.json'}
|
||||
dilbert,0,multiclass,-0.0611286,{'_modeljson': 'xgb/poker.json'}
|
||||
poker,0,regression,0.20821,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
poker,0,regression,0.206438,{'_modeljson': 'xgb/adult.json'}
|
||||
poker,0,regression,0.815665,{'_modeljson': 'xgb/Airlines.json'}
|
||||
poker,0,regression,0.857257,{'_modeljson': 'xgb/Albert.json'}
|
||||
poker,0,regression,0.362568,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
poker,0,regression,0.559622,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
poker,0,regression,0.922282,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
poker,0,regression,0.846139,{'_modeljson': 'xgb/car.json'}
|
||||
poker,0,regression,0.891631,{'_modeljson': 'xgb/connect-4.json'}
|
||||
poker,0,regression,0.635679,{'_modeljson': 'xgb/default.json'}
|
||||
poker,0,regression,0.377996,{'_modeljson': 'xgb/dilbert.json'}
|
||||
poker,0,regression,0.935986,{'_modeljson': 'xgb/poker.json'}
|
||||
adult,0,binary,0.918094,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
adult,0,binary,0.932468,{'_modeljson': 'xgb/adult.json'}
|
||||
adult,0,binary,0.92673,{'_modeljson': 'xgb/Airlines.json'}
|
||||
adult,0,binary,0.922077,{'_modeljson': 'xgb/Albert.json'}
|
||||
adult,0,binary,0.920837,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.92964,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
adult,0,binary,0.916531,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
adult,0,binary,0.884114,{'_modeljson': 'xgb/car.json'}
|
||||
adult,0,binary,0.917887,{'_modeljson': 'xgb/connect-4.json'}
|
||||
adult,0,binary,0.931234,{'_modeljson': 'xgb/default.json'}
|
||||
adult,0,binary,0.928861,{'_modeljson': 'xgb/dilbert.json'}
|
||||
adult,0,binary,0.909018,{'_modeljson': 'xgb/poker.json'}
|
||||
Airlines,0,binary,0.703353,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Airlines,0,binary,0.696962,{'_modeljson': 'xgb/adult.json'}
|
||||
Airlines,0,binary,0.73153,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Airlines,0,binary,0.731577,{'_modeljson': 'xgb/Albert.json'}
|
||||
Airlines,0,binary,0.725394,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Airlines,0,binary,0.722896,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Airlines,0,binary,0.716839,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Airlines,0,binary,0.715654,{'_modeljson': 'xgb/car.json'}
|
||||
Airlines,0,binary,0.73107,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Airlines,0,binary,0.719845,{'_modeljson': 'xgb/default.json'}
|
||||
Airlines,0,binary,0.71873,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Airlines,0,binary,0.676427,{'_modeljson': 'xgb/poker.json'}
|
||||
Albert,0,binary,0.742648,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Albert,0,binary,0.758723,{'_modeljson': 'xgb/adult.json'}
|
||||
Albert,0,binary,0.763066,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Albert,0,binary,0.768073,{'_modeljson': 'xgb/Albert.json'}
|
||||
Albert,0,binary,0.74349,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Albert,0,binary,0.764,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Albert,0,binary,0.767514,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Albert,0,binary,0.743392,{'_modeljson': 'xgb/car.json'}
|
||||
Albert,0,binary,0.766006,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Albert,0,binary,0.757802,{'_modeljson': 'xgb/default.json'}
|
||||
Albert,0,binary,0.746511,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Albert,0,binary,0.761985,{'_modeljson': 'xgb/poker.json'}
|
||||
Amazon_employee_access,0,binary,0.727287,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Amazon_employee_access,0,binary,0.855441,{'_modeljson': 'xgb/adult.json'}
