Zero-shot AutoML (#468)

* Prepare for release

Co-authored-by: Moe Kayali <t-moekayali@microsoft.com>

* bug fix

* improve doc and code quality

Co-authored-by: Qingyun Wu
This commit is contained in:
Chi Wang 2022-03-01 15:39:09 -08:00 committed by GitHub
parent 01ca0422ea
commit df01031cfe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
102 changed files with 10873 additions and 9 deletions

View File

@ -49,6 +49,7 @@ from .data import (
)
from . import tune
from .training_log import training_log_reader, training_log_writer
from flaml.default.suggest import suggest_learner
logger = logging.getLogger(__name__)
logger_formatter = logging.Formatter(
@ -540,9 +541,13 @@ class AutoML(BaseEstimator):
is used. BlendSearch can be tried when the search space is
complex, for example, containing multiple disjoint, discontinuous
subspaces. When set to 'random', random search is used.
starting_points: A dictionary to specify the starting hyperparameter
config for the estimators.
Keys are the name of the estimators, and values are the starting
starting_points: A dictionary or a str to specify the starting hyperparameter
config for the estimators | default="static".
If str:
- if "data", use data-dependent defaults;
- if "data:path" use data-dependent defaults which are stored at path;
- if "static", use data-independent defaults.
If dict, keys are the name of the estimators, and values are the starting
hyperparamter configurations for the corresponding estimators.
The value can be a single hyperparamter configuration dict or a list
of hyperparamter configuration dicts.
@ -611,7 +616,7 @@ class AutoML(BaseEstimator):
settings["split_type"] = settings.get("split_type", "auto")
settings["hpo_method"] = settings.get("hpo_method", "auto")
settings["learner_selector"] = settings.get("learner_selector", "sample")
settings["starting_points"] = settings.get("starting_points", {})
settings["starting_points"] = settings.get("starting_points", "static")
settings["n_concurrent_trials"] = settings.get("n_concurrent_trials", 1)
settings["keep_search_state"] = settings.get("keep_search_state", False)
settings["early_stop"] = settings.get("early_stop", False)
@ -1900,9 +1905,13 @@ class AutoML(BaseEstimator):
is used. BlendSearch can be tried when the search space is
complex, for example, containing multiple disjoint, discontinuous
subspaces. When set to 'random', random search is used.
starting_points: A dictionary to specify the starting hyperparameter
config for the estimators.
Keys are the name of the estimators, and values are the starting
starting_points: A dictionary or a str to specify the starting hyperparameter
config for the estimators | default="data".
If str:
- if "data", use data-dependent defaults;
- if "data:path" use data-dependent defaults which are stored at path;
- if "static", use data-independent defaults.
If dict, keys are the name of the estimators, and values are the starting
hyperparamter configurations for the corresponding estimators.
The value can be a single hyperparamter configuration dict or a list
of hyperparamter configuration dicts.
@ -2191,6 +2200,41 @@ class AutoML(BaseEstimator):
get_estimator_class(self._state.task, estimator_name),
)
# set up learner search space
if isinstance(starting_points, str) and starting_points.startswith("data"):
from flaml.default import suggest_config
location = starting_points[5:]
starting_points = {}
for estimator_name in estimator_list:
try:
configs = suggest_config(
self._state.task,
self._X_train_all,
self._y_train_all,
estimator_name,
location,
k=1,
)
starting_points[estimator_name] = [
x["hyperparameters"] for x in configs
]
except FileNotFoundError:
pass
try:
learner = suggest_learner(
self._state.task,
self._X_train_all,
self._y_train_all,
estimator_list=estimator_list,
location=location,
)
if learner != estimator_list[0]:
estimator_list.remove(learner)
estimator_list.insert(0, learner)
except FileNotFoundError:
pass
starting_points = {} if starting_points == "static" else starting_points
for estimator_name in estimator_list:
estimator_class = self._state.learner_classes[estimator_name]
estimator_class.init()

184
flaml/default/README.md Normal file
View File

@ -0,0 +1,184 @@
# FLAML-Zero: Zero-shot AutoML
## Zero-shot AutoML
There are several ways to use zero-shot AutoML, i.e., train a model with the data-dependent default configuration.
0. Use estimators in `flaml.default.estimator`.
```python
from flaml.default import LGBMRegressor
estimator = LGBMRegressor()
estimator.fit(X_train, y_train)
estimator.predict(X_test, y_test)
```
1. Use AutoML.fit(). set `starting_points="data"` and `max_iter=0`.
```python
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/iris.log",
"starting_points": "data",
"max_iter": 0,
}
automl.fit(X_train, y_train, **automl_settings)
```
2. Use `flaml.default.preprocess_and_suggest_hyperparams`.
```python
from flaml.default import preprocess_and_suggest_hyperparams
X, y = load_iris(return_X_y=True, as_frame=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
hyperparams, estimator_class, X_transformed, y_transformed, feature_transformer, label_transformer = preprocess_and_suggest_hyperparams(
"classification", X_train, y_train, "lgbm"
)
model = estimator_class(**hyperparams) # estimator_class is LGBMClassifier
model.fit(X_transformed, y_train) # LGBMClassifier can handle raw labels
X_test = feature_transformer.transform(X_test) # preprocess test data
y_pred = model.predict(X_test)
```
If you want to use your own meta-learned defaults, specify the path containing the meta-learned defaults. For example,
```python
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/iris.log",
"starting_points": "data:test/default",
"estimator_list": ["lgbm", "xgb_limitdepth", "rf"]
"max_iter": 0,
}
automl.fit(X_train, y_train, **automl_settings)
```
Since this is a multiclass task, it will look for the following files under `test/default/`:
- `all/multiclass.json`.
- `{learner_name}/multiclass.json` for every learner_name in the estimator_list.
Read the next subsection to understand how to generate these files if you would like to meta-learn the defaults yourself.
To perform hyperparameter search starting with the data-dependent defaults, remove `max_iter=0`.
## Perform Meta Learning
FLAML provides a package `flaml.default` to learn defaults customized for your own tasks/learners/metrics.
### Prepare a collection of training tasks
Collect a diverse set of training tasks. For each task, extract its meta feature and save in a .csv file. For example, test/default/all/metafeatures.csv:
```
Dataset,NumberOfInstances,NumberOfFeatures,NumberOfClasses,PercentageOfNumericFeatures
2dplanes,36691,10,0,1.0
adult,43957,14,2,0.42857142857142855
Airlines,485444,7,2,0.42857142857142855
Albert,382716,78,2,0.3333333333333333
Amazon_employee_access,29492,9,2,0.0
bng_breastTumor,104976,9,0,0.1111111111111111
bng_pbc,900000,18,0,0.5555555555555556
car,1555,6,4,0.0
connect-4,60801,42,3,0.0
dilbert,9000,2000,5,1.0
Dionis,374569,60,355,1.0
poker,922509,10,0,1.0
```
The first column is the dataset name, and the latter four are meta features.
### Prepare the candidate configurations
You can extract the best configurations for each task in your collection of training tasks by running flaml on each of them with a long enough budget. Save the best configuration in a .json file under `{location_for_defaults}/{learner_name}/{task_name}.json`. For example,
```python
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
automl.fit(X_train, y_train, estimator_list=["lgbm"], **settings)
automl.save_best_config("test/default/lgbm/iris.json")
```
### Evaluate each candidate configuration on each task
Save the evaluation results in a .csv file. For example, save the evaluation results for lgbm under `test/default/lgbm/results.csv`:
```
task,fold,type,result,params
2dplanes,0,regression,0.946366,{'_modeljson': 'lgbm/2dplanes.json'}
2dplanes,0,regression,0.907774,{'_modeljson': 'lgbm/adult.json'}
2dplanes,0,regression,0.901643,{'_modeljson': 'lgbm/Airlines.json'}
2dplanes,0,regression,0.915098,{'_modeljson': 'lgbm/Albert.json'}
2dplanes,0,regression,0.302328,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
2dplanes,0,regression,0.94523,{'_modeljson': 'lgbm/bng_breastTumor.json'}
2dplanes,0,regression,0.945698,{'_modeljson': 'lgbm/bng_pbc.json'}
2dplanes,0,regression,0.946194,{'_modeljson': 'lgbm/car.json'}
2dplanes,0,regression,0.945549,{'_modeljson': 'lgbm/connect-4.json'}
2dplanes,0,regression,0.946232,{'_modeljson': 'lgbm/default.json'}
2dplanes,0,regression,0.945594,{'_modeljson': 'lgbm/dilbert.json'}
2dplanes,0,regression,0.836996,{'_modeljson': 'lgbm/Dionis.json'}
2dplanes,0,regression,0.917152,{'_modeljson': 'lgbm/poker.json'}
adult,0,binary,0.927203,{'_modeljson': 'lgbm/2dplanes.json'}
adult,0,binary,0.932072,{'_modeljson': 'lgbm/adult.json'}
adult,0,binary,0.926563,{'_modeljson': 'lgbm/Airlines.json'}
adult,0,binary,0.928604,{'_modeljson': 'lgbm/Albert.json'}
adult,0,binary,0.911171,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
adult,0,binary,0.930645,{'_modeljson': 'lgbm/bng_breastTumor.json'}
adult,0,binary,0.928603,{'_modeljson': 'lgbm/bng_pbc.json'}
adult,0,binary,0.915825,{'_modeljson': 'lgbm/car.json'}
adult,0,binary,0.919499,{'_modeljson': 'lgbm/connect-4.json'}
adult,0,binary,0.930109,{'_modeljson': 'lgbm/default.json'}
adult,0,binary,0.932453,{'_modeljson': 'lgbm/dilbert.json'}
adult,0,binary,0.921959,{'_modeljson': 'lgbm/Dionis.json'}
adult,0,binary,0.910763,{'_modeljson': 'lgbm/poker.json'}
...
```
The `type` column indicates the type of the task, such as regression, binary or multiclass.
The `result` column stores the evaluation result, assuming the large the better. The `params` column indicates which json config is used. For example 'lgbm/2dplanes.json' indicates that the best lgbm configuration extracted from 2dplanes is used.
### Learn data-dependent defaults
To recap, the inputs required for meta-learning are:
1. Metafeatures: e.g., `{location}/all/metafeatures.csv`.
1. Configurations: `{location}/{learner_name}/{task_name}.json`.
1. Evaluation results: `{location}/{learner_name}/results.csv`.
For example, if the input location is "test/default", learners are lgbm, xgb_limitdepth and rf, the following command learns data-dependent defaults for binary classification tasks.
```bash
python portfolio.py --output test/default --input test/default --metafeatures test/default/all/metafeatures.csv --task binary --estimator lgbm xgb_limitdepth rf
```
It will produce the following files as output:
- test/default/lgbm/binary.json: the learned defaults for lgbm.
- test/default/xgb_limitdepth/binary.json: the learned defaults for xgb_limitdepth.
- test/default/rf/binary.json: the learned defaults for rf.
- test/default/all/binary.json: the learned defaults for lgbm, xgb_limitdepth and rf together.
Change "binary" into "multiclass" or "regression" for the other tasks.
## Reference
For more technical details, please check our research paper.
* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. arXiv preprint arXiv:2202.09927 (2022).
```bibtex
@article{Kayali2022default,
title={Mining Robust Default Configurations for Resource-constrained AutoML},
author={Moe Kayali and Chi Wang},
year={2022},
journal={arXiv preprint arXiv:2202.09927},
}
```

18
flaml/default/__init__.py Normal file
View File

@ -0,0 +1,18 @@
from .suggest import (
suggest_config,
suggest_learner,
suggest_hyperparams,
preprocess_and_suggest_hyperparams,
meta_feature,
)
from .estimator import (
flamlize_estimator,
LGBMClassifier,
LGBMRegressor,
XGBClassifier,
XGBRegressor,
RandomForestClassifier,
RandomForestRegressor,
ExtraTreesClassifier,
ExtraTreesRegressor,
)