|
||||
Amazon_employee_access,0,binary,0.85984,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Amazon_employee_access,0,binary,0.873629,{'_modeljson': 'xgb/Albert.json'}
|
||||
Amazon_employee_access,0,binary,0.897708,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Amazon_employee_access,0,binary,0.862679,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Amazon_employee_access,0,binary,0.872059,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Amazon_employee_access,0,binary,0.657192,{'_modeljson': 'xgb/car.json'}
|
||||
Amazon_employee_access,0,binary,0.877547,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgb/default.json'}
|
||||
Amazon_employee_access,0,binary,0.853361,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Amazon_employee_access,0,binary,0.859734,{'_modeljson': 'xgb/poker.json'}
|
||||
bng_breastTumor,0,regression,0.184421,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
bng_breastTumor,0,regression,0.163226,{'_modeljson': 'xgb/adult.json'}
|
||||
bng_breastTumor,0,regression,0.18037,{'_modeljson': 'xgb/Airlines.json'}
|
||||
bng_breastTumor,0,regression,0.177238,{'_modeljson': 'xgb/Albert.json'}
|
||||
bng_breastTumor,0,regression,-0.118976,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
bng_breastTumor,0,regression,0.195539,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
bng_breastTumor,0,regression,0.106337,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
bng_breastTumor,0,regression,0.149326,{'_modeljson': 'xgb/car.json'}
|
||||
bng_breastTumor,0,regression,0.161193,{'_modeljson': 'xgb/connect-4.json'}
|
||||
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgb/default.json'}
|
||||
bng_breastTumor,0,regression,0.186499,{'_modeljson': 'xgb/dilbert.json'}
|
||||
bng_breastTumor,0,regression,-0.032219,{'_modeljson': 'xgb/poker.json'}
|
||||
bng_pbc,0,regression,0.411719,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
bng_pbc,0,regression,0.409769,{'_modeljson': 'xgb/adult.json'}
|
||||
bng_pbc,0,regression,0.450806,{'_modeljson': 'xgb/Airlines.json'}
|
||||
bng_pbc,0,regression,0.458384,{'_modeljson': 'xgb/Albert.json'}
|
||||
bng_pbc,0,regression,0.236669,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
bng_pbc,0,regression,0.441873,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
bng_pbc,0,regression,0.462226,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
bng_pbc,0,regression,0.431868,{'_modeljson': 'xgb/car.json'}
|
||||
bng_pbc,0,regression,0.45678,{'_modeljson': 'xgb/connect-4.json'}
|
||||
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgb/default.json'}
|
||||
bng_pbc,0,regression,0.418839,{'_modeljson': 'xgb/dilbert.json'}
|
||||
bng_pbc,0,regression,0.448148,{'_modeljson': 'xgb/poker.json'}
|
||||
car,0,multiclass,-0.38726,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
car,0,multiclass,-0.22547,{'_modeljson': 'xgb/adult.json'}
|
||||
car,0,multiclass,-0.208402,{'_modeljson': 'xgb/Airlines.json'}
|
||||
car,0,multiclass,-0.0256159,{'_modeljson': 'xgb/Albert.json'}
|
||||
car,0,multiclass,-0.627705,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
car,0,multiclass,-0.166328,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
car,0,multiclass,-0.0201057,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
car,0,multiclass,-8.45E-05,{'_modeljson': 'xgb/car.json'}
|
||||
car,0,multiclass,-0.0129025,{'_modeljson': 'xgb/connect-4.json'}
|
||||
car,0,multiclass,-0.010029,{'_modeljson': 'xgb/default.json'}
|
||||
car,0,multiclass,-0.00218674,{'_modeljson': 'xgb/dilbert.json'}
|
||||
car,0,multiclass,-0.00426392,{'_modeljson': 'xgb/poker.json'}
|
||||
connect-4,0,multiclass,-0.578339,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
connect-4,0,multiclass,-0.489378,{'_modeljson': 'xgb/adult.json'}
|
||||
connect-4,0,multiclass,-0.406886,{'_modeljson': 'xgb/Airlines.json'}
|
||||
connect-4,0,multiclass,-0.332411,{'_modeljson': 'xgb/Albert.json'}
|
||||
connect-4,0,multiclass,-0.636516,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
connect-4,0,multiclass,-0.425947,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
connect-4,0,multiclass,-0.354612,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
connect-4,0,multiclass,-0.452201,{'_modeljson': 'xgb/car.json'}
|
||||
connect-4,0,multiclass,-0.338363,{'_modeljson': 'xgb/connect-4.json'}
|
||||
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgb/default.json'}
|
||||
connect-4,0,multiclass,-0.497404,{'_modeljson': 'xgb/dilbert.json'}
|
||||
connect-4,0,multiclass,-0.592309,{'_modeljson': 'xgb/poker.json'}
|
||||
adult,0,binary,0.918094,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
adult,0,binary,0.932468,{'_modeljson': 'xgb/adult.json'}
|
||||
adult,0,binary,0.92673,{'_modeljson': 'xgb/Airlines.json'}
|
||||
adult,0,binary,0.922077,{'_modeljson': 'xgb/Albert.json'}
|
||||
adult,0,binary,0.920837,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
adult,0,binary,0.92964,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
adult,0,binary,0.916531,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
adult,0,binary,0.884114,{'_modeljson': 'xgb/car.json'}
|
||||
adult,0,binary,0.917887,{'_modeljson': 'xgb/connect-4.json'}
|
||||
adult,0,binary,0.931234,{'_modeljson': 'xgb/default.json'}
|
||||
adult,0,binary,0.928861,{'_modeljson': 'xgb/dilbert.json'}
|
||||
adult,0,binary,0.909018,{'_modeljson': 'xgb/poker.json'}
|
||||
Airlines,0,binary,0.703353,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Airlines,0,binary,0.696962,{'_modeljson': 'xgb/adult.json'}
|
||||
Airlines,0,binary,0.73153,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Airlines,0,binary,0.731577,{'_modeljson': 'xgb/Albert.json'}
|
||||
Airlines,0,binary,0.725394,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Airlines,0,binary,0.722896,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Airlines,0,binary,0.716839,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Airlines,0,binary,0.715654,{'_modeljson': 'xgb/car.json'}
|
||||
Airlines,0,binary,0.73107,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Airlines,0,binary,0.719845,{'_modeljson': 'xgb/default.json'}
|
||||
Airlines,0,binary,0.71873,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Airlines,0,binary,0.676427,{'_modeljson': 'xgb/poker.json'}
|
||||
Albert,0,binary,0.742648,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Albert,0,binary,0.758723,{'_modeljson': 'xgb/adult.json'}
|
||||
Albert,0,binary,0.763066,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Albert,0,binary,0.768073,{'_modeljson': 'xgb/Albert.json'}
|
||||
Albert,0,binary,0.74349,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Albert,0,binary,0.764,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Albert,0,binary,0.767514,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Albert,0,binary,0.743392,{'_modeljson': 'xgb/car.json'}
|
||||
Albert,0,binary,0.766006,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Albert,0,binary,0.757802,{'_modeljson': 'xgb/default.json'}
|
||||
Albert,0,binary,0.746511,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Albert,0,binary,0.761985,{'_modeljson': 'xgb/poker.json'}
|
||||
Amazon_employee_access,0,binary,0.727287,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