View File

@ -0,0 +1,943 @@
{
"version": "default",
"portfolio": [
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 2541,
"num_leaves": 1667,
"min_child_samples": 29,
"learning_rate": 0.0016660662914022302,
"log_max_bin": 8,
"colsample_bytree": 0.5157078343718623,
"reg_alpha": 0.045792841240713165,
"reg_lambda": 0.0012362651138125363,
"FLAML_sample_size": 436899
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 141,
"num_leaves": 139,
"min_child_samples": 8,
"learning_rate": 0.04824748268727149,
"log_max_bin": 9,
"colsample_bytree": 0.5261441571042451,
"reg_alpha": 0.002896920833899335,
"reg_lambda": 0.024463247502165594
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 31204,
"num_leaves": 4,
"min_child_samples": 3,
"learning_rate": 0.009033979476164342,
"log_max_bin": 10,
"colsample_bytree": 0.5393339924944204,
"reg_alpha": 15.800090067239827,
"reg_lambda": 34.82471227276953
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 362,
"num_leaves": 1208,
"min_child_samples": 8,
"learning_rate": 0.02070742242160566,
"log_max_bin": 4,
"colsample_bytree": 0.37915528071680865,
"reg_alpha": 0.002982599447751338,
"reg_lambda": 1.136605174453919,
"FLAML_sample_size": 337147
}
},
{
"class": "lgbm",
"hyperparameters": {}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 319,
"max_leaves": 1312,
"min_child_weight": 0.001,
"learning_rate": 0.01872379806270421,
"subsample": 0.6890079660561895,
"colsample_bylevel": 0.7551225121854014,
"colsample_bytree": 0.7860755604500558,
"reg_alpha": 0.17028752704343114,
"reg_lambda": 1.4375743264564231
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 7902,
"max_leaves": 49,
"min_child_weight": 0.038063497848955595,
"learning_rate": 0.0009765625,
"subsample": 0.9357800695141445,
"colsample_bylevel": 0.47031312177249246,
"colsample_bytree": 0.9053386579586192,
"reg_alpha": 1.5286102593845932,
"reg_lambda": 18.96811296717419
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 13499,
"max_leaves": 60,
"min_child_weight": 0.008494221584011285,
"learning_rate": 0.006955765856675575,
"subsample": 0.5965241023754743,
"colsample_bylevel": 0.590641168068946,
"colsample_bytree": 1.0,
"reg_alpha": 0.2522240954379289,
"reg_lambda": 5.351809144038808
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 591,
"max_leaves": 16651,
"min_child_weight": 0.03356567864689129,
"learning_rate": 0.002595066436678338,
"subsample": 0.9114132805513452,
"colsample_bylevel": 0.9503441844594458,
"colsample_bytree": 0.5703338448066768,
"reg_alpha": 0.010405212349127894,
"reg_lambda": 0.05352660657433639
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 877,
"max_depth": 11,
"min_child_weight": 0.6205465771093738,
"learning_rate": 0.013622118381700795,
"subsample": 0.566692814245426,
"colsample_bylevel": 0.8865741642101924,
"colsample_bytree": 1.0,
"reg_alpha": 0.01386336444764391,
"reg_lambda": 3.113947886074155
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 5457,
"max_depth": 6,
"min_child_weight": 0.19978269031877885,
"learning_rate": 0.003906732665632749,
"subsample": 0.8207785234496902,
"colsample_bylevel": 0.8438751931476698,
"colsample_bytree": 0.42202862997585794,
"reg_alpha": 0.017372558844968737,
"reg_lambda": 0.03977802121721031
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 3526,
"max_depth": 13,
"min_child_weight": 0.0994486725676356,
"learning_rate": 0.0009765625,
"subsample": 0.46123759274652554,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.4498813776397717,
"reg_alpha": 0.002599398546499414,
"reg_lambda": 0.028336396854402753
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 501,
"max_features": 0.24484242524861066,
"max_leaves": 1156,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 356,
"max_features": 0.1,
"max_leaves": 102,
"criterion": "gini"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 1000,
"max_features": 0.1779692423238241,
"max_leaves": 7499,
"criterion": "gini"
}
},
{
"class": "rf",
"hyperparameters": {}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 1080,
"max_features": 1.0,
"max_leaves": 590,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.46132798093546956,
"max_leaves": 12856,
"criterion": "gini"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 408,
"max_features": 0.3629795757973625,
"max_leaves": 81,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 553,
"max_features": 0.9592132391435095,
"max_leaves": 1127,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
18000.0,
28.0,
2.0,
0.7565217391304347
],
"scale": [
42124.0,
130.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.196467571930491,
1.0923076923076922,
0.0,
0.4260869565217391
],
"choice": [
5,
18,
19,
4,
8,
3,
9,
7,
10,
6,
21,
2,
20,
17,
13,
16,
15,
1,
14,
12,
0,
11
]
},
{
"features": [
11.096856898680088,
-0.16153846153846155,
0.0,
-0.5739130434782609
],
"choice": [
0,
5,
7,
9,
11,
8,
1,
18,
15,
12,
3,
2,
10,
20,
4,
6,
13,
17,
14,
19,
16,
21
]
},
{
"features": [
8.658152122305575,
0.38461538461538464,
0.0,
-0.7405797101449274
],
"choice": [
7,
9,
2,
5,
10,
1,
0,
3,
12,
4,
6,
11,
8,
18,
15,
13,
20,
16,
17,
21,
14,
19
]
},
{
"features": [
0.27281359794891274,
-0.14615384615384616,
0.0,
-1.3239130434782607
],
"choice": [
8,
11,
0,
5,
1,
15,
13,
16,
10,
9,
20,
7,
17,
12,
4,
3,
21,
18,
6,
14,
19,
2
]
},
{
"features": [
-0.4125676573924604,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
19,
15,
11,
17,
8,
14,
13,
16,
3,
18,
21,
6,
9,
10,
20,
5,
7,
1,
0,
12,
2,
4
]
},
{
"features": [
0.6409647706770487,
1.5538461538461539,
0.0,
0.0
],
"choice": [
2,
14,
10,
19,
6,
0,
1,
4,
11,
3,
5,
17,
9,
13,
12,
20,
7,
15,
18,
8,
16,
21
]
},
{
"features": [
2.3515573069983855,
0.16923076923076924,
0.0,
0.4260869565217391
],
"choice": [
7,
9,
10,
5,
2,
0,
3,
1,
12,
4,
6,
11,
18,
8,
15,
13,
16,
21,
20,
17,
14,
19
]
},
{
"features": [
0.6162045389801538,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
10,
12,
1,
4,
11,
6,
9,
0,
2,
5,
3,
7,
8,
13,
20,
17,
15,
14,
16,
19,
18,
21
]
},
{
"features": [
0.5386240622922799,
-0.09230769230769231,
0.0,
-0.5582880434782608
],
"choice": [
1,
0,
5,
11,
10,
9,
6,
4,
3,
20,
17,
18,
13,
15,
16,
8,
7,
2,
12,
21,
19,
14
]
},
{
"features": [
-0.41133320672300827,
-0.18461538461538463,
0.0,
0.4260869565217391
],
"choice": [
14,
9,
7,
10,
15,
13,
3,
6,
16,
5,
19,
2,
12,
18,
4,
21,
20,
0,
11,
17,
1,
8
]
},
{
"features": [
-0.31155635742094767,
12.36923076923077,
0.0,
0.3865087169129372
],
"choice": [
7,
2,
6,
10,
3,
0,
9,
20,
5,
1,
18,
11,
8,
17,
4,
13,
15,
12,
14,
16,
19,
21
]
},
{
"features": [
-0.40594435476213087,
-0.06153846153846154,
0.0,
-0.7114130434782607
],
"choice": [
9,
5,
6,
1,
0,
13,
15,
7,
19,
4,
16,
3,
10,
12,
11,
18,
14,
8,
17,
20,
21,
2
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
20,
17,
0,
1,
18,
3,
13,
9,
10,
5,
11,
15,
2,
4,
12,
16,
14,
19,
21
]
},
{
"features": [
1.6675766783781218,
0.0,
0.0,
0.4260869565217391
],
"choice": [
7,
9,
5,
0,
1,
10,
6,
11,
4,
2,
12,
3,
8,
15,
13,
18,
16,
20,
17,
21,
14,
19
]
},
{
"features": [
-0.36356946158959264,
0.8923076923076924,
0.0,
-1.2266908212560386
],
"choice": [
8,
15,
3,
13,
16,
11,
4,
0,
20,
6,
14,
5,
1,
21,
17,
9,
10,
18,
19,
7,
12,
2
]
},
{
"features": [
-0.38225239768303104,
-0.05384615384615385,
0.0,
0.4260869565217391
],
"choice": [
16,
13,
15,
18,
17,
14,
20,
8,
10,
9,
3,
7,
19,
21,
11,
1,
5,
0,
6,
4,
2,
12
]
},
{
"features": [
-0.3590352293229513,
0.06153846153846154,
0.0,
-1.3239130434782607
],
"choice": [
7,
9,
10,
4,
5,
17,
19,
20,
12,
18,
6,
13,
16,
0,
1,
3,
15,
21,
14,
11,
8,
2
]
},
{
"features": [
0.3090399772101415,
0.6923076923076923,
0.0,
-0.003997789240972687
],
"choice": [
7,
9,
10,
1,
12,
5,
3,
4,
0,
11,
20,
8,
17,
13,
6,
15,
16,
21,
18,
2,
14,
19
]
},
{
"features": [
-0.3118649700883107,
-0.17692307692307693,
0.0,
0.4260869565217391
],
"choice": [
20,
18,
21,
17,
7,
9,
15,
13,
1,
16,
4,
12,
5,
0,
10,
14,
6,
11,
8,
3,
2,
19
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
9,
10,
0,
5,
1,
12,
3,
4,
2,
21,
11,
16,
18,
20,
15,
8,
17,
13,
14,
19
]
},
{
"features": [
-0.3178473079479632,
-0.06153846153846154,
0.0,
0.4260869565217391
],
"choice": [
18,
17,
20,
1,
5,
21,
0,
8,
4,
3,
10,
12,
9,
13,
11,
6,
16,
15,
7,
19,
14,
2
]
}
],
"configsource": [
"lgbm/Airlines",
"lgbm/riccardo",
"lgbm/fried",
"lgbm/Dionis",
"lgbm/default",
"xgboost/fabert",
"xgboost/bng_lowbwt",
"xgboost/pol",
"xgboost/Amazon_employee_access",
"xgb_limitdepth/Jannis",
"xgb_limitdepth/adult",
"xgb_limitdepth/Amazon_employee_access",
"xgb_limitdepth/default",
"rf/Amazon_employee_access",
"rf/kc1",
"rf/Helena",
"rf/default",
"extra_tree/segment",
"extra_tree/Helena",
"extra_tree/kr-vs-kp",
"extra_tree/bank-marketing",
"extra_tree/default"
]
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,882 @@
{
"version": "default",
"portfolio": [
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 4797,
"num_leaves": 122,
"min_child_samples": 2,
"learning_rate": 0.022635758411078528,
"log_max_bin": 9,
"colsample_bytree": 0.7019911744574896,
"reg_alpha": 0.004252223402511765,
"reg_lambda": 0.11288241427227624
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 1009,
"num_leaves": 42,
"min_child_samples": 12,
"learning_rate": 0.02167229637171611,
"log_max_bin": 7,
"colsample_bytree": 0.7385038460573171,
"reg_alpha": 0.003607184551842614,
"reg_lambda": 12.08340803550741
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 32767,
"num_leaves": 372,
"min_child_samples": 4,
"learning_rate": 0.03517259015200922,
"log_max_bin": 5,
"colsample_bytree": 1.0,
"reg_alpha": 0.02271142170225636,
"reg_lambda": 0.001963791798843179,
"FLAML_sample_size": 830258
}
},
{
"class": "lgbm",
"hyperparameters": {}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 6357,
"max_leaves": 206,
"min_child_weight": 1.9495322566288034,
"learning_rate": 0.0068766724195393905,
"subsample": 0.9451618245005704,
"colsample_bylevel": 0.9030482524943064,
"colsample_bytree": 0.9278972006416252,
"reg_alpha": 0.01857648400903689,
"reg_lambda": 6.021166480604588,
"FLAML_sample_size": 344444
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 23045,
"max_leaves": 247,
"min_child_weight": 0.004319397499079841,
"learning_rate": 0.0032914413473281215,
"subsample": 0.7334190564433234,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.03514226467919635,
"reg_lambda": 1.2679661021665851
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 1899,
"max_leaves": 59,
"min_child_weight": 0.013389019900720164,
"learning_rate": 0.0028943401472847964,
"subsample": 0.7808944208233943,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.9999355357362375,
"reg_alpha": 0.7905117773932884,
"reg_lambda": 2.916897119216104
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 5611,
"max_leaves": 61,
"min_child_weight": 0.01070518287797225,
"learning_rate": 0.005485127037677848,
"subsample": 0.4713518256961299,
"colsample_bylevel": 0.9777437906530106,
"colsample_bytree": 0.9519335125615331,
"reg_alpha": 0.03621564207188963,
"reg_lambda": 1.8045765669466283
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 4923,
"max_depth": 12,
"min_child_weight": 0.7625732991776795,
"learning_rate": 0.009239549681857523,
"subsample": 0.8193164619615052,
"colsample_bylevel": 0.7785754297307862,
"colsample_bytree": 0.788491073979525,
"reg_alpha": 0.002282749364196872,
"reg_lambda": 131.2194560716441
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 2111,
"max_depth": 9,
"min_child_weight": 3.405822241186395,
"learning_rate": 0.005804247705198151,
"subsample": 0.37848422782052427,
"colsample_bylevel": 0.8228350674288559,
"colsample_bytree": 0.8813475713109656,
"reg_alpha": 0.009761356063132219,
"reg_lambda": 13.187783936727843,
"FLAML_sample_size": 810000
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 1499,
"max_depth": 11,
"min_child_weight": 0.07563529776156448,
"learning_rate": 0.039042609221240955,
"subsample": 0.7832981935783824,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0009765625,
"reg_lambda": 23.513066752844153
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 19722,
"max_depth": 11,
"min_child_weight": 6.46800727978204,
"learning_rate": 0.0010837437950202355,
"subsample": 0.49509562408032115,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.8826299329274134,
"reg_alpha": 0.23887161121959208,
"reg_lambda": 15.163773888208217
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 544,
"max_depth": 12,
"min_child_weight": 79.32555867011995,
"learning_rate": 0.010128107120014433,
"subsample": 0.9799974977817297,
"colsample_bylevel": 0.881815418056542,
"colsample_bytree": 0.9718556912196423,
"reg_alpha": 72.63148950428749,
"reg_lambda": 1.4601415712058006
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 960,
"max_features": 0.694616932858775,
"max_leaves": 8937
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 1.0,
"max_leaves": 32767,
"FLAML_sample_size": 830258
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.6683903035731483,
"max_leaves": 591,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 1233,
"max_features": 1.0,
"max_leaves": 6452
}
},
{
"class": "extra_tree",
"hyperparameters": {}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 346,
"max_features": 1.0,
"max_leaves": 1007,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.5106397565689275,
"max_leaves": 32767,
"FLAML_sample_size": 319382
}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
0.85
],
"scale": [
463680.0,
8.5,
1.0,
0.48611111111111116
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.3085714285714286
],
"choice": [
3,
6,
12,
1,
16,
20,
7,
13,
9,
8,
4,
11,
0,
14,
18,
15,
5,
17,
10,
21,
2,
19
]
},
{
"features": [
0.6972675120772946,
10.588235294117647,
0.0,
0.3085714285714286
],
"choice": [
19,
18,
21,
20
]
},
{
"features": [
-0.05244133885438233,
3.5294117647058822,
0.0,
0.3085714285714286
],
"choice": [
1,
0,
3,
14,
17,
15,
16,
10,
8,
18,
2,
19,
20,
4,
21,
13,
9,
5,
7,
11,
6,
12
]
},
{
"features": [
1.8618637853692201,
-0.11764705882352941,
0.0,
-0.3771428571428571
],
"choice": [
12,
7,
4,
9,
13,
8,
1,
6,
3,
5,
16,
10,
0,
18,
14,
20,
15,
17,
19,
2,
21
]
},
{
"features": [
0.1472675120772947,
-0.11764705882352941,
0.0,
-1.52
],
"choice": [
1,
12,
9,
3,
7,
6,
11,
13,
16,
20,
8,
4,
18,
0,
10,
14,
21,
5,
15,
17,
2,
19
]
},
{
"features": [
-0.045171238785369223,
-0.11764705882352941,
0.0,
-0.3771428571428571
],
"choice": [
12,
6,
1,
3,
16,
9,
20,
15,
14,
11,
7,
21,
18,
17,
4,
8,
19,
5,
13,
0,
10,
2
]
},
{
"features": [
1.8618637853692201,
9.411764705882353,
0.0,
0.3085714285714286
],
"choice": [
19,
18,
21,
20
]
},
{
"features": [
-0.018758626639061422,
-0.11764705882352941,
0.0,
-1.2914285714285714
],
"choice": [
6,
3,
12,
9,
1,
16,
20,
13,
7,
11,
8,
18,
4,
14,
10,
15,
0,
17,
21,
5,
19,
2
]
},
{
"features": [
1.8618637853692201,
0.9411764705882353,
0.0,
-0.6057142857142855
],
"choice": [
0,
5,
4,
8,
10,
12,
7,
9,
1,
2,
13,
3,
6,
14,
19,
17,
21,
18,
16,
20
]
},
{
"features": [
1.8618637853692201,
0.0,
0.0,
-1.5428571428571427
],
"choice": [
9,
7,
1,
4,
6,
3,
12,
13,
0,
8,
10,
5,
14,
16,
20,
18,
21,
15,
2,
17,
19
]
},
{
"features": [
0.2647105762594893,
0.0,
0.0,
0.3085714285714286
],
"choice": [
12,
6,
1,
3,
13,
7,
16,
9,
20,
0,
8,
4,
11,
14,
18,
5,
10,
15,
17,
21,
2,
19
]
},
{
"features": [
-0.058378623188405795,
0.23529411764705882,
0.0,
-0.3771428571428571
],
"choice": [
0,
3,
1,
2
]
},
{
"features": [
0.0,
0.0,
0.0,
0.3085714285714286
],
"choice": [
7,
9,
1,
11,
8,
0,
4,
5,
6,
3,
10,
2,
13,
12,
19,
18,
21,
15,
14,
17,
20,
16
]
},
{
"features": [
-0.03490769496204279,
0.7058823529411765,
0.0,
0.3085714285714286
],
"choice": [
7,
11,
5,
4,
9,
1,
8,
3,
6,
0,
10,
2,
17,
12,
15,
14,
16,
13,
19,
18,
21,
20
]
},
{
"features": [
-0.03490769496204279,
-0.23529411764705882,
0.0,
0.3085714285714286
],
"choice": [
6,
4,
8,
5,
7,
9,
11,
10,
3,
1,
18,
12,
21,
19,
0,
14,
16,
20,
15,
13,
17,
2
]
},
{
"features": [
-0.03906789164941339,
-0.23529411764705882,
0.0,
0.3085714285714286
],
"choice": [
0,
4,
7,
5,
11,
1,
8,
10,
9,
6,
12,
3,
13,
14,
15,
17,
16,
2,
21,
18,
19,
20
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.3085714285714286
],
"choice": [
18,
19,
20,
10,
15,
17,
5,
11,
14,
4,
7,
9,
21,
8,
3,
6,
13,
1,
16,
12,
0,
2
]
},
{
"features": [
1.050207039337474,
0.9411764705882353,
0.0,
-0.7199999999999999
],
"choice": [
17,
15,
14,
16
]
},
{
"features": [
0.686201690821256,
-0.11764705882352941,
0.0,
-1.0628571428571427
],
"choice": [
15,
17,
14,
19,
16,
18,
21,
20
]
},
{
"features": [
1.9104080400276053,
0.0,
0.0,
0.3085714285714286
],
"choice": [
10,
2,
5,
8,
0,
4,
19,
7,
9,
13,
17,
15,
18,
21,
1,
14,
12,
20,
6,
3,
16
]
},
{
"features": [
-0.050015096618357485,
4.470588235294118,
0.0,
0.3085714285714286
],
"choice": [
8,
10,
4,
7,
5,
11,
18,
6,
20,
19,
9,
14,
16,
21,
0,
3,
15,
17,
1,
2,
13,
12
]
},
{
"features": [
-0.04660973084886128,
-0.8235294117647058,
0.0,
-1.0628571428571427
],
"choice": [
11,
13,
10,
8,
9,
20,
12,
18,
19,
21
]
}
],
"configsource": [
"lgbm/houses",
"lgbm/house_8L",
"lgbm/poker",
"lgbm/default",
"xgboost/Albert",
"xgboost/mv",
"xgboost/bng_echomonths",
"xgboost/house_16H",
"xgb_limitdepth/higgs",
"xgb_limitdepth/bng_pharynx",
"xgb_limitdepth/connect-4",
"xgb_limitdepth/house_16H",
"xgb_limitdepth/bng_echomonths",
"xgb_limitdepth/default",
"rf/houses",
"rf/poker",
"rf/bank-marketing",
"rf/default",
"extra_tree/house_16H",
"extra_tree/default",
"extra_tree/dilbert",
"extra_tree/particulate-matter"
]
}