Amazon_employee_access,0,binary,0.855441,{'_modeljson': 'xgb/adult.json'}
|
||||
Amazon_employee_access,0,binary,0.85984,{'_modeljson': 'xgb/Airlines.json'}
|
||||
Amazon_employee_access,0,binary,0.873629,{'_modeljson': 'xgb/Albert.json'}
|
||||
Amazon_employee_access,0,binary,0.897708,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
Amazon_employee_access,0,binary,0.862679,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
Amazon_employee_access,0,binary,0.872059,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
Amazon_employee_access,0,binary,0.657192,{'_modeljson': 'xgb/car.json'}
|
||||
Amazon_employee_access,0,binary,0.877547,{'_modeljson': 'xgb/connect-4.json'}
|
||||
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgb/default.json'}
|
||||
Amazon_employee_access,0,binary,0.853361,{'_modeljson': 'xgb/dilbert.json'}
|
||||
Amazon_employee_access,0,binary,0.859734,{'_modeljson': 'xgb/poker.json'}
|
||||
bng_breastTumor,0,regression,0.184421,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
bng_breastTumor,0,regression,0.163226,{'_modeljson': 'xgb/adult.json'}
|
||||
bng_breastTumor,0,regression,0.18037,{'_modeljson': 'xgb/Airlines.json'}
|
||||
bng_breastTumor,0,regression,0.177238,{'_modeljson': 'xgb/Albert.json'}
|
||||
bng_breastTumor,0,regression,-0.118976,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
bng_breastTumor,0,regression,0.195539,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
bng_breastTumor,0,regression,0.106337,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
bng_breastTumor,0,regression,0.149326,{'_modeljson': 'xgb/car.json'}
|
||||
bng_breastTumor,0,regression,0.161193,{'_modeljson': 'xgb/connect-4.json'}
|
||||
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgb/default.json'}
|
||||
bng_breastTumor,0,regression,0.186499,{'_modeljson': 'xgb/dilbert.json'}
|
||||
bng_breastTumor,0,regression,-0.032219,{'_modeljson': 'xgb/poker.json'}
|
||||
bng_pbc,0,regression,0.411719,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
bng_pbc,0,regression,0.409769,{'_modeljson': 'xgb/adult.json'}
|
||||
bng_pbc,0,regression,0.450806,{'_modeljson': 'xgb/Airlines.json'}
|
||||
bng_pbc,0,regression,0.458384,{'_modeljson': 'xgb/Albert.json'}
|
||||
bng_pbc,0,regression,0.236669,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
bng_pbc,0,regression,0.441873,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
bng_pbc,0,regression,0.462226,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
bng_pbc,0,regression,0.431868,{'_modeljson': 'xgb/car.json'}
|
||||
bng_pbc,0,regression,0.45678,{'_modeljson': 'xgb/connect-4.json'}
|
||||
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgb/default.json'}
|
||||
bng_pbc,0,regression,0.418839,{'_modeljson': 'xgb/dilbert.json'}
|
||||
bng_pbc,0,regression,0.448148,{'_modeljson': 'xgb/poker.json'}
|
||||
car,0,multiclass,-0.38726,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
car,0,multiclass,-0.22547,{'_modeljson': 'xgb/adult.json'}
|
||||
car,0,multiclass,-0.208402,{'_modeljson': 'xgb/Airlines.json'}
|
||||
car,0,multiclass,-0.0256159,{'_modeljson': 'xgb/Albert.json'}
|
||||
car,0,multiclass,-0.627705,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
car,0,multiclass,-0.166328,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
car,0,multiclass,-0.0201057,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
car,0,multiclass,-8.45E-05,{'_modeljson': 'xgb/car.json'}
|
||||
car,0,multiclass,-0.0129025,{'_modeljson': 'xgb/connect-4.json'}
|
||||
car,0,multiclass,-0.010029,{'_modeljson': 'xgb/default.json'}
|
||||
car,0,multiclass,-0.00218674,{'_modeljson': 'xgb/dilbert.json'}
|
||||
car,0,multiclass,-0.00426392,{'_modeljson': 'xgb/poker.json'}
|
||||
connect-4,0,multiclass,-0.578339,{'_modeljson': 'xgb/2dplanes.json'}
|
||||
connect-4,0,multiclass,-0.489378,{'_modeljson': 'xgb/adult.json'}
|
||||
connect-4,0,multiclass,-0.406886,{'_modeljson': 'xgb/Airlines.json'}
|
||||
connect-4,0,multiclass,-0.332411,{'_modeljson': 'xgb/Albert.json'}
|
||||
connect-4,0,multiclass,-0.636516,{'_modeljson': 'xgb/Amazon_employee_access.json'}
|
||||
connect-4,0,multiclass,-0.425947,{'_modeljson': 'xgb/bng_breastTumor.json'}
|
||||
connect-4,0,multiclass,-0.354612,{'_modeljson': 'xgb/bng_pbc.json'}
|
||||
connect-4,0,multiclass,-0.452201,{'_modeljson': 'xgb/car.json'}
|
||||
connect-4,0,multiclass,-0.338363,{'_modeljson': 'xgb/connect-4.json'}
|
||||
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgb/default.json'}
|
||||
connect-4,0,multiclass,-0.497404,{'_modeljson': 'xgb/dilbert.json'}
|
||||
connect-4,0,multiclass,-0.592309,{'_modeljson': 'xgb/poker.json'}
|
|
|
@ -0,0 +1,16 @@
|
|||
from flaml.data import load_openml_dataset
|
||||
from flaml.default import LGBMRegressor
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
|
||||
lgbm = LGBMRegressor()
|
||||
|
||||
hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams(
|
||||
X_train, y_train
|
||||
)
|
||||
print(hyperparams)
|
||||
|
||||
lgbm.fit(X_train, y_train)
|
||||
y_pred = lgbm.predict(X_test)
|
||||
print("flamlized lgbm r2 =", 1 - sklearn_metric_loss_score("r2", y_pred, y_test))
|
||||
print(lgbm)
|
|
@ -0,0 +1,13 @@
|
|||
from flaml.data import load_openml_dataset
|
||||
from flaml.default import XGBClassifier
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
|
||||
xgb = XGBClassifier()
|
||||
xgb.fit(X_train, y_train)
|
||||
y_pred = xgb.predict(X_test)
|
||||
print(
|
||||
"flamlized xgb accuracy =",
|
||||
1 - sklearn_metric_loss_score("accuracy", y_pred, y_test),
|
||||
)
|
||||
print(xgb)
|
|
@ -0,0 +1,97 @@
|
|||
# Default - Flamlized Estimator
|
||||
|
||||
Flamlized estimators automatically use data-dependent default hyperparameter configurations for each estimator, offering a unique zero-shot AutoML capability, or "no tuning" AutoML.
|
||||
|
||||
This example requires openml==0.10.2.
|
||||
|
||||
## Flamlized LGBMRegressor
|
||||
|
||||
### Zero-shot AutoML
|
||||
|
||||
```python
|
||||
from flaml.data import load_openml_dataset
|
||||
from flaml.default import LGBMRegressor
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
|
||||
lgbm = LGBMRegressor()
|
||||
lgbm.fit(X_train, y_train)
|
||||
y_pred = lgbm.predict(X_test)
|
||||
print("flamlized lgbm r2", "=", 1 - sklearn_metric_loss_score("r2", y_pred, y_test))
|
||||
print(lgbm)
|
||||
```
|
||||
|
||||
#### Sample output
|
||||
|
||||
```
|
||||
load dataset from ./openml_ds537.pkl
|
||||
Dataset name: houses
|
||||
X_train.shape: (15480, 8), y_train.shape: (15480,);
|
||||
X_test.shape: (5160, 8), y_test.shape: (5160,)
|
||||
flamlized lgbm r2 = 0.8537444671194614
|
||||
LGBMRegressor(colsample_bytree=0.7019911744574896,
|
||||
learning_rate=0.022635758411078528, max_bin=511,
|
||||
min_child_samples=2, n_estimators=4797, num_leaves=122,
|
||||
reg_alpha=0.004252223402511765, reg_lambda=0.11288241427227624,
|
||||
verbose=-1)
|
||||
```
|
||||
|
||||
### Suggest hyperparameters without training
|
||||
|
||||
```
|
||||
from flaml.data import load_openml_dataset
|
||||
from flaml.default import LGBMRegressor
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
|
||||
lgbm = LGBMRegressor()
|
||||
hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams(X_train, y_train)
|
||||
print(hyperparams)