192
flaml/default/estimator.py Normal file
View File

@ -0,0 +1,192 @@
import sklearn.ensemble as ensemble
from functools import wraps
from flaml.data import CLASSIFICATION
from .suggest import preprocess_and_suggest_hyperparams
DEFAULT_LOCATION = "default_location"
def flamlize_estimator(super_class, name: str, task: str, alternatives=None):
"""Enhance an estimator class with flaml's data-dependent default hyperparameter settings.
Example:
```python
import sklearn.ensemble as ensemble
RandomForestRegressor = flamlize_estimator(
ensemble.RandomForestRegressor, "rf", "regression"
)
```
Args:
super_class: an scikit-learn compatible estimator class.
name: a str of the estimator's name.
task: a str of the task type.
alternatives: (Optional) a list for alternative estimator names. For example,
```[("max_depth", 0, "xgboost")]``` means if the "max_depth" is set to 0
in the constructor, then look for the learned defaults for estimator "xgboost".
"""
class EstimatorClass(super_class):
"""**Enhanced with flaml's data-dependent default hyperparameter settings.**"""
@wraps(super_class.__init__)
def __init__(self, **params):
if DEFAULT_LOCATION in params:
self._default_location = params.pop(DEFAULT_LOCATION)
else:
self._default_location = None
self._params = params
super().__init__(**params)
@wraps(super_class._get_param_names)
@classmethod
def _get_param_names(cls):
return super_class._get_param_names()
def suggest_hyperparams(self, X, y):
"""Suggest hyperparameters.
Example:
```python
from flaml.default import LGBMRegressor
estimator = LGBMRegressor()
hyperparams, estimator_name, X_transformed, y_transformed = estimator.fit(X_train, y_train)
print(hyperparams)
```
Args:
X: A dataframe of training data in shape n*m.
y: A series of labels in shape n*1.
Returns:
hyperparams: A dict of the hyperparameter configurations.
estimator_name: A str of the underlying estimator name, e.g., 'xgb_limitdepth'.
X_transformed: the preprocessed X.
y_transformed: the preprocessed y.
"""
estimator_name = name
if alternatives:
for alternative in alternatives:
if self._params.get(alternative[0]) == alternative[1]:
estimator_name = alternative[2]
break
estimator_name = (
"choose_xgb"
if (
estimator_name == "xgb_limitdepth"
and "max_depth" not in self._params
)
else estimator_name
)
(
hyperparams,
estimator_class,
X_transformed,
y_transformed,
self._feature_transformer,
self._label_transformer,
) = preprocess_and_suggest_hyperparams(
task, X, y, estimator_name, self._default_location
)
assert estimator_class == super_class
hyperparams.update(self._params)
return hyperparams, estimator_name, X_transformed, y_transformed
@wraps(super_class.fit)
def fit(self, X, y, *args, **params):
hyperparams, estimator_name, X, y_transformed = self.suggest_hyperparams(
X, y
)
self.set_params(**hyperparams)
if self._label_transformer and estimator_name in [
"rf",
"extra_tree",
"xgboost",
"xgb_limitdepth",
"choose_xgb",
]:
# rf and et have trouble in handling boolean labels; xgboost requires integer labels
fitted = super().fit(X, y_transformed, *args, **params)
# if hasattr(self, "_classes"):
# self._classes = self._label_transformer.classes_
# else:
self.classes_ = self._label_transformer.classes_
if "xgb" not in estimator_name:
# rf and et would do inverse transform automatically; xgb doesn't
self._label_transformer = None
else:
# lgbm doesn't need label transformation except for non-str/num labels
try:
fitted = super().fit(X, y, *args, **params)
self._label_transformer = None
except ValueError:
# Unknown label type: 'unknown'
fitted = super().fit(X, y_transformed, *args, **params)
self._classes = self._label_transformer.classes_
return fitted
@wraps(super_class.predict)
def predict(self, X, *args, **params):
if name != "lgbm" or task not in CLASSIFICATION:
X = self._feature_transformer.transform(X)
y_pred = super().predict(X, *args, **params)
if self._label_transformer and y_pred.ndim == 1:
y_pred = self._label_transformer.inverse_transform(y_pred)
return y_pred
if hasattr(super_class, "predict_proba"):
@wraps(super_class.predict_proba)
def predict_proba(self, X, *args, **params):
X_test = self._feature_transformer.transform(X)
y_pred = super().predict_proba(X_test, *args, **params)
return y_pred
EstimatorClass.__doc__ += " " + super_class.__doc__
EstimatorClass.__name__ = super_class.__name__
return EstimatorClass
RandomForestRegressor = flamlize_estimator(
ensemble.RandomForestRegressor, "rf", "regression"
)
RandomForestClassifier = flamlize_estimator(
ensemble.RandomForestClassifier, "rf", "classification"
)
ExtraTreesRegressor = flamlize_estimator(
ensemble.ExtraTreesRegressor, "extra_tree", "regression"
)
ExtraTreesClassifier = flamlize_estimator(
ensemble.ExtraTreesClassifier, "extra_tree", "classification"
)
try:
import lightgbm
LGBMRegressor = flamlize_estimator(lightgbm.LGBMRegressor, "lgbm", "regression")
LGBMClassifier = flamlize_estimator(
lightgbm.LGBMClassifier, "lgbm", "classification"
)
except ImportError:
pass
try:
import xgboost
XGBRegressor = flamlize_estimator(
xgboost.XGBRegressor,
"xgb_limitdepth",
"regression",
[("max_depth", 0, "xgboost")],
)
XGBClassifier = flamlize_estimator(
xgboost.XGBClassifier,
"xgb_limitdepth",
"classification",
[("max_depth", 0, "xgboost")],
)
except ImportError:
pass

View File

@ -0,0 +1,358 @@
{
"version": "default",
"portfolio": [
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 1080,
"max_features": 1.0,
"max_leaves": 590,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.46132798093546956,
"max_leaves": 12856,
"criterion": "gini"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 408,
"max_features": 0.3629795757973625,
"max_leaves": 81,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 553,
"max_features": 0.9592132391435095,
"max_leaves": 1127,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
18000.0,
28.0,
2.0,
0.7565217391304347
],
"scale": [
42124.0,
130.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.196467571930491,
1.0923076923076922,
0.0,
0.4260869565217391
],
"choice": [
1,
2,
4
]
},
{
"features": [
11.096856898680088,
-0.16153846153846155,
0.0,
-0.5739130434782609
],
"choice": [
1,
3,
0,
2,
4
]
},
{
"features": [
8.658152122305575,
0.38461538461538464,
0.0,
-0.7405797101449274
],
"choice": [
1,
3,
0,
4
]
},
{
"features": [
0.27281359794891274,
-0.14615384615384616,
0.0,
-1.3239130434782607
],
"choice": [
3,
0,
4
]
},
{
"features": [
-0.4125676573924604,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
2,
0,
1,
4
]
},
{
"features": [
0.6409647706770487,
1.5538461538461539,
0.0,
0.0
],
"choice": [
2,
0,
3,
1,
4
]
},
{
"features": [
2.3515573069983855,
0.16923076923076924,
0.0,
0.4260869565217391
],
"choice": [
1,
4
]
},
{
"features": [
0.6162045389801538,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
3,
0,
2,
1,
4
]
},
{
"features": [
0.5386240622922799,
-0.09230769230769231,
0.0,
-0.5582880434782608
],
"choice": [
3,
0,
1,
4
]
},
{
"features": [
-0.41133320672300827,
-0.18461538461538463,
0.0,
0.4260869565217391
],
"choice": [
2,
1,
4
]
},
{
"features": [
-0.31155635742094767,
12.36923076923077,
0.0,
0.3865087169129372
],
"choice": [
3,
1,
0,
2,
4
]
},
{
"features": [
-0.40594435476213087,
-0.06153846153846154,
0.0,
-0.7114130434782607
],
"choice": [
2,
1,
0,
3,
4
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
3,
0,
1,
2,
4
]
},
{
"features": [
1.6675766783781218,
0.0,
0.0,
0.4260869565217391
],
"choice": [
1,
3,
0,
4
]
},
{
"features": [
-0.36356946158959264,
0.8923076923076924,
0.0,
-1.2266908212560386
],
"choice": [
3,
4
]
},
{
"features": [
-0.38225239768303104,
-0.05384615384615385,
0.0,
0.4260869565217391
],
"choice": [
1,
0,
3,
2,
4
]
},
{
"features": [
-0.3590352293229513,
0.06153846153846154,
0.0,
-1.3239130434782607
],
"choice": [
0,
2,
3,
1,
4
]
},
{
"features": [
0.3090399772101415,
0.6923076923076923,
0.0,
-0.003997789240972687
],
"choice": [
3,
0,
4
]
},
{
"features": [
-0.3118649700883107,
-0.17692307692307693,
0.0,
0.4260869565217391
],
"choice": [
3,
1,
4
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
4
]
},
{
"features": [
-0.3178473079479632,
-0.06153846153846154,
0.0,
0.4260869565217391
],
"choice": [
1,
0,
3,
4
]
}
],
"configsource": [
"segment",
"Helena",
"kr-vs-kp",
"bank-marketing",
"default"
]
}

View File

@ -0,0 +1,307 @@
{
"version": "default",
"portfolio": [
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 1074,
"max_features": 0.6008299059364026,
"max_leaves": 9287
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 833,
"max_features": 0.055027081530106846,
"max_leaves": 1361,
"criterion": "gini"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.9560062760906606,
"max_leaves": 32767,
"criterion": "entropy",
"FLAML_sample_size": 470620
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 812,
"max_features": 1.0,
"max_leaves": 1474,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 1.0,
"max_leaves": 18344
}
},
{
"class": "extra_tree",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
24668.5,
54.0,
7.0,
1.0
],
"scale": [
57198.0,
770.5,
6.0,
1.0
]
},
"neighbors": [
{
"features": [
8.710820308402392,
0.0,
0.0,
-0.8148148148148149
],
"choice": [
2,
4,
5
]
},
{
"features": [
0.6701545508584216,
0.9474367293964958,
0.5,
0.0
],
"choice": [
2,
0,
4,
3,
5
]
},
{
"features": [
0.5945575020105598,
-0.03504218040233614,
15.5,
0.0
],
"choice": [
4,
0,
3,
2,
1,
5
]
},
{
"features": [
0.8862285394594217,
0.0,
-0.5,
0.0
],
"choice": [
2,
4,
0,
3,
5
]
},
{
"features": [
-0.2739344033008147,
9.2744970798183,
0.5,
0.0
],
"choice": [
0,
1,
3,
5
]
},
{
"features": [
0.48133676002657433,
-0.058403634003893576,
0.0,
0.0
],
"choice": [
3,
2,
4,
0,
5
]
},
{
"features": [
0.4862145529563971,
0.16353017521090202,
0.5,
0.0
],
"choice": [
2,
4,
0,
3,
5
]
},
{
"features": [
-0.40409629707332423,
-0.06229720960415315,
-0.5,
-1.0
],
"choice": [
4,
2,
0,
5
]
},
{
"features": [
-0.41428896115248787,
1.0408825438027256,
0.3333333333333333,
0.0
],
"choice": [
1,
5
]
},
{
"features": [
0.6317091506696039,
-0.015574302401038288,
-0.6666666666666666,
-1.0
],
"choice": [
0,
2,
3,
5
]
},
{
"features": [
-0.2739344033008147,
2.5256327060350423,
-0.3333333333333333,
0.0
],
"choice": [
3,
2,
4,
0,
1,
5
]
},
{
"features": [
-0.30168012867582783,
0.9682024659312135,
0.0,
0.0
],
"choice": [
1,
5
]
},
{
"features": [
0.2739344033008147,
-0.06229720960415315,
-0.6666666666666666,
0.0
],
"choice": [
3,
0,
1,
5
]
},
{
"features": [
-0.39981293052204625,
0.21025308241401688,
0.5,
0.0
],
"choice": [
4,
2,
3,
0,
5
]
},
{
"features": [
-0.3949351375922235,
-0.04931862426995458,
0.0,
0.0
],
"choice": [
3,
2,
4,
0,
5
]
},
{
"features": [
-0.41797790132522117,
-0.04672290720311486,
-0.5,
0.0
],
"choice": [
4,
3,
2,
0,
5
]
}
],
"configsource": [
"houses",
"fabert",
"Covertype",
"Amazon_employee_access",
"fried",
"default"
]
}

View File

@ -0,0 +1,309 @@
{
"version": "default",
"portfolio": [
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 1233,
"max_features": 1.0,
"max_leaves": 6452
}
},
{
"class": "extra_tree",
"hyperparameters": {}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 346,
"max_features": 1.0,
"max_leaves": 1007,
"criterion": "entropy"
}
},
{
"class": "extra_tree",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.5106397565689275,
"max_leaves": 32767,
"FLAML_sample_size": 319382
}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
1.0
],
"scale": [
474977.25,
7.5,
1.0,
0.5
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
0.6806831274550518,
12.0,
0.0,
0.0
],
"choice": [
1
]
},
{
"features": [
-0.05119403087200492,
4.0,
0.0,
0.0
],
"choice": [
0,
1
]
},
{
"features": [
1.817579684079606,
-0.13333333333333333,
0.0,
-0.6666666666666667
],
"choice": [
0,
3,
2,
1
]
},
{
"features": [
0.14376478031316237,
-0.13333333333333333,
0.0,
-1.7777777777777777
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
-0.044096848849076456,
-0.13333333333333333,
0.0,
-0.6666666666666667
],
"choice": [
2,
3,
0,
1
]
},
{
"features": [
1.817579684079606,
10.666666666666666,
0.0,
0.0
],
"choice": [
1
]
},
{
"features": [
-0.01831245601763032,
-0.13333333333333333,
0.0,
-1.5555555555555556
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
1.817579684079606,
1.0666666666666667,
0.0,
-0.8888888888888888
],
"choice": [
1
]
},
{
"features": [
1.817579684079606,
0.0,
0.0,
-1.8
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
0.2584144819567674,
0.0,
0.0,
0.0
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
1
]
},
{
"features": [
-0.034077421602824134,
0.8,
0.0,
0.0
],
"choice": [
1
]
},
{
"features": [
-0.034077421602824134,
-0.26666666666666666,
0.0,
0.0
],
"choice": [
0,
3,
1
]
},
{
"features": [
-0.038138668746766295,
-0.26666666666666666,
0.0,
0.0
],
"choice": [
3,
0,
1
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.6000000000000001
],
"choice": [
0,
1
]
},
{
"features": [
0.6698805048031248,
-0.13333333333333333,
0.0,
-1.3333333333333335
],
"choice": [
3,
1
]
},
{
"features": [
1.8649693222149062,
0.0,
0.0,
0.0
],
"choice": [
1
]
},
{
"features": [
-0.0488254963790371,
5.066666666666666,
0.0,
0.0
],
"choice": [
0,
2,
1
]
},
{
"features": [
-0.04550112663290715,
-0.9333333333333333,
0.0,
-1.3333333333333335
],
"choice": [
2,
0,
1
]
}
],
"configsource": [
"house_16H",
"default",
"dilbert",
"particulate-matter"
]
}

97
flaml/default/greedy.py Normal file
View File

@ -0,0 +1,97 @@
import numpy as np
import pandas as pd
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import pairwise_distances
def _augment(row):
max, avg, id = row.max(), row.mean(), row.index[0]
return row.apply(lambda x: (x, max, avg, id))
def construct_portfolio(regret_matrix, meta_features, regret_bound):
"""The portfolio construction algorithm.
(Reference)[https://arxiv.org/abs/2202.09927].
Args:
regret_matrix: A dataframe of regret matrix.
meta_features: None or a dataframe of metafeatures matrix.
When set to None, the algorithm uses greedy strategy.
Otherwise, the algorithm uses greedy strategy with feedback
from the nearest neighbor predictor.
regret_bound: A float of the regret bound.
Returns:
A list of configuration names.
"""
configs = []
all_configs = set(regret_matrix.index.tolist())
tasks = regret_matrix.columns
# pre-processing
if meta_features is not None:
scaler = RobustScaler()
meta_features = meta_features.loc[tasks]
meta_features.loc[:, :] = scaler.fit_transform(meta_features)
nearest_task = {}
for t in tasks:
other_meta_features = meta_features.drop(t)
dist = pd.DataFrame(
pairwise_distances(
meta_features.loc[t].to_numpy().reshape(1, -1),
other_meta_features,
metric="l2",
),
columns=other_meta_features.index,
)
nearest_task[t] = dist.idxmin(axis=1)
regret_matrix = regret_matrix.apply(_augment, axis=1)
print(regret_matrix)
def loss(configs):
"""Loss of config set `configs`, according to nearest neighbor config predictor."""
if meta_features is not None:
r = []
best_config_per_task = regret_matrix.loc[configs, :].min()
for t in tasks:
config = best_config_per_task[nearest_task[t]].iloc[0][-1]
r.append(regret_matrix[t][config][0])
else:
r = regret_matrix.loc[configs].min()
excessive_regret = (np.array(r) - regret_bound).clip(min=0).sum()
avg_regret = np.array(r).mean()
return excessive_regret, avg_regret
prev = np.inf
i = 0
eps = 1e-5
while True:
candidates = [configs + [d] for d in all_configs.difference(configs)]
losses, avg_regret = tuple(zip(*(loss(x) for x in candidates)))
sorted_losses = np.sort(losses)
if sorted_losses[1] - sorted_losses[0] < eps:
minloss = np.nanmin(losses)
print(
f"tie detected at loss = {sorted_losses[0]}, using alternative metric."
)
tied = np.flatnonzero(losses - minloss < eps)
losses = [(avg_regret[i], i) for i in tied]
minloss, ind = min(losses)
if minloss > prev - eps:
print(
f"May be overfitting at k = {i + 1}, current = {minloss:.5f}, "
f"prev = {prev:.5f}. Stopping."
)
break
configs = candidates[ind]
prev = minloss
else:
configs = candidates[np.nanargmin(losses)]
i += 1
if sorted_losses[0] <= eps:
print(
f"Reached target regret bound of {regret_bound}! k = {i}. Declining to pick further!"
)
break
return configs

View File

@ -0,0 +1,367 @@
{
"version": "default",
"portfolio": [
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 2541,
"num_leaves": 1667,
"min_child_samples": 29,
"learning_rate": 0.0016660662914022302,
"log_max_bin": 8,
"colsample_bytree": 0.5157078343718623,
"reg_alpha": 0.045792841240713165,
"reg_lambda": 0.0012362651138125363,
"FLAML_sample_size": 436899
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 141,
"num_leaves": 139,
"min_child_samples": 8,
"learning_rate": 0.04824748268727149,
"log_max_bin": 9,
"colsample_bytree": 0.5261441571042451,
"reg_alpha": 0.002896920833899335,
"reg_lambda": 0.024463247502165594
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 31204,
"num_leaves": 4,
"min_child_samples": 3,
"learning_rate": 0.009033979476164342,
"log_max_bin": 10,
"colsample_bytree": 0.5393339924944204,
"reg_alpha": 15.800090067239827,
"reg_lambda": 34.82471227276953
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 362,
"num_leaves": 1208,
"min_child_samples": 8,
"learning_rate": 0.02070742242160566,
"log_max_bin": 4,
"colsample_bytree": 0.37915528071680865,
"reg_alpha": 0.002982599447751338,
"reg_lambda": 1.136605174453919,
"FLAML_sample_size": 337147
}
},
{
"class": "lgbm",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
18000.0,
28.0,
2.0,
0.7565217391304347
],
"scale": [
42124.0,
130.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.196467571930491,
1.0923076923076922,
0.0,
0.4260869565217391
],
"choice": [
4
]
},
{
"features": [
11.096856898680088,
-0.16153846153846155,
0.0,
-0.5739130434782609
],
"choice": [
0,
1,
3,
2,
4
]
},
{
"features": [
8.658152122305575,
0.38461538461538464,
0.0,
-0.7405797101449274
],
"choice": [
2,
1,
0,
3,
4
]
},
{
"features": [
0.27281359794891274,
-0.14615384615384616,
0.0,
-1.3239130434782607
],
"choice": [
0,
1,
4
]
},
{
"features": [
-0.4125676573924604,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
3,
1,
0,
2,
4
]
},
{
"features": [
0.6409647706770487,
1.5538461538461539,
0.0,
0.0
],
"choice": [
2,
0,
1,
4
]
},
{
"features": [
2.3515573069983855,
0.16923076923076924,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
3,
1,
4
]
},
{
"features": [
0.6162045389801538,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
1,
4
]
},
{
"features": [
0.5386240622922799,
-0.09230769230769231,
0.0,
-0.5582880434782608
],
"choice": [
1,
0,
4
]
},
{
"features": [
-0.41133320672300827,
-0.18461538461538463,
0.0,
0.4260869565217391
],
"choice": [
3,
2,
4
]
},
{
"features": [
-0.31155635742094767,
12.36923076923077,
0.0,
0.3865087169129372
],
"choice": [
2,
3,
0,
1,
4
]
},
{
"features": [
-0.40594435476213087,
-0.06153846153846154,
0.0,
-0.7114130434782607
],
"choice": [
1,
0,
4
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
3,
2,
4
]
},
{
"features": [
1.6675766783781218,
0.0,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
4
]
},
{
"features": [
-0.36356946158959264,
0.8923076923076924,
0.0,
-1.2266908212560386
],
"choice": [
3,
4
]
},
{
"features": [
-0.38225239768303104,
-0.05384615384615385,
0.0,
0.4260869565217391
],
"choice": [
3,
1,
0,
4
]
},
{
"features": [
-0.3590352293229513,
0.06153846153846154,
0.0,
-1.3239130434782607
],
"choice": [
4
]
},
{
"features": [
0.3090399772101415,
0.6923076923076923,
0.0,
-0.003997789240972687
],
"choice": [
1,
3,
4
]
},
{
"features": [
-0.3118649700883107,
-0.17692307692307693,
0.0,
0.4260869565217391
],
"choice": [
1,
4
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
3,
4
]
},
{
"features": [
-0.3178473079479632,
-0.06153846153846154,
0.0,
0.4260869565217391
],
"choice": [
1,
0,
4
]
}
],
"configsource": [
"Airlines",
"riccardo",
"fried",
"Dionis",
"default"
]
}

View File

@ -0,0 +1,413 @@
{
"version": "default",
"portfolio": [
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 134,
"num_leaves": 225,
"min_child_samples": 21,
"learning_rate": 0.10182098014295998,
"log_max_bin": 5,
"colsample_bytree": 0.6103565306428956,
"reg_alpha": 0.0009765625,
"reg_lambda": 40.413729576022625
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 3726,
"num_leaves": 155,
"min_child_samples": 4,
"learning_rate": 0.040941607728296484,
"log_max_bin": 5,
"colsample_bytree": 0.5326256194627191,
"reg_alpha": 0.7408711930398492,
"reg_lambda": 0.5467731065349226
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 573,
"num_leaves": 16,
"min_child_samples": 52,
"learning_rate": 0.2422782244991656,
"log_max_bin": 7,
"colsample_bytree": 1.0,
"reg_alpha": 0.03433194930183514,
"reg_lambda": 0.03870494540146326
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 2931,
"num_leaves": 106,
"min_child_samples": 49,
"learning_rate": 0.007146230961642236,
"log_max_bin": 7,
"colsample_bytree": 0.46947896116006055,
"reg_alpha": 0.37428758811879526,
"reg_lambda": 23.639977131692564
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 241,
"num_leaves": 58,
"min_child_samples": 2,
"learning_rate": 0.022730855281657265,
"log_max_bin": 5,
"colsample_bytree": 0.5620897082415793,
"reg_alpha": 0.0031614554887399314,
"reg_lambda": 0.02175056245188971
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 8353,
"num_leaves": 371,
"min_child_samples": 71,
"learning_rate": 0.017965875630873252,
"log_max_bin": 10,
"colsample_bytree": 0.9002082433803926,
"reg_alpha": 0.4864366003694002,
"reg_lambda": 0.024138585745106363,
"FLAML_sample_size": 470619
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 320,
"num_leaves": 24,
"min_child_samples": 53,
"learning_rate": 0.019316895546068795,
"log_max_bin": 6,
"colsample_bytree": 0.3955693254372702,
"reg_alpha": 0.0013785083170001627,
"reg_lambda": 0.04644365636517757
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 733,
"num_leaves": 11,
"min_child_samples": 94,
"learning_rate": 0.06276798296942972,
"log_max_bin": 6,
"colsample_bytree": 0.6341928918435795,
"reg_alpha": 0.5811038918218691,
"reg_lambda": 43.304997517523944
}
},
{
"class": "lgbm",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
40337.0,
54.0,
7.0,
1.0
],
"scale": [
58722.0,
766.0,
6.0,
1.0
]
},
"neighbors": [
{
"features": [
8.217925138789552,
0.0,
0.0,
-0.8148148148148149
],
"choice": [
5,
1,
0,
3,
2,
7,
4,
8
]
},
{
"features": [
5.691767991553421,
0.007832898172323759,
58.0,
0.0
],
"choice": [
0,
2,
4,
7,
6,
8
]
},
{
"features": [
0.385937127482034,
0.9530026109660574,
0.5,
0.0
],
"choice": [
3,
7,
0,
4,
1,
8
]
},
{
"features": [
0.3123020333094922,
-0.03524804177545692,
15.5,
0.0
],
"choice": [
3,
0,
7,
6,
1,
4,
5,
2,
8
]
},
{
"features": [
0.5964033922550321,
0.0,
-0.5,
0.0
],
"choice": [
3,
0,
7,
4,
8
]
},
{
"features": [
-0.5336500800381458,
9.328981723237598,
0.5,
0.0
],
"choice": [
3,
0,
4,
1,
2,
7,
6,
8
]
},
{
"features": [
0.20201968597799802,
-0.0587467362924282,
0.0,
0.0
],
"choice": [
4,
6,
1,
7,
5,
3,
0,
2,
8
]
},
{
"features": [
0.20677088655018563,
0.16449086161879894,
0.5,
0.0
],
"choice": [
3,
0,
1,
5,
7,
4,
8
]
},
{
"features": [
-0.6604339089268076,
-0.06266318537859007,
-0.5,
-1.0
],
"choice": [
8
]
},
{
"features": [
-0.6703620448894793,
1.0469973890339426,
0.3333333333333333,
0.0
],
"choice": [
4,
1,
8
]
},
{
"features": [
0.34848949286468445,
-0.015665796344647518,
-0.6666666666666666,
-1.0
],
"choice": [
1,
5,
2,
3,
0,
8
]
},
{
"features": [
-0.5336500800381458,
2.5404699738903394,
-0.3333333333333333,
0.0
],
"choice": [
2,
8
]
},
{
"features": [
-0.5606757263036,
0.9738903394255874,
0.0,
0.0
],
"choice": [
4,
1,
8
]
},
{
"features": [
0.0,
-0.06266318537859007,
-0.6666666666666666,
0.0
],
"choice": [
2,
1,
5,
8
]
},
{
"features": [
-0.6562617077075031,
0.21148825065274152,
0.5,
0.0
],
"choice": [
2,
6,
7,
5,
3,
1,
4,
8
]
},
{
"features": [
-0.6515105071353156,
-0.04960835509138381,
0.0,
0.0
],
"choice": [
6,
1,
3,
7,
5,
4,
0,
2,
8
]
},
{
"features": [
-0.6739552467559007,
-0.04699738903394256,
-0.5,
0.0
],
"choice": [
6,
7,
3,
1,
0,
4,
5,
8
]
}
],
"configsource": [
"Helena",
"connect-4",
"jungle_chess_2pcs_raw_endgame_complete",
"Jannis",
"fabert",
"Covertype",
"segment",
"APSFailure",
"default"
]
}

View File

@ -0,0 +1,278 @@
{
"version": "default",
"portfolio": [
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 4797,
"num_leaves": 122,
"min_child_samples": 2,
"learning_rate": 0.022635758411078528,
"log_max_bin": 9,
"colsample_bytree": 0.7019911744574896,
"reg_alpha": 0.004252223402511765,
"reg_lambda": 0.11288241427227624
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 1009,
"num_leaves": 42,
"min_child_samples": 12,
"learning_rate": 0.02167229637171611,
"log_max_bin": 7,
"colsample_bytree": 0.7385038460573171,
"reg_alpha": 0.003607184551842614,
"reg_lambda": 12.08340803550741
}
},
{
"class": "lgbm",
"hyperparameters": {
"n_estimators": 32767,
"num_leaves": 372,
"min_child_samples": 4,
"learning_rate": 0.03517259015200922,
"log_max_bin": 5,
"colsample_bytree": 1.0,
"reg_alpha": 0.02271142170225636,
"reg_lambda": 0.001963791798843179,
"FLAML_sample_size": 830258
}
},
{
"class": "lgbm",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
1.0
],
"scale": [
140856.0,
3.0,
1.0,
0.33333333333333337
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
3
]
},
{
"features": [
-0.17263020389617767,
10.0,
0.0,
0.0
],
"choice": [
1,
0,
3
]
},
{
"features": [
6.129018288180837,
-0.3333333333333333,
0.0,
-1.0
],
"choice": [
1,
3
]
},
{
"features": [
0.48478588061566424,
-0.3333333333333333,
0.0,
-2.666666666666666
],
"choice": [
1,
3
]
},
{
"features": [
-0.14869796103822344,
-0.3333333333333333,
0.0,
-1.0
],
"choice": [
1,
3
]
},
{
"features": [
-0.06175100812176975,
-0.3333333333333333,
0.0,
-2.333333333333333
],
"choice": [
3
]
},
{
"features": [
6.129018288180837,
2.6666666666666665,
0.0,
-1.333333333333333
],
"choice": [
0,
1,
2,
3
]
},
{
"features": [
6.129018288180837,
0.0,
0.0,
-2.6999999999999997
],
"choice": [
1,
3
]
},
{
"features": [
0.8713934798659624,
0.0,
0.0,
0.0
],
"choice": [
1,
3
]
},
{
"features": [
-0.19217498722099166,
0.6666666666666666,
0.0,
-1.0
],
"choice": [
0,
3
]
},
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
1,
0,
3
]
},
{
"features": [
-0.11491168285341058,
2.0,
0.0,
0.0
],
"choice": [
1,
3
]
},
{
"features": [
-0.11491168285341058,
-0.6666666666666666,
0.0,
0.0
],
"choice": [
3
]
},
{
"features": [
-0.1286065201340376,
-0.6666666666666666,
0.0,
0.0
],
"choice": [
0,
1,
3
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.9
],
"choice": [
3
]
},
{
"features": [
6.288819787584483,
0.0,
0.0,
0.0
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.16464332367808257,
12.666666666666666,
0.0,
0.0
],
"choice": [
0,
3
]
}
],
"configsource": [
"houses",
"house_8L",
"poker",
"default"
]
}

234
flaml/default/portfolio.py Normal file
View File

@ -0,0 +1,234 @@
import pandas as pd
import numpy as np
import argparse
from pathlib import Path
import json
from sklearn.preprocessing import RobustScaler
from flaml.default import greedy
from flaml.default.regret import load_result, build_regret
regret_bound = 0.01
def config_predictor_tuple(tasks, configs, meta_features, regret_matrix):
"""Config predictor represented in tuple.
The returned tuple consists of (meta_features, preferences, proc).
Returns:
meta_features_norm: A dataframe of normalized meta features, each column for a task.
preferences: A dataframe of sorted configuration indicies by their performance per task (column).
regret_matrix: A dataframe of the configuration(row)-task(column) regret matrix.
"""
# pre-processing
scaler = RobustScaler()
meta_features_norm = meta_features.loc[tasks] # this makes a copy
meta_features_norm.loc[:, :] = scaler.fit_transform(meta_features_norm)
proc = {
"center": scaler.center_.tolist(),
"scale": scaler.scale_.tolist(),
}
# best model for each dataset in training
# choices = regret_matrix[tasks].loc[configs].reset_index(drop=True).idxmin()
# break ties using the order in configs
regret = (
regret_matrix[tasks]
.loc[configs]
.reset_index(drop=True)
.apply(lambda row: row.apply(lambda x: (x, row.name)), axis=1)
)
print(regret)
preferences = np.argsort(regret, axis=0)
print(preferences)
return (meta_features_norm, preferences, proc)
def build_portfolio(meta_features, regret, strategy):
"""Build a portfolio from meta features and regret matrix.
Args:
meta_features: A dataframe of metafeatures matrix.
regret: A dataframe of regret matrix.
strategy: A str of the strategy, one of ("greedy", "greedy-feedback").
"""
assert strategy in ("greedy", "greedy-feedback")
if strategy == "greedy":
portfolio = greedy.construct_portfolio(regret, None, regret_bound)
elif strategy == "greedy-feedback":
portfolio = greedy.construct_portfolio(regret, meta_features, regret_bound)
if "default" not in portfolio and "default" in regret.index:
portfolio += ["default"]
return portfolio
def load_json(filename):
"""Returns the contents of json file filename."""
with open(filename, "r") as f:
return json.load(f)
def _filter(preference, regret):
"""Remove choices after default or have NaN regret."""
try:
last = regret.index.get_loc("default") # len(preference) - 1
preference = preference[: preference[preference == last].index[0] + 1]
except KeyError: # no "default"
pass
finally:
regret = regret.reset_index(drop=True)
preference = preference[regret[preference].notna().to_numpy()]
# regret = regret[preference].reset_index(drop=True)
# dup = regret[regret.duplicated()]
# if not dup.empty:
# # break ties using the order in configs
# unique = dup.drop_duplicates()
# for u in unique:
# subset = regret == u
# preference[subset].sort_values(inplace=True)
# # raise ValueError(preference)
return preference.tolist()
def serialize(configs, regret, meta_features, output_file, config_path):
"""Store to disk all information FLAML-metalearn needs at runtime.
configs: names of model configs
regret: regret matrix
meta_features: task metafeatures
output_file: filename
config_path: path containing config json files
"""
output_file = Path(output_file)
# delete if exists
try:
output_file.unlink()
except FileNotFoundError:
pass
meta_features_norm, preferences, proc = config_predictor_tuple(
regret.columns, configs, meta_features, regret
)
portfolio = [load_json(config_path.joinpath(m + ".json")) for m in configs]
regret = regret.loc[configs]
meta_predictor = {
"version": "default",
"portfolio": portfolio,
"preprocessing": proc,
"neighbors": [
{"features": tuple(x), "choice": _filter(preferences[y], regret[y])}
for x, y in zip(
meta_features_norm.to_records(index=False), preferences.columns
)
],
"configsource": list(configs),
}
with open(output_file, "w+") as f:
json.dump(meta_predictor, f, indent=4)
return meta_predictor
# def analyze(regret_matrix, meta_predictor):
# tasks = regret_matrix.columns
# neighbors = meta_predictor["neighbors"]
# from sklearn.neighbors import NearestNeighbors
# nn = NearestNeighbors(n_neighbors=1)
# for i, task in enumerate(neighbors):
# other_tasks = [j for j in range(len(neighbors)) if j != i]
# # find the nn and the regret
# nn.fit([neighbors[j]["features"] for j in other_tasks])
# dist, ind = nn.kneighbors(
# np.array(task["features"]).reshape(1, -1), return_distance=True
# )
# ind = other_tasks[int(ind.item())]
# choice = int(neighbors[ind]["choice"][0])
# r = regret_matrix.iloc[choice, i]
# if r > regret_bound:
# label = "outlier"
# else:
# label = "normal"
# print(tasks[i], label, tasks[ind], "dist", dist, "regret", r)
# # find the best model and the regret
# regrets = regret_matrix.iloc[other_tasks, i]
# best = regrets.min()
# if best > regret_bound:
# print(tasks[i], "best_regret", best, "task", regrets.idxmin())
def main():
parser = argparse.ArgumentParser(description="Build a portfolio.")
parser.add_argument(
"--strategy", help="One of {greedy, greedy-feedback}", default="greedy"
)
parser.add_argument("--input", help="Input path")
parser.add_argument("--metafeatures", help="CSV of task metafeatures")
parser.add_argument("--exclude", help="One task name to exclude (for LOO purposes)")
parser.add_argument("--output", help="Location to write portfolio JSON")
parser.add_argument("--task", help="Task to merge portfolios", default="binary")
parser.add_argument(
"--estimator",
help="Estimators to merge portfolios",
default=["lgbm", "xgboost"],
nargs="+",
)
args = parser.parse_args()
meta_features = pd.read_csv(args.metafeatures, index_col=0).groupby(level=0).first()
if args.exclude:
meta_features.drop(args.exclude, inplace=True)
baseline_best = None
all_results = None
for estimator in args.estimator:
# produce regret
all, baseline = load_result(
f"{args.input}/{estimator}/results.csv", args.task, "result"
)
regret = build_regret(all, baseline)
regret = regret.replace(np.inf, np.nan).dropna(axis=1, how="all")
if args.exclude:
regret = regret.loc[[i for i in regret.index if args.exclude not in i]]
regret = regret[[c for c in regret.columns if args.exclude not in c]]
print(
f"Regret matrix complete: {100 * regret.count().sum() / regret.shape[0] / regret.shape[1]}%"
)
print(f"Num models considered: {regret.shape[0]}")
configs = build_portfolio(meta_features, regret, args.strategy)
meta_predictor = serialize(
configs,
regret,
meta_features,
f"{args.output}/{estimator}/{args.task}.json",
Path(f"{args.input}/{estimator}"),
)
configsource = meta_predictor["configsource"]
all = all.loc[configsource]
all.rename({x: f"{estimator}/{x}" for x in regret.index.values}, inplace=True)
baseline_best = (
baseline
if baseline_best is None
else pd.DataFrame({0: baseline_best, 1: baseline}).max(1)
)
all_results = all if all_results is None else pd.concat([all_results, all])
# analyze(regret, meta_predictor)
regrets = build_regret(all_results, baseline_best)
if len(args.estimator) > 1:
meta_predictor = serialize(
regrets.index,
regrets,
meta_features,
f"{args.output}/all/{args.task}.json",
Path(args.input),
)
if __name__ == "__main__":
# execute only if run as a script
main()

50
flaml/default/regret.py Normal file
View File

@ -0,0 +1,50 @@
import argparse
from os import path
import pandas as pd
def build_regret(all, baseline):
all = all[all.columns.intersection(baseline.index)]
return baseline - all
def write_regret(regret, filename):
regret.to_csv(filename)
def load_result(filename, task_type, metric):
df = pd.read_csv(filename)
df = df.loc[
(df[metric].notnull()) & (df.type == task_type),
["task", "fold", "params", metric],
]
df["params"] = df["params"].apply(
lambda x: path.splitext(path.basename(eval(x)["_modeljson"]))[0]
)
baseline = (
df.loc[df["task"] == df["params"], ["task", metric]]
.groupby("task")
.mean()[metric]
)
df = df.pivot_table(index="params", columns="task", values=metric)
return df, baseline
def main():
parser = argparse.ArgumentParser(description="Build a regret matrix.")
parser.add_argument("--result_csv", help="File of experiment results")
parser.add_argument("--task_type", help="Type of task")
parser.add_argument(
"--metric", help="Metric for calculating regret", default="result"
)
parser.add_argument("--output", help="Location to write regret CSV to")
args = parser.parse_args()
all, baseline = load_result(args.result_csv, args.task_type, args.metric)
regret = build_regret(all, baseline)
write_regret(regret, args.output)
if __name__ == "__main__":
# execute only if run as a script
main()

View File

@ -0,0 +1,330 @@
{
"version": "default",
"portfolio": [
{
"class": "rf",
"hyperparameters": {
"n_estimators": 501,
"max_features": 0.24484242524861066,
"max_leaves": 1156,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 356,
"max_features": 0.1,
"max_leaves": 102,
"criterion": "gini"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 1000,
"max_features": 0.1779692423238241,
"max_leaves": 7499,
"criterion": "gini"
}
},
{
"class": "rf",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
18000.0,
28.0,
2.0,
0.7565217391304347
],
"scale": [
42124.0,
130.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.196467571930491,
1.0923076923076922,
0.0,
0.4260869565217391
],
"choice": [
0,
3
]
},
{
"features": [
11.096856898680088,
-0.16153846153846155,
0.0,
-0.5739130434782609
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
8.658152122305575,
0.38461538461538464,
0.0,
-0.7405797101449274
],
"choice": [
2,
0,
3
]
},
{
"features": [
0.27281359794891274,
-0.14615384615384616,
0.0,
-1.3239130434782607
],
"choice": [
2,
0,
3
]
},
{
"features": [
-0.4125676573924604,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
0.6409647706770487,
1.5538461538461539,
0.0,
0.0
],
"choice": [
1,
0,
2,
3
]
},
{
"features": [
2.3515573069983855,
0.16923076923076924,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
3
]
},
{
"features": [
0.6162045389801538,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
0,
2,
1,
3
]
},
{
"features": [
0.5386240622922799,
-0.09230769230769231,
0.0,
-0.5582880434782608
],
"choice": [
0,
2,
3
]
},
{
"features": [
-0.41133320672300827,
-0.18461538461538463,
0.0,
0.4260869565217391
],
"choice": [
1,
2,
0,
3
]
},
{
"features": [
-0.31155635742094767,
12.36923076923077,
0.0,
0.3865087169129372
],
"choice": [
0,
2,
1,
3
]
},
{
"features": [
-0.40594435476213087,
-0.06153846153846154,
0.0,
-0.7114130434782607
],
"choice": [
0,
2,
3
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
0,
2,
3
]
},
{
"features": [
1.6675766783781218,
0.0,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
3
]
},
{
"features": [
-0.36356946158959264,
0.8923076923076924,
0.0,
-1.2266908212560386
],
"choice": [
2,
0,
3
]
},
{
"features": [
-0.38225239768303104,
-0.05384615384615385,
0.0,
0.4260869565217391
],
"choice": [
3
]
},
{
"features": [
-0.3590352293229513,
0.06153846153846154,
0.0,
-1.3239130434782607
],
"choice": [
0,
3
]
},
{
"features": [
0.3090399772101415,
0.6923076923076923,
0.0,
-0.003997789240972687
],
"choice": [
0,
2,
3
]
},
{
"features": [
-0.3118649700883107,
-0.17692307692307693,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
3
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
3
]
},
{
"features": [
-0.3178473079479632,
-0.06153846153846154,
0.0,
0.4260869565217391
],
"choice": [
0,
3
]
}
],
"configsource": [
"Amazon_employee_access",
"kc1",
"Helena",
"default"
]
}

View File

@ -0,0 +1,325 @@
{
"version": "default",
"portfolio": [
{
"class": "rf",
"hyperparameters": {
"n_estimators": 1000,
"max_features": 0.1779692423238241,
"max_leaves": 7499,
"criterion": "gini"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 400,
"max_features": 0.8961466398827462,
"max_leaves": 25095,
"criterion": "entropy",
"FLAML_sample_size": 470620
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 470,
"max_features": 0.12698484669953783,
"max_leaves": 31499,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 632,
"max_features": 1.0,
"max_leaves": 1360,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 1713,
"max_features": 0.40966311008832224,
"max_leaves": 10210,
"criterion": "entropy",
"FLAML_sample_size": 105352
}
},
{
"class": "rf",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
40337.0,
54.0,
7.0,
1.0
],
"scale": [
58722.0,
766.0,
6.0,
1.0
]
},
"neighbors": [
{
"features": [
8.217925138789552,
0.0,
0.0,
-0.8148148148148149
],
"choice": [
1,
4,
5
]
},
{
"features": [
5.691767991553421,
0.007832898172323759,
58.0,
0.0
],
"choice": [
0,
2,
5
]
},
{
"features": [
0.385937127482034,
0.9530026109660574,
0.5,
0.0
],
"choice": [
4,
2,
1,
3,
0,
5
]
},
{
"features": [
0.3123020333094922,
-0.03524804177545692,
15.5,
0.0
],
"choice": [
0,
3,
2,
1,
5
]
},
{
"features": [
0.5964033922550321,
0.0,
-0.5,
0.0
],
"choice": [
4,
1,
3,
0,
2,
5
]
},
{
"features": [
-0.5336500800381458,
9.328981723237598,
0.5,
0.0
],
"choice": [
0,
2,
5
]
},
{
"features": [
0.20201968597799802,
-0.0587467362924282,
0.0,
0.0
],
"choice": [
1,
4,
5
]
},
{
"features": [
0.20677088655018563,
0.16449086161879894,
0.5,
0.0
],
"choice": [
4,
1,
2,
0,
3,
5
]
},
{
"features": [
-0.6604339089268076,
-0.06266318537859007,
-0.5,
-1.0
],
"choice": [
3,
1,
5
]
},
{
"features": [
-0.6703620448894793,
1.0469973890339426,
0.3333333333333333,
0.0
],
"choice": [
0,
5
]
},
{
"features": [
0.34848949286468445,
-0.015665796344647518,
-0.6666666666666666,
-1.0
],
"choice": [
4,
2,
0,
5
]
},
{
"features": [
-0.5336500800381458,
2.5404699738903394,
-0.3333333333333333,
0.0
],
"choice": [
4,
3,
1,
2,
0,
5
]
},
{
"features": [
-0.5606757263036,
0.9738903394255874,
0.0,
0.0
],
"choice": [
2,
4,
0,
3,
1,
5
]
},
{
"features": [
0.0,
-0.06266318537859007,
-0.6666666666666666,
0.0
],
"choice": [
3,
1,
4,
0,
5
]
},
{
"features": [
-0.6562617077075031,
0.21148825065274152,
0.5,
0.0
],
"choice": [
4,
0,
3,
1,
2,
5
]
},
{
"features": [
-0.6515105071353156,
-0.04960835509138381,
0.0,
0.0
],
"choice": [
1,
4,
3,
5
]
},
{
"features": [
-0.6739552467559007,
-0.04699738903394256,
-0.5,
0.0
],
"choice": [
3,
1,
4,
5
]
}
],
"configsource": [
"Helena",
"Covertype",
"Fashion-MNIST",
"jungle_chess_2pcs_raw_endgame_complete",
"MiniBooNE",
"default"
]
}

View File

@ -0,0 +1,290 @@
{
"version": "default",
"portfolio": [
{
"class": "rf",
"hyperparameters": {
"n_estimators": 960,
"max_features": 0.694616932858775,
"max_leaves": 8937
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 1.0,
"max_leaves": 32767,
"FLAML_sample_size": 830258
}
},
{
"class": "rf",
"hyperparameters": {
"n_estimators": 2047,
"max_features": 0.6683903035731483,
"max_leaves": 591,
"criterion": "entropy"
}
},
{
"class": "rf",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
0.85
],
"scale": [
460950.5,
5.5,
1.0,
0.48611111111111116
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.3085714285714286
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.052751868150701646,
5.454545454545454,
0.0,
0.3085714285714286
],
"choice": [
0,
3
]
},
{
"features": [
1.8728887375108607,
-0.18181818181818182,
0.0,
-0.3771428571428571
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.14813955077605948,
-0.18181818181818182,
0.0,
-1.52
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.04543871847410948,
-0.18181818181818182,
0.0,
-0.3771428571428571
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
-0.018869705098486712,
-0.18181818181818182,
0.0,
-1.2914285714285714
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
1.8728887375108607,
1.4545454545454546,
0.0,
-0.6057142857142855
],
"choice": [
0,
3
]
},
{
"features": [
1.8728887375108607,
0.0,
0.0,
-1.5428571428571427
],
"choice": [
0,
2,
1,
3
]
},
{
"features": [
0.266278049378404,
0.0,
0.0,
0.3085714285714286
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.0,
0.0,
0.0,
0.3085714285714286
],
"choice": [
1,
0,
3
]
},
{
"features": [
-0.035114399485411125,
1.0909090909090908,
0.0,
0.3085714285714286
],
"choice": [
3
]
},
{
"features": [
-0.035114399485411125,
-0.36363636363636365,
0.0,
0.3085714285714286
],
"choice": [
0,
2,
1,
3
]
},
{
"features": [
-0.03929923061152987,
-0.36363636363636365,
0.0,
0.3085714285714286
],
"choice": [
0,
1,
3
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.3085714285714286
],
"choice": [
1,
3
]
},
{
"features": [
1.056425798431719,
1.4545454545454546,
0.0,
-0.7199999999999999
],
"choice": [
3
]
},
{
"features": [
0.6902650067631991,
-0.18181818181818182,
0.0,
-1.0628571428571427
],
"choice": [
1,
3
]
},
{
"features": [
1.92172044503694,
0.0,
0.0,
0.3085714285714286
],
"choice": [
3
]
},
{
"features": [
-0.050311259018050745,
6.909090909090909,
0.0,
0.3085714285714286
],
"choice": [
0,
2,
1,
3
]
}
],
"configsource": [
"houses",
"poker",
"bank-marketing",
"default"
]
}

223
flaml/default/suggest.py Normal file
View File

@ -0,0 +1,223 @@
import numpy as np
from sklearn.neighbors import NearestNeighbors
import logging
import pathlib
import json
from flaml.data import CLASSIFICATION, DataTransformer
from flaml.ml import get_estimator_class, get_classification_objective
LOCATION = pathlib.Path(__file__).parent.resolve()
logger = logging.getLogger(__name__)
CONFIG_PREDICTORS = {}
def meta_feature(task, X_train, y_train):
is_classification = task in CLASSIFICATION
n_row = X_train.shape[0]
n_feat = X_train.shape[1]
n_class = len(np.unique(y_train)) if is_classification else 0
percent_num = X_train.select_dtypes(include=np.number).shape[1] / n_feat
return (n_row, n_feat, n_class, percent_num)
def load_config_predictor(estimator_name, task, location=None):
key = f"{estimator_name}_{task}"
predictor = CONFIG_PREDICTORS.get(key)
if predictor:
return predictor
task = "multiclass" if task == "multi" else task
try:
location = location or LOCATION
with open(f"{location}/{estimator_name}/{task}.json", "r") as f:
CONFIG_PREDICTORS[key] = predictor = json.load(f)
except FileNotFoundError:
raise FileNotFoundError(
f"Portfolio has not been built for {estimator_name} on {task} task."
)
return predictor
def suggest_config(task, X, y, estimator_or_predictor, location=None, k=None):
"""Suggest a list of configs for the given task and training data.
The returned configs can be used as starting points for AutoML.fit().
`FLAML_sample_size` is removed from the configs.
"""
task = (
get_classification_objective(len(np.unique(y)))
if task == "classification"
else task
)
predictor = (
load_config_predictor(estimator_or_predictor, task, location)
if isinstance(estimator_or_predictor, str)
else estimator_or_predictor
)
assert predictor["version"] == "default"
prep = predictor["preprocessing"]
feature = meta_feature(task, X, y)
feature = (np.array(feature) - np.array(prep["center"])) / np.array(prep["scale"])
neighbors = predictor["neighbors"]
nn = NearestNeighbors(n_neighbors=1)
nn.fit([x["features"] for x in neighbors])
dist, ind = nn.kneighbors(feature.reshape(1, -1), return_distance=True)
logger.info(f"metafeature distance: {dist.item()}")
ind = int(ind.item())
choice = neighbors[ind]["choice"] if k is None else neighbors[ind]["choice"][:k]
configs = [predictor["portfolio"][x] for x in choice]
for config in configs:
hyperparams = config["hyperparameters"]
if hyperparams and "FLAML_sample_size" in hyperparams:
hyperparams.pop("FLAML_sample_size")
return configs
def suggest_learner(
task, X, y, estimator_or_predictor="all", estimator_list=None, location=None
):
"""Suggest best learner within estimator_list."""
configs = suggest_config(task, X, y, estimator_or_predictor, location)
if not estimator_list:
return configs[0]["class"]
for c in configs:
if c["class"] in estimator_list:
return c["class"]
return estimator_list[0]
def suggest_hyperparams(task, X, y, estimator_or_predictor, location=None):
"""Suggest hyperparameter configurations and an estimator class.
The configurations can be used to initialize the estimator class like lightgbm.LGBMRegressor.
Example:
```python
hyperparams, estimator_class = suggest_hyperparams("regression", X_train, y_train, "lgbm")
model = estimator_class(**hyperparams) # estimator_class is LGBMRegressor
model.fit(X_train, y_train)
```
Args:
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank',
'seq-classification', 'seq-regression'.
X: A dataframe of training data in shape n*m.
For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other
columns in the dataframe are assumed to be exogenous
variables (categorical or numeric).
y: A series of labels in shape n*1.
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
If a dict, it contains:
- "version": a str of the version number.
- "preprocessing": a dictionary containing:
* "center": a list of meta feature value offsets for normalization.
* "scale": a list of meta feature scales to normalize each dimension.
- "neighbors": a list of dictionaries. Each dictionary contains:
* "features": a list of the normalized meta features for a neighbor.
* "choice": an integer of the configuration id in the portfolio.
- "portfolio": a list of dictionaries, each corresponding to a configuration:
* "class": a str of the learner name.
* "hyperparameters": a dict of the config. The key "FLAML_sample_size" will be ignored.
location: (Optional) A str of the location containing mined portfolio file.
Only valid when the portfolio is a str, by default the location is flaml/default.
Returns:
hyperparams: A dict of the hyperparameter configurations.
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
"""
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
0
]
estimator = config["class"]
model_class = get_estimator_class(task, estimator)
hyperparams = config["hyperparameters"]
model = model_class(task=task, **hyperparams)
estimator_class = model.estimator_class
hyperparams = hyperparams and model.params
return hyperparams, estimator_class
def preprocess_and_suggest_hyperparams(
task,
X,
y,
estimator_or_predictor,
location=None,
):
"""Preprocess the data and suggest hyperparameters.
Example:
```python
hyperparams, estimator_class, X, y, feature_transformer, label_transformer = \
preprocess_and_suggest_hyperparams("classification", X_train, y_train, "xgb_limitdepth")
model = estimator_class(**hyperparams) # estimator_class is XGBClassifier
model.fit(X, y)
X_test = feature_transformer.transform(X_test)
y_pred = label_transformer.inverse_transform(pd.Series(model.predict(X_test).astype(int)))
```
Args:
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank',
'seq-classification', 'seq-regression'.
X: A dataframe of training data in shape n*m.
For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other
columns in the dataframe are assumed to be exogenous
variables (categorical or numeric).
y: A series of labels in shape n*1.
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
"choose_xgb" means choosing between xgb_limitdepth and xgboost.
If a dict, it contains:
- "version": a str of the version number.
- "preprocessing": a dictionary containing:
* "center": a list of meta feature value offsets for normalization.
* "scale": a list of meta feature scales to normalize each dimension.
- "neighbors": a list of dictionaries. Each dictionary contains:
* "features": a list of the normalized meta features for a neighbor.
* "choice": a integer of the configuration id in the portfolio.
- "portfolio": a list of dictionaries, each corresponding to a configuration:
* "class": a str of the learner name.
* "hyperparameters": a dict of the config. They key "FLAML_sample_size" will be ignored.
location: (Optional) A str of the location containing mined portfolio file.
Only valid when the portfolio is a str, by default the location is flaml/default.
Returns:
hyperparams: A dict of the hyperparameter configurations.
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
X: the preprocessed X.
y: the preprocessed y.
feature_transformer: a data transformer that can be applied to X_test.
label_transformer: a label transformer that can be applied to y_test.
"""
dt = DataTransformer()
X, y = dt.fit_transform(X, y, task)
if "choose_xgb" == estimator_or_predictor:
# choose between xgb_limitdepth and xgboost
estimator_or_predictor = suggest_learner(
task,
X,
y,
estimator_list=["xgb_limitdepth", "xgboost"],
location=location,
)
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
0
]
estimator = config["class"]
model_class = get_estimator_class(task, estimator)
hyperparams = config["hyperparameters"]
model = model_class(task=task, **hyperparams)
estimator_class = model.estimator_class
X = model._preprocess(X)
hyperparams = hyperparams and model.params
class AutoMLTransformer:
def transform(self, X):
return model._preprocess(dt.transform(X))
transformer = AutoMLTransformer()
return hyperparams, estimator_class, X, y, transformer, dt.label_transformer

View File

@ -0,0 +1,326 @@
{
"version": "default",
"portfolio": [
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 877,
"max_depth": 11,
"min_child_weight": 0.6205465771093738,
"learning_rate": 0.013622118381700795,
"subsample": 0.566692814245426,
"colsample_bylevel": 0.8865741642101924,
"colsample_bytree": 1.0,
"reg_alpha": 0.01386336444764391,
"reg_lambda": 3.113947886074155
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 5457,
"max_depth": 6,
"min_child_weight": 0.19978269031877885,
"learning_rate": 0.003906732665632749,
"subsample": 0.8207785234496902,
"colsample_bylevel": 0.8438751931476698,
"colsample_bytree": 0.42202862997585794,
"reg_alpha": 0.017372558844968737,
"reg_lambda": 0.03977802121721031
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 3526,
"max_depth": 13,
"min_child_weight": 0.0994486725676356,
"learning_rate": 0.0009765625,
"subsample": 0.46123759274652554,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.4498813776397717,
"reg_alpha": 0.002599398546499414,
"reg_lambda": 0.028336396854402753
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
18000.0,
21.0,
2.0,
0.7565217391304347
],
"scale": [
39542.5,
143.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.2745779857115762,
1.0419580419580419,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
3
]
},
{
"features": [
11.821306189542897,
-0.0979020979020979,
0.0,
-0.5739130434782609
],
"choice": [
0,
2,
3
]
},
{
"features": [
0.290624012138838,
-0.08391608391608392,
0.0,
-1.3239130434782607
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
-0.4395018018587596,
-0.04895104895104895,
0.0,
-0.5739130434782609
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.68280963520263,
1.4615384615384615,
0.0,
0.0
],
"choice": [
1,
2,
0,
3
]
},
{
"features": [
0.65643295188721,
-0.04895104895104895,
0.0,
-0.5739130434782609
],
"choice": [
1,
3
]
},
{
"features": [
0.5737876967819435,
-0.03496503496503497,
0.0,
-0.5582880434782608
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
-0.4381867610798508,
-0.11888111888111888,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
3
]
},
{
"features": [
-0.3318960611999747,
11.293706293706293,
0.0,
0.3865087169129372
],
"choice": [
1,
0,
2,
3
]
},
{
"features": [
-0.432446102294999,
-0.006993006993006993,
0.0,
-0.7114130434782607
],
"choice": [
0,
1,
3
]
},
{
"features": [
0.0,
29.895104895104897,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
2,
3
]
},
{
"features": [
1.7764430675855092,
0.04895104895104895,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
2,
3
]
},
{
"features": [
-0.3873047986343807,
0.8601398601398601,
0.0,
-1.2266908212560386
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.40720743503824997,
0.0,
0.0,
0.4260869565217391
],
"choice": [
1,
0,
2,
3
]
},
{
"features": [
-0.38247455269646585,
0.1048951048951049,
0.0,
-1.3239130434782607
],
"choice": [
0,
1,
3
]
},
{
"features": [
0.32921540115066067,
0.6783216783216783,
0.0,
-0.003997789240972687
],
"choice": [
0,
1,
3
]
},
{
"features": [
-0.3322248213947019,
-0.11188811188811189,
0.0,
0.4260869565217391
],
"choice": [
0,
3
]
},
{
"features": [
0.0,
29.895104895104897,
0.0,
0.4260869565217391
],
"choice": [
0,
1,
3
]
},
{
"features": [
-0.3385977113232598,
-0.006993006993006993,
0.0,
0.4260869565217391
],
"choice": [
1,
3
]
}
],
"configsource": [
"Jannis",
"adult",
"Amazon_employee_access",
"default"
]
}

View File

@ -0,0 +1,354 @@
{
"version": "default",
"portfolio": [
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 1191,
"max_depth": 13,
"min_child_weight": 6.4007885677724605,
"learning_rate": 0.037622775650237326,
"subsample": 1.0,
"colsample_bylevel": 0.3697773165627811,
"colsample_bytree": 0.813871237069598,
"reg_alpha": 0.0009765625,
"reg_lambda": 1.075702708240612
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 1499,
"max_depth": 11,
"min_child_weight": 0.07563529776156448,
"learning_rate": 0.039042609221240955,
"subsample": 0.7832981935783824,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0009765625,
"reg_lambda": 23.513066752844153
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 313,
"max_depth": 7,
"min_child_weight": 30.424259012001368,
"learning_rate": 0.08466828646360688,
"subsample": 0.9897083979469301,
"colsample_bylevel": 0.6769490906308069,
"colsample_bytree": 1.0,
"reg_alpha": 0.0014544085935366477,
"reg_lambda": 34.09911172306857
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 566,
"max_depth": 13,
"min_child_weight": 0.013176186839973599,
"learning_rate": 0.09285619488896565,
"subsample": 0.5897287493640815,
"colsample_bylevel": 0.923664288991597,
"colsample_bytree": 0.8244714790646485,
"reg_alpha": 0.023484974838756726,
"reg_lambda": 0.5690298249126402,
"FLAML_sample_size": 470620
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 971,
"max_depth": 8,
"min_child_weight": 0.0044052948947322645,
"learning_rate": 0.15171239415469703,
"subsample": 0.8340342805529243,
"colsample_bylevel": 0.9489310919814007,
"colsample_bytree": 0.022724724669028674,
"reg_alpha": 0.0009765625,
"reg_lambda": 0.0025897714798936954
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 464,
"max_depth": 2,
"min_child_weight": 0.0068282719220722,
"learning_rate": 0.07962498837600937,
"subsample": 0.47139986510869014,
"colsample_bylevel": 0.4814471959023239,
"colsample_bytree": 0.6050207253592859,
"reg_alpha": 0.0010290828959872173,
"reg_lambda": 0.0103104214002687
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 1799,
"max_depth": 3,
"min_child_weight": 0.0010034151843327725,
"learning_rate": 0.03453775119035777,
"subsample": 0.31322065037892344,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.2219038021462818,
"reg_alpha": 0.03885163786709896,
"reg_lambda": 1.1077175359756786
}
}
],
"preprocessing": {
"center": [
24668.5,
54.0,
7.0,
1.0
],
"scale": [
57198.0,
770.5,
6.0,
1.0
]
},
"neighbors": [
{
"features": [
8.710820308402392,
0.0,
0.0,
-0.8148148148148149
],
"choice": [
0,
3,
4
]
},
{
"features": [
0.6701545508584216,
0.9474367293964958,
0.5,
0.0
],
"choice": [
0,
2,
7,
4
]
},
{
"features": [
0.5945575020105598,
-0.03504218040233614,
15.5,
0.0
],
"choice": [
0,
2,
7,
6,
3,
4
]
},
{
"features": [
0.8862285394594217,
0.0,
-0.5,
0.0
],
"choice": [
2,
4
]
},
{
"features": [
-0.2739344033008147,
9.2744970798183,
0.5,
0.0
],
"choice": [
0,
2,
7,
6,
4
]
},
{
"features": [
0.48133676002657433,
-0.058403634003893576,
0.0,
0.0
],
"choice": [
1,
4
]
},
{
"features": [
0.4862145529563971,
0.16353017521090202,
0.5,
0.0
],
"choice": [
0,
1,
4
]
},
{
"features": [
-0.40409629707332423,
-0.06229720960415315,
-0.5,
-1.0
],
"choice": [
4
]
},
{
"features": [
-0.41428896115248787,
1.0408825438027256,
0.3333333333333333,
0.0
],
"choice": [
5,
3,
1,
7,
6,
4
]
},
{
"features": [
0.6317091506696039,
-0.015574302401038288,
-0.6666666666666666,
-1.0
],
"choice": [
1,
0,
3,
4
]
},
{
"features": [
-0.2739344033008147,
2.5256327060350423,
-0.3333333333333333,
0.0
],
"choice": [
0,
5,
3,
7,
4
]
},
{
"features": [
-0.30168012867582783,
0.9682024659312135,
0.0,
0.0
],
"choice": [
1,
3,
4
]
},
{
"features": [
0.2739344033008147,
-0.06229720960415315,
-0.6666666666666666,
0.0
],
"choice": [
4
]
},
{
"features": [
-0.39981293052204625,
0.21025308241401688,
0.5,
0.0
],
"choice": [
7,
4
]
},
{
"features": [
-0.3949351375922235,
-0.04931862426995458,
0.0,
0.0
],
"choice": [
6,
0,
7,
1,
3,
4
]
},
{
"features": [
-0.41797790132522117,
-0.04672290720311486,
-0.5,
0.0
],
"choice": [
6,
1,
7,
2,
0,
3,
4
]
}
],
"configsource": [
"guillermo",
"connect-4",
"Helena",
"Covertype",
"default",
"cnae-9",
"vehicle",
"mfeat-factors"
]
}

View File

@ -0,0 +1,347 @@
{
"version": "default",
"portfolio": [
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 4923,
"max_depth": 12,
"min_child_weight": 0.7625732991776795,
"learning_rate": 0.009239549681857523,
"subsample": 0.8193164619615052,
"colsample_bylevel": 0.7785754297307862,
"colsample_bytree": 0.788491073979525,
"reg_alpha": 0.002282749364196872,
"reg_lambda": 131.2194560716441
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 2111,
"max_depth": 9,
"min_child_weight": 3.405822241186395,
"learning_rate": 0.005804247705198151,
"subsample": 0.37848422782052427,
"colsample_bylevel": 0.8228350674288559,
"colsample_bytree": 0.8813475713109656,
"reg_alpha": 0.009761356063132219,
"reg_lambda": 13.187783936727843,
"FLAML_sample_size": 810000
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 1499,
"max_depth": 11,
"min_child_weight": 0.07563529776156448,
"learning_rate": 0.039042609221240955,
"subsample": 0.7832981935783824,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0009765625,
"reg_lambda": 23.513066752844153
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 19722,
"max_depth": 11,
"min_child_weight": 6.46800727978204,
"learning_rate": 0.0010837437950202355,
"subsample": 0.49509562408032115,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.8826299329274134,
"reg_alpha": 0.23887161121959208,
"reg_lambda": 15.163773888208217
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {
"n_estimators": 544,
"max_depth": 12,
"min_child_weight": 79.32555867011995,
"learning_rate": 0.010128107120014433,
"subsample": 0.9799974977817297,
"colsample_bylevel": 0.881815418056542,
"colsample_bytree": 0.9718556912196423,
"reg_alpha": 72.63148950428749,
"reg_lambda": 1.4601415712058006
}
},
{
"class": "xgb_limitdepth",
"hyperparameters": {}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
1.0
],
"scale": [
140856.0,
1.0,
1.0,
0.4444444444444444
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
4,
5
]
},
{
"features": [
-0.17263020389617767,
30.0,
0.0,
0.0
],
"choice": [
2,
0,
5
]
},
{
"features": [
6.129018288180837,
-1.0,
0.0,
-0.7500000000000001
],
"choice": [
1,
0,
2,
4,
5
]
},
{
"features": [
0.48478588061566424,
-1.0,
0.0,
-2.0
],
"choice": [
4,
1,
3,
5
]
},
{
"features": [
-0.14869796103822344,
-1.0,
0.0,
-0.7500000000000001
],
"choice": [
4,
1,
3,
0,
5
]
},
{
"features": [
-0.06175100812176975,
-1.0,
0.0,
-1.7500000000000002
],
"choice": [
4,
1,
5
]
},
{
"features": [
6.129018288180837,
8.0,
0.0,
-1.0
],
"choice": [
0,
2,
1,
4,
5
]
},
{
"features": [
6.129018288180837,
0.0,
0.0,
-2.0250000000000004
],
"choice": [
1,
0,
2,
4,
5
]
},
{
"features": [
0.8713934798659624,
0.0,
0.0,
0.0
],
"choice": [
4,
5
]
},
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
1,
3,
0,
2,
5
]
},
{
"features": [
-0.11491168285341058,
6.0,
0.0,
0.0
],
"choice": [
3,
1,
0,
2,
4,
5
]
},
{
"features": [
-0.11491168285341058,
-2.0,
0.0,
0.0
],
"choice": [
0,
1,
3,
2,
4,
5
]
},
{
"features": [
-0.1286065201340376,
-2.0,
0.0,
0.0
],
"choice": [
3,
0,
2,
1,
4,
5
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.6750000000000002
],
"choice": [
2,
3,
1,
0,
5
]
},
{
"features": [
6.288819787584483,
0.0,
0.0,
0.0
],
"choice": [
2,
0,
1,
5
]
},
{
"features": [
-0.16464332367808257,
38.0,
0.0,
0.0
],
"choice": [
0,
2,
3,
1,
5
]
},
{
"features": [
-0.15343329357641847,
-7.0,
0.0,
-1.5000000000000002
],
"choice": [
3,
5
]
}
],
"configsource": [
"higgs",
"bng_pharynx",
"connect-4",
"house_16H",
"bng_echomonths",
"default"
]
}

View File

@ -0,0 +1,372 @@
{
"version": "default",
"portfolio": [
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 319,
"max_leaves": 1312,
"min_child_weight": 0.001,
"learning_rate": 0.01872379806270421,
"subsample": 0.6890079660561895,
"colsample_bylevel": 0.7551225121854014,
"colsample_bytree": 0.7860755604500558,
"reg_alpha": 0.17028752704343114,
"reg_lambda": 1.4375743264564231
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 7902,
"max_leaves": 49,
"min_child_weight": 0.038063497848955595,
"learning_rate": 0.0009765625,
"subsample": 0.9357800695141445,
"colsample_bylevel": 0.47031312177249246,
"colsample_bytree": 0.9053386579586192,
"reg_alpha": 1.5286102593845932,
"reg_lambda": 18.96811296717419
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 13499,
"max_leaves": 60,
"min_child_weight": 0.008494221584011285,
"learning_rate": 0.006955765856675575,
"subsample": 0.5965241023754743,
"colsample_bylevel": 0.590641168068946,
"colsample_bytree": 1.0,
"reg_alpha": 0.2522240954379289,
"reg_lambda": 5.351809144038808
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 591,
"max_leaves": 16651,
"min_child_weight": 0.03356567864689129,
"learning_rate": 0.002595066436678338,
"subsample": 0.9114132805513452,
"colsample_bylevel": 0.9503441844594458,
"colsample_bytree": 0.5703338448066768,
"reg_alpha": 0.010405212349127894,
"reg_lambda": 0.05352660657433639
}
}
],
"preprocessing": {
"center": [
18000.0,
28.0,
2.0,
0.7565217391304347
],
"scale": [
42124.0,
130.0,
1.0,
0.5714285714285715
]
},
"neighbors": [
{
"features": [
1.196467571930491,
1.0923076923076922,
0.0,
0.4260869565217391
],
"choice": [
0,
3,
2,
1
]
},
{
"features": [
11.096856898680088,
-0.16153846153846155,
0.0,
-0.5739130434782609
],
"choice": [
0,
2,
3,
1
]
},
{
"features": [
8.658152122305575,
0.38461538461538464,
0.0,
-0.7405797101449274
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.27281359794891274,
-0.14615384615384616,
0.0,
-1.3239130434782607
],
"choice": [
3,
0,
2,
1
]
},
{
"features": [
-0.4125676573924604,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
3,
1,
0,
2
]
},
{
"features": [
0.6409647706770487,
1.5538461538461539,
0.0,
0.0
],
"choice": [
1,
0,
2,
3
]
},
{
"features": [
2.3515573069983855,
0.16923076923076924,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.6162045389801538,
-0.1076923076923077,
0.0,
-0.5739130434782609
],
"choice": [
1,
0,
2,
3
]
},
{
"features": [
0.5386240622922799,
-0.09230769230769231,
0.0,
-0.5582880434782608
],
"choice": [
0,
1,
3,
2
]
},
{
"features": [
-0.41133320672300827,
-0.18461538461538463,
0.0,
0.4260869565217391
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
-0.31155635742094767,
12.36923076923077,
0.0,
0.3865087169129372
],
"choice": [
2,
1,
0,
3
]
},
{
"features": [
-0.40594435476213087,
-0.06153846153846154,
0.0,
-0.7114130434782607
],
"choice": [
0,
1,
2,
3
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
0
]
},
{
"features": [
1.6675766783781218,
0.0,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.36356946158959264,
0.8923076923076924,
0.0,
-1.2266908212560386
],
"choice": [
3,
1,
0,
2
]
},
{
"features": [
-0.38225239768303104,
-0.05384615384615385,
0.0,
0.4260869565217391
],
"choice": [
3,
2,
0,
1
]
},
{
"features": [
-0.3590352293229513,
0.06153846153846154,
0.0,
-1.3239130434782607
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.3090399772101415,
0.6923076923076923,
0.0,
-0.003997789240972687
],
"choice": [
2,
0,
3,
1
]
},
{
"features": [
-0.3118649700883107,
-0.17692307692307693,
0.0,
0.4260869565217391
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
0.0,
32.83076923076923,
0.0,
0.4260869565217391
],
"choice": [
0,
3
]
},
{
"features": [
-0.3178473079479632,
-0.06153846153846154,
0.0,
0.4260869565217391
],
"choice": [
0,
3,
1,
2
]
}
],
"configsource": [
"fabert",
"bng_lowbwt",
"pol",
"Amazon_employee_access"
]
}

View File

@ -0,0 +1,509 @@
{
"version": "default",
"portfolio": [
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 392,
"max_leaves": 46,
"min_child_weight": 0.20655273911443411,
"learning_rate": 0.08039123467849849,
"subsample": 0.6482821473906787,
"colsample_bylevel": 0.5448604029329934,
"colsample_bytree": 0.4211786481671673,
"reg_alpha": 0.029040644754759502,
"reg_lambda": 4.60220206538413
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 6357,
"max_leaves": 206,
"min_child_weight": 1.9495322566288034,
"learning_rate": 0.0068766724195393905,
"subsample": 0.9451618245005704,
"colsample_bylevel": 0.9030482524943064,
"colsample_bytree": 0.9278972006416252,
"reg_alpha": 0.01857648400903689,
"reg_lambda": 6.021166480604588,
"FLAML_sample_size": 344444
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 1067,
"max_leaves": 55,
"min_child_weight": 1.578700876556201,
"learning_rate": 0.01882776721912098,
"subsample": 0.6486829588043383,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.6470978147570122,
"reg_alpha": 0.2623396481373557,
"reg_lambda": 12.320026567378322
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 765,
"max_leaves": 6,
"min_child_weight": 0.001,
"learning_rate": 1.0,
"subsample": 0.9833803894285497,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0012553728257619922,
"reg_lambda": 0.03280542610559108
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 2866,
"max_leaves": 2954,
"min_child_weight": 0.003652484923138387,
"learning_rate": 0.006320484540131336,
"subsample": 0.45886345839532916,
"colsample_bylevel": 0.4143419565729296,
"colsample_bytree": 0.9117641224108227,
"reg_alpha": 0.2873746517375349,
"reg_lambda": 17.04964039639045
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 512,
"max_leaves": 3194,
"min_child_weight": 0.004561511536080627,
"learning_rate": 0.05288849444758447,
"subsample": 0.8653058105000044,
"colsample_bylevel": 0.8833689901424637,
"colsample_bytree": 0.9505209943737727,
"reg_alpha": 0.0037017878164852017,
"reg_lambda": 2.1872397928745113,
"FLAML_sample_size": 470620
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 335,
"max_leaves": 37,
"min_child_weight": 0.0013851539632487603,
"learning_rate": 0.2593737370075479,
"subsample": 0.9810091528571387,
"colsample_bylevel": 0.9484250613084422,
"colsample_bytree": 0.192606132199437,
"reg_alpha": 0.10585986776049093,
"reg_lambda": 0.017684465384509407
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 8315,
"max_leaves": 4,
"min_child_weight": 0.7673654415794792,
"learning_rate": 0.002432260930606481,
"subsample": 0.8476000618302348,
"colsample_bylevel": 0.8815698870579244,
"colsample_bytree": 0.7057137578225323,
"reg_alpha": 0.0016838090603716895,
"reg_lambda": 0.28815989841009226
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 319,
"max_leaves": 1312,
"min_child_weight": 0.001,
"learning_rate": 0.01872379806270421,
"subsample": 0.6890079660561895,
"colsample_bylevel": 0.7551225121854014,
"colsample_bytree": 0.7860755604500558,
"reg_alpha": 0.17028752704343114,
"reg_lambda": 1.4375743264564231
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 5739,
"max_leaves": 5,
"min_child_weight": 0.1359602026207002,
"learning_rate": 0.14496176867613397,
"subsample": 0.864897070662231,
"colsample_bylevel": 0.01,
"colsample_bytree": 0.9394057513384305,
"reg_alpha": 0.001103317921178771,
"reg_lambda": 0.1655504349283218
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 3369,
"max_leaves": 23,
"min_child_weight": 0.006136645605168392,
"learning_rate": 0.05726537983358939,
"subsample": 1.0,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.40981311572427176,
"reg_lambda": 4.343877111132155
}
}
],
"preprocessing": {
"center": [
24668.5,
54.0,
7.0,
1.0
],
"scale": [
57198.0,
770.5,
6.0,
1.0
]
},
"neighbors": [
{
"features": [
8.710820308402392,
0.0,
0.0,
-0.8148148148148149
],
"choice": [
5,
4,
1,
8,
10,
2,
0,
6,
9,
7,
3
]
},
{
"features": [
0.6701545508584216,
0.9474367293964958,
0.5,
0.0
],
"choice": [
0,
2,
3,
6,
10,
8,
9
]
},
{
"features": [
0.5945575020105598,
-0.03504218040233614,
15.5,
0.0
],
"choice": [
0,
2,
3,
7,
8,
5,
10,
9,
6
]
},
{
"features": [
0.8862285394594217,
0.0,
-0.5,
0.0
],
"choice": [
2,
8,
0,
4,
10,
1,
9,
6,
7,
5,
3
]
},
{
"features": [
-0.2739344033008147,
9.2744970798183,
0.5,
0.0
],
"choice": [
0,
3,
6
]
},
{
"features": [
0.48133676002657433,
-0.058403634003893576,
0.0,
0.0
],
"choice": [
10,
3,
0,
5,
1,
7,
6,
2,
4,
9,
8
]
},
{
"features": [
0.4862145529563971,
0.16353017521090202,
0.5,
0.0
],
"choice": [
1,
0,
2,
3,
10,
8,
6,
5,
9,
7
]
},
{
"features": [
-0.40409629707332423,
-0.06229720960415315,
-0.5,
-1.0
],
"choice": [
3,
9,
5,
10,
1,
7,
2,
8,
4,
6,
0
]
},
{
"features": [
-0.41428896115248787,
1.0408825438027256,
0.3333333333333333,
0.0
],
"choice": [
6,
9,
0,
5,
10,
4,
8,
7,
1,
2,
3
]
},
{
"features": [
0.6317091506696039,
-0.015574302401038288,
-0.6666666666666666,
-1.0
],
"choice": [
1,
10,
4,
5,
8,
6,
2,
0,
3,
9,
7
]
},
{
"features": [
-0.2739344033008147,
2.5256327060350423,
-0.3333333333333333,
0.0
],
"choice": [
0,
2,
3,
9,
6,
10,
5,
8,
7
]
},
{
"features": [
-0.30168012867582783,
0.9682024659312135,
0.0,
0.0
],
"choice": [
8,
4,
0,
2,
10,
1,
5,
6,
9,
7,
3
]
},
{
"features": [
0.2739344033008147,
-0.06229720960415315,
-0.6666666666666666,
0.0
],
"choice": [
10,
3,
9,
1,
4,
2,
8,
5,
0,
7,
6
]
},
{
"features": [
-0.39981293052204625,
0.21025308241401688,
0.5,
0.0
],
"choice": [
0,
9,
1,
7,
5,
10,
6,
2,
4,
8,
3
]
},
{
"features": [
-0.3949351375922235,
-0.04931862426995458,
0.0,
0.0
],
"choice": [
0,
2,
1,
7,
8,
4,
5,
6,
10,
9,
3
]
},
{
"features": [
-0.41797790132522117,
-0.04672290720311486,
-0.5,
0.0
],
"choice": [
7,
4,
8,
2,
0,
5,
10,
1,
6,
9,
3
]
}
],
"configsource": [
"segment",
"Albert",
"Helena",
"car",
"house_8L",
"Covertype",
"cnae-9",
"KDDCup09_appetency",
"fabert",
"dilbert",
"jungle_chess_2pcs_raw_endgame_complete"
]
}

View File

@ -0,0 +1,308 @@
{
"version": "default",
"portfolio": [
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 6357,
"max_leaves": 206,
"min_child_weight": 1.9495322566288034,
"learning_rate": 0.0068766724195393905,
"subsample": 0.9451618245005704,
"colsample_bylevel": 0.9030482524943064,
"colsample_bytree": 0.9278972006416252,
"reg_alpha": 0.01857648400903689,
"reg_lambda": 6.021166480604588,
"FLAML_sample_size": 344444
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 23045,
"max_leaves": 247,
"min_child_weight": 0.004319397499079841,
"learning_rate": 0.0032914413473281215,
"subsample": 0.7334190564433234,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.03514226467919635,
"reg_lambda": 1.2679661021665851
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 1899,
"max_leaves": 59,
"min_child_weight": 0.013389019900720164,
"learning_rate": 0.0028943401472847964,
"subsample": 0.7808944208233943,
"colsample_bylevel": 1.0,
"colsample_bytree": 0.9999355357362375,
"reg_alpha": 0.7905117773932884,
"reg_lambda": 2.916897119216104
}
},
{
"class": "xgboost",
"hyperparameters": {
"n_estimators": 5611,
"max_leaves": 61,
"min_child_weight": 0.01070518287797225,
"learning_rate": 0.005485127037677848,
"subsample": 0.4713518256961299,
"colsample_bylevel": 0.9777437906530106,
"colsample_bytree": 0.9519335125615331,
"reg_alpha": 0.03621564207188963,
"reg_lambda": 1.8045765669466283
}
}
],
"preprocessing": {
"center": [
36691.0,
10.0,
0.0,
1.0
],
"scale": [
324551.25,
2.5,
1.0,
0.36111111111111116
]
},
"neighbors": [
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
2,
3,
0,
1
]
},
{
"features": [
-0.07492191140844474,
12.0,
0.0,
0.0
],
"choice": [
0,
1,
3,
2
]
},
{
"features": [
2.6600082421497375,
-0.4,
0.0,
-0.923076923076923
],
"choice": [
3,
0,
2,
1
]
},
{
"features": [
0.21039820367353385,
-0.4,
0.0,
-2.4615384615384612
],
"choice": [
3,
2,
0,
1
]
},
{
"features": [
-0.06453526215043079,
-0.4,
0.0,
-0.923076923076923
],
"choice": [
2,
3,
0,
1
]
},
{
"features": [
-0.026800081651203008,
-0.4,
0.0,
-2.1538461538461537
],
"choice": [
2,
3,
0,
1
]
},
{
"features": [
2.6600082421497375,
3.2,
0.0,
-1.2307692307692306
],
"choice": [
1,
0,
3,
2
]
},
{
"features": [
2.6600082421497375,
0.0,
0.0,
-2.492307692307692
],
"choice": [
3,
0,
2,
1
]
},
{
"features": [
0.3781868040871819,
0.0,
0.0,
0.0
],
"choice": [
2,
3,
0,
1
]
},
{
"features": [
0.0,
0.0,
0.0,
0.0
],
"choice": [
3,
0,
1,
2
]
},
{
"features": [
-0.04987193856132121,
2.4,
0.0,
0.0
],
"choice": [
3,
1,
0,
2
]
},
{
"features": [
-0.04987193856132121,
-0.8,
0.0,
0.0
],
"choice": [
2,
0,
1,
3
]
},
{
"features": [
-0.0558155299047531,
-0.8,
0.0,
0.0
],
"choice": [
0,
3,
1,
2
]
},
{
"features": [
0.0,
0.0,
0.0,
-0.8307692307692308
],
"choice": [
1,
0,
3,
2
]
},
{
"features": [
2.729362465866331,
0.0,
0.0,
0.0
],
"choice": [
1,
0,
3,
2
]
},
{
"features": [
-0.07145558675247746,
15.2,
0.0,
0.0
],
"choice": [
0,
3,
1,
2
]
}
],
"configsource": [
"Albert",
"mv",
"bng_echomonths",
"house_16H"
]
}

View File

@ -784,6 +784,7 @@ class LGBMEstimator(BaseEstimator):
ITER_HP = "n_estimators"
HAS_CALLBACK = True
DEFAULT_ITER = 100
@classmethod
def search_space(cls, data_size, **params):
@ -887,7 +888,7 @@ class LGBMEstimator(BaseEstimator):
def fit(self, X_train, y_train, budget=None, **kwargs):
start_time = time.time()
deadline = start_time + budget if budget else np.inf
n_iter = self.params[self.ITER_HP]
n_iter = self.params.get(self.ITER_HP, self.DEFAULT_ITER)
trained = False
if not self.HAS_CALLBACK:
mem0 = psutil.virtual_memory().available if psutil is not None else 1
@ -996,6 +997,8 @@ class LGBMEstimator(BaseEstimator):
class XGBoostEstimator(SKLearnEstimator):
"""The class for tuning XGBoost regressor, not using sklearn API."""
DEFAULT_ITER = 10
@classmethod
def search_space(cls, data_size, **params):
upper = min(32768, int(data_size[0]))
@ -1146,6 +1149,8 @@ class XGBoostEstimator(SKLearnEstimator):
class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
"""The class for tuning XGBoost with unlimited depth, using sklearn API."""
DEFAULT_ITER = 10
@classmethod
def search_space(cls, data_size, **params):
space = XGBoostEstimator.search_space(data_size)
@ -1352,6 +1357,7 @@ class CatBoostEstimator(BaseEstimator):
"""The class for tuning CatBoost."""
ITER_HP = "n_estimators"
DEFAULT_ITER = 1000
@classmethod
def search_space(cls, data_size, **params):

View File

@ -0,0 +1,13 @@
Dataset,NumberOfInstances,NumberOfFeatures,NumberOfClasses,PercentageOfNumericFeatures
2dplanes,36691,10,0,1.0
adult,43957,14,2,0.42857142857142855
Airlines,485444,7,2,0.42857142857142855
Albert,382716,78,2,0.3333333333333333
Amazon_employee_access,29492,9,2,0.0
bng_breastTumor,104976,9,0,0.1111111111111111
bng_pbc,900000,18,0,0.5555555555555556
car,1555,6,4,0.0
connect-4,60801,42,3,0.0
dilbert,9000,2000,5,1.0
Dionis,374569,60,355,1.0
poker,922509,10,0,1.0
1 Dataset NumberOfInstances NumberOfFeatures NumberOfClasses PercentageOfNumericFeatures
2 2dplanes 36691 10 0 1.0
3 adult 43957 14 2 0.42857142857142855
4 Airlines 485444 7 2 0.42857142857142855
5 Albert 382716 78 2 0.3333333333333333
6 Amazon_employee_access 29492 9 2 0.0
7 bng_breastTumor 104976 9 0 0.1111111111111111
8 bng_pbc 900000 18 0 0.5555555555555556
9 car 1555 6 4 0.0
10 connect-4 60801 42 3 0.0
11 dilbert 9000 2000 5 1.0
12 Dionis 374569 60 355 1.0
13 poker 922509 10 0 1.0

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 16, "max_features": 1.0, "max_leaves": 54}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 8194, "criterion": "gini", "FLAML_sample_size": 436899}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1733, "max_features": 0.3841826938360253, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 812, "max_features": 1.0, "max_leaves": 1474, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 859, "max_features": 1.0, "max_leaves": 967, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 90, "max_features": 1.0, "max_leaves": 1301, "FLAML_sample_size": 94478}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1211, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 810000}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 333, "max_features": 1.0, "max_leaves": 201, "criterion": "gini"}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 229, "max_features": 0.5372053700721111, "max_leaves": 11150, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 346, "max_features": 1.0, "max_leaves": 1007, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1416, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}

View File

@ -0,0 +1,142 @@
task,fold,type,result,params
2dplanes,0,regression,0.946503,{'_modeljson': 'et/2dplanes.json'}
2dplanes,0,regression,0.945047,{'_modeljson': 'et/adult.json'}
2dplanes,0,regression,0.933571,{'_modeljson': 'et/Airlines.json'}
2dplanes,0,regression,0.919021,{'_modeljson': 'et/Albert.json'}
2dplanes,0,regression,0.944532,{'_modeljson': 'et/Amazon_employee_access.json'}
2dplanes,0,regression,0.94471,{'_modeljson': 'et/bng_breastTumor.json'}
2dplanes,0,regression,0.914912,{'_modeljson': 'et/bng_pbc.json'}
2dplanes,0,regression,0.946045,{'_modeljson': 'et/car.json'}
2dplanes,0,regression,0.935777,{'_modeljson': 'et/connect-4.json'}
2dplanes,0,regression,0.91501,{'_modeljson': 'et/default.json'}
2dplanes,0,regression,0.94497,{'_modeljson': 'et/dilbert.json'}
2dplanes,0,regression,0.914907,{'_modeljson': 'et/poker.json'}
adult,0,binary,0.902771,{'_modeljson': 'et/2dplanes.json'}
adult,0,binary,0.919086,{'_modeljson': 'et/adult.json'}
adult,0,binary,0.906742,{'_modeljson': 'et/Airlines.json'}
adult,0,binary,0.897039,{'_modeljson': 'et/Albert.json'}
adult,0,binary,0.919317,{'_modeljson': 'et/Amazon_employee_access.json'}
adult,0,binary,0.918404,{'_modeljson': 'et/bng_breastTumor.json'}
adult,0,binary,0.895193,{'_modeljson': 'et/bng_pbc.json'}
adult,0,binary,0.912965,{'_modeljson': 'et/car.json'}
adult,0,binary,0.904228,{'_modeljson': 'et/connect-4.json'}
adult,0,binary,0.893933,{'_modeljson': 'et/default.json'}
adult,0,binary,0.918539,{'_modeljson': 'et/dilbert.json'}
adult,0,binary,0.895813,{'_modeljson': 'et/poker.json'}
Airlines,0,binary,0.683928,{'_modeljson': 'et/2dplanes.json'}
Airlines,0,binary,0.709673,{'_modeljson': 'et/adult.json'}
Airlines,0,binary,0.724391,{'_modeljson': 'et/Airlines.json'}
Airlines,0,binary,0.707411,{'_modeljson': 'et/Albert.json'}
Airlines,0,binary,0.713548,{'_modeljson': 'et/Amazon_employee_access.json'}
Airlines,0,binary,0.712774,{'_modeljson': 'et/bng_breastTumor.json'}
Airlines,0,binary,0.708477,{'_modeljson': 'et/bng_pbc.json'}
Airlines,0,binary,0.695604,{'_modeljson': 'et/car.json'}
Airlines,0,binary,0.719631,{'_modeljson': 'et/connect-4.json'}
Airlines,0,binary,0.619025,{'_modeljson': 'et/default.json'}
Airlines,0,binary,0.710038,{'_modeljson': 'et/dilbert.json'}
Airlines,0,binary,0.708628,{'_modeljson': 'et/poker.json'}
Albert,0,binary,0.707126,{'_modeljson': 'et/2dplanes.json'}
Albert,0,binary,0.727819,{'_modeljson': 'et/adult.json'}
Albert,0,binary,0.733953,{'_modeljson': 'et/Airlines.json'}
Albert,0,binary,0.739138,{'_modeljson': 'et/Albert.json'}
Albert,0,binary,0.729251,{'_modeljson': 'et/Amazon_employee_access.json'}
Albert,0,binary,0.728612,{'_modeljson': 'et/bng_breastTumor.json'}
Albert,0,binary,0.736396,{'_modeljson': 'et/bng_pbc.json'}
Albert,0,binary,0.719311,{'_modeljson': 'et/car.json'}
Albert,0,binary,0.735032,{'_modeljson': 'et/connect-4.json'}
Albert,0,binary,0.725017,{'_modeljson': 'et/default.json'}
Albert,0,binary,0.728108,{'_modeljson': 'et/dilbert.json'}
Albert,0,binary,0.736668,{'_modeljson': 'et/poker.json'}
Amazon_employee_access,0,binary,0.708259,{'_modeljson': 'et/2dplanes.json'}
Amazon_employee_access,0,binary,0.872603,{'_modeljson': 'et/adult.json'}
Amazon_employee_access,0,binary,0.839293,{'_modeljson': 'et/Airlines.json'}
Amazon_employee_access,0,binary,0.834606,{'_modeljson': 'et/Albert.json'}
Amazon_employee_access,0,binary,0.873141,{'_modeljson': 'et/Amazon_employee_access.json'}
Amazon_employee_access,0,binary,0.860569,{'_modeljson': 'et/bng_breastTumor.json'}
Amazon_employee_access,0,binary,0.834654,{'_modeljson': 'et/bng_pbc.json'}
Amazon_employee_access,0,binary,0.81679,{'_modeljson': 'et/car.json'}
Amazon_employee_access,0,binary,0.831975,{'_modeljson': 'et/connect-4.json'}
Amazon_employee_access,0,binary,0.839651,{'_modeljson': 'et/default.json'}
Amazon_employee_access,0,binary,0.868815,{'_modeljson': 'et/dilbert.json'}
Amazon_employee_access,0,binary,0.841461,{'_modeljson': 'et/poker.json'}
bng_breastTumor,0,regression,0.137191,{'_modeljson': 'et/2dplanes.json'}
bng_breastTumor,0,regression,0.181002,{'_modeljson': 'et/adult.json'}
bng_breastTumor,0,regression,0.163121,{'_modeljson': 'et/Airlines.json'}
bng_breastTumor,0,regression,0.116596,{'_modeljson': 'et/Albert.json'}
bng_breastTumor,0,regression,0.181745,{'_modeljson': 'et/Amazon_employee_access.json'}
bng_breastTumor,0,regression,0.180948,{'_modeljson': 'et/bng_breastTumor.json'}
bng_breastTumor,0,regression,0.0784668,{'_modeljson': 'et/bng_pbc.json'}
bng_breastTumor,0,regression,0.168552,{'_modeljson': 'et/car.json'}
bng_breastTumor,0,regression,0.165576,{'_modeljson': 'et/connect-4.json'}
bng_breastTumor,0,regression,-0.28734,{'_modeljson': 'et/default.json'}
bng_breastTumor,0,regression,0.1822,{'_modeljson': 'et/dilbert.json'}
bng_breastTumor,0,regression,0.0780929,{'_modeljson': 'et/poker.json'}
bng_pbc,0,regression,0.332032,{'_modeljson': 'et/2dplanes.json'}
bng_pbc,0,regression,0.3879,{'_modeljson': 'et/adult.json'}
bng_pbc,0,regression,0.411442,{'_modeljson': 'et/Airlines.json'}
bng_pbc,0,regression,0.400094,{'_modeljson': 'et/Albert.json'}
bng_pbc,0,regression,0.394067,{'_modeljson': 'et/Amazon_employee_access.json'}
bng_pbc,0,regression,0.391695,{'_modeljson': 'et/bng_breastTumor.json'}
bng_pbc,0,regression,0.421267,{'_modeljson': 'et/bng_pbc.json'}
bng_pbc,0,regression,0.361909,{'_modeljson': 'et/car.json'}
bng_pbc,0,regression,0.402332,{'_modeljson': 'et/connect-4.json'}
bng_pbc,0,regression,0.418622,{'_modeljson': 'et/default.json'}
bng_pbc,0,regression,0.388768,{'_modeljson': 'et/dilbert.json'}
bng_pbc,0,regression,0.421152,{'_modeljson': 'et/poker.json'}
car,0,multiclass,-0.0815482,{'_modeljson': 'et/2dplanes.json'}
car,0,multiclass,-0.218552,{'_modeljson': 'et/adult.json'}
car,0,multiclass,-0.0474428,{'_modeljson': 'et/Airlines.json'}
car,0,multiclass,-0.108586,{'_modeljson': 'et/Albert.json'}
car,0,multiclass,-0.218073,{'_modeljson': 'et/Amazon_employee_access.json'}
car,0,multiclass,-0.0397411,{'_modeljson': 'et/bng_breastTumor.json'}
car,0,multiclass,-0.0485655,{'_modeljson': 'et/bng_pbc.json'}
car,0,multiclass,-0.0524496,{'_modeljson': 'et/car.json'}
car,0,multiclass,-0.0690461,{'_modeljson': 'et/connect-4.json'}
car,0,multiclass,-0.111939,{'_modeljson': 'et/default.json'}
car,0,multiclass,-0.218153,{'_modeljson': 'et/dilbert.json'}
car,0,multiclass,-0.0502018,{'_modeljson': 'et/poker.json'}
connect-4,0,multiclass,-0.706448,{'_modeljson': 'et/2dplanes.json'}
connect-4,0,multiclass,-0.54998,{'_modeljson': 'et/adult.json'}
connect-4,0,multiclass,-0.495074,{'_modeljson': 'et/Airlines.json'}
connect-4,0,multiclass,-0.468797,{'_modeljson': 'et/Albert.json'}
connect-4,0,multiclass,-0.528177,{'_modeljson': 'et/Amazon_employee_access.json'}
connect-4,0,multiclass,-0.545043,{'_modeljson': 'et/bng_breastTumor.json'}
connect-4,0,multiclass,-0.57415,{'_modeljson': 'et/bng_pbc.json'}
connect-4,0,multiclass,-0.639965,{'_modeljson': 'et/car.json'}
connect-4,0,multiclass,-0.459906,{'_modeljson': 'et/connect-4.json'}
connect-4,0,multiclass,-0.540561,{'_modeljson': 'et/default.json'}
connect-4,0,multiclass,-0.547218,{'_modeljson': 'et/dilbert.json'}
connect-4,0,multiclass,-0.573145,{'_modeljson': 'et/poker.json'}
dilbert,0,multiclass,-0.626964,{'_modeljson': 'et/2dplanes.json'}
dilbert,0,multiclass,-0.230603,{'_modeljson': 'et/adult.json'}
dilbert,0,multiclass,-0.246071,{'_modeljson': 'et/Airlines.json'}
dilbert,0,multiclass,-0.237068,{'_modeljson': 'et/Albert.json'}
dilbert,0,multiclass,-0.230785,{'_modeljson': 'et/Amazon_employee_access.json'}
dilbert,0,multiclass,-0.253409,{'_modeljson': 'et/bng_breastTumor.json'}
dilbert,0,multiclass,-0.247331,{'_modeljson': 'et/bng_pbc.json'}
dilbert,0,multiclass,-0.383859,{'_modeljson': 'et/car.json'}
dilbert,0,multiclass,-0.234819,{'_modeljson': 'et/connect-4.json'}
dilbert,0,multiclass,-0.308227,{'_modeljson': 'et/default.json'}
dilbert,0,multiclass,-0.231163,{'_modeljson': 'et/dilbert.json'}
dilbert,0,multiclass,-0.245383,{'_modeljson': 'et/poker.json'}
Dionis,0,multiclass,-3.354,{'_modeljson': 'et/2dplanes.json'}
Dionis,0,multiclass,-1.56815,{'_modeljson': 'et/adult.json'}
Dionis,0,multiclass,-0.758098,{'_modeljson': 'et/Airlines.json'}
Dionis,0,multiclass,-1.36204,{'_modeljson': 'et/Amazon_employee_access.json'}
Dionis,0,multiclass,-1.40398,{'_modeljson': 'et/bng_breastTumor.json'}
Dionis,0,multiclass,-2.44773,{'_modeljson': 'et/car.json'}
Dionis,0,multiclass,-0.759589,{'_modeljson': 'et/connect-4.json'}
Dionis,0,multiclass,-0.789821,{'_modeljson': 'et/default.json'}
Dionis,0,multiclass,-1.54593,{'_modeljson': 'et/dilbert.json'}
poker,0,regression,0.103608,{'_modeljson': 'et/2dplanes.json'}
poker,0,regression,0.314258,{'_modeljson': 'et/adult.json'}
poker,0,regression,0.531285,{'_modeljson': 'et/Airlines.json'}
poker,0,regression,0.30208,{'_modeljson': 'et/Albert.json'}
poker,0,regression,0.358474,{'_modeljson': 'et/Amazon_employee_access.json'}
poker,0,regression,0.344292,{'_modeljson': 'et/bng_breastTumor.json'}
poker,0,regression,0.663188,{'_modeljson': 'et/bng_pbc.json'}
poker,0,regression,0.180103,{'_modeljson': 'et/car.json'}
poker,0,regression,0.394291,{'_modeljson': 'et/connect-4.json'}
poker,0,regression,0.753355,{'_modeljson': 'et/default.json'}
poker,0,regression,0.317809,{'_modeljson': 'et/dilbert.json'}
poker,0,regression,0.663812,{'_modeljson': 'et/poker.json'}
1 task fold type result params
2 2dplanes 0 regression 0.946503 {'_modeljson': 'et/2dplanes.json'}
3 2dplanes 0 regression 0.945047 {'_modeljson': 'et/adult.json'}
4 2dplanes 0 regression 0.933571 {'_modeljson': 'et/Airlines.json'}
5 2dplanes 0 regression 0.919021 {'_modeljson': 'et/Albert.json'}
6 2dplanes 0 regression 0.944532 {'_modeljson': 'et/Amazon_employee_access.json'}
7 2dplanes 0 regression 0.94471 {'_modeljson': 'et/bng_breastTumor.json'}
8 2dplanes 0 regression 0.914912 {'_modeljson': 'et/bng_pbc.json'}
9 2dplanes 0 regression 0.946045 {'_modeljson': 'et/car.json'}
10 2dplanes 0 regression 0.935777 {'_modeljson': 'et/connect-4.json'}
11 2dplanes 0 regression 0.91501 {'_modeljson': 'et/default.json'}
12 2dplanes 0 regression 0.94497 {'_modeljson': 'et/dilbert.json'}
13 2dplanes 0 regression 0.914907 {'_modeljson': 'et/poker.json'}
14 adult 0 binary 0.902771 {'_modeljson': 'et/2dplanes.json'}
15 adult 0 binary 0.919086 {'_modeljson': 'et/adult.json'}
16 adult 0 binary 0.906742 {'_modeljson': 'et/Airlines.json'}
17 adult 0 binary 0.897039 {'_modeljson': 'et/Albert.json'}
18 adult 0 binary 0.919317 {'_modeljson': 'et/Amazon_employee_access.json'}
19 adult 0 binary 0.918404 {'_modeljson': 'et/bng_breastTumor.json'}
20 adult 0 binary 0.895193 {'_modeljson': 'et/bng_pbc.json'}
21 adult 0 binary 0.912965 {'_modeljson': 'et/car.json'}
22 adult 0 binary 0.904228 {'_modeljson': 'et/connect-4.json'}
23 adult 0 binary 0.893933 {'_modeljson': 'et/default.json