|
||||
```
|
||||
|
||||
#### Sample output
|
||||
```
|
||||
load dataset from ./openml_ds537.pkl
|
||||
Dataset name: houses
|
||||
X_train.shape: (15480, 8), y_train.shape: (15480,);
|
||||
X_test.shape: (5160, 8), y_test.shape: (5160,)
|
||||
{'n_estimators': 4797, 'num_leaves': 122, 'min_child_samples': 2, 'learning_rate': 0.022635758411078528, 'colsample_bytree': 0.7019911744574896, 'reg_alpha': 0.004252223402511765, 'reg_lambda': 0.11288241427227624, 'max_bin': 511, 'verbose': -1}
|
||||
```
|
||||
|
||||
## Flamlized XGBClassifier
|
||||
|
||||
### Zero-shot AutoML
|
||||
|
||||
```python
|
||||
from flaml.data import load_openml_dataset
|
||||
from flaml.default import XGBClassifier
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
|
||||
xgb = XGBClassifier()
|
||||
xgb.fit(X_train, y_train)
|
||||
y_pred = xgb.predict(X_test)
|
||||
print("flamlized xgb accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
|
||||
print(xgb)
|
||||
```
|
||||
|
||||
#### Sample output
|
||||
|
||||
```
|
||||
load dataset from ./openml_ds1169.pkl
|
||||
Dataset name: airlines
|
||||
X_train.shape: (404537, 7), y_train.shape: (404537,);
|
||||
X_test.shape: (134846, 7), y_test.shape: (134846,)
|
||||
flamlized xgb accuracy = 0.6729009388487608
|
||||
XGBClassifier(base_score=0.5, booster='gbtree',
|
||||
colsample_bylevel=0.4601573737792679, colsample_bynode=1,
|
||||
colsample_bytree=1.0, gamma=0, gpu_id=-1, grow_policy='lossguide',
|
||||
importance_type='gain', interaction_constraints='',
|
||||
learning_rate=0.04039771837785377, max_delta_step=0, max_depth=0,
|
||||
max_leaves=159, min_child_weight=0.3396294979905001, missing=nan,
|
||||
monotone_constraints='()', n_estimators=540, n_jobs=4,
|
||||
num_parallel_tree=1, random_state=0,
|
||||
reg_alpha=0.0012362430984376035, reg_lambda=3.093428791531145,
|
||||
scale_pos_weight=1, subsample=1.0, tree_method='hist',
|
||||
use_label_encoder=False, validate_parameters=1, verbosity=0)
|
||||
```
|
|
@ -19,7 +19,7 @@ and learner selection method invented by Microsoft Research.
|
|||
|
||||
Install FLAML from pip: `pip install flaml`. Find more options in [Installation](Installation).
|
||||
|
||||
There are two ways of using flaml:
|
||||
There are several ways of using flaml:
|
||||
|
||||
#### [Task-oriented AutoML](Use-Cases/task-oriented-automl)
|
||||
|
||||
|
@ -76,6 +76,16 @@ analysis = tune.run(
|
|||
```
|
||||
Please see this [script](https://github.com/microsoft/FLAML/blob/main/test/tune_example.py) for the complete version of the above example.
|
||||
|
||||
#### [Zero-shot AutoML](Use-Cases/Zero-Shot-AutoML)
|
||||
|
||||
FLAML offers a unique, seamless and effortless way to leverage AutoML for the commonly used classifiers and regressors such as LightGBM and XGBoost. For example, if you are using `lightgbm.LGBMClassifier` as your current learner, all you need to do is to replace `from ligthgbm import LGBMClassifier` by:
|
||||
|
||||
```python
|
||||
from flaml.default import LGBMClassifier
|
||||
```
|
||||
|
||||
Then, you can use it just like you use the original `LGMBClassifier`. Your other code can remain unchanged. When you call the `fit()` function from `flaml.default.LGBMClassifier`, it will automatically instantiate a good data-dependent hyperparameter configuration for your dataset, which is expected to work better than the default configuration.
|
||||
|
||||
### Where to Go Next?
|
||||
|
||||
* Understand the use cases for [Task-oriented AutoML](Use-Cases/task-oriented-automl) and [Tune user-defined function](Use-Cases/Tune-User-Defined-Function).
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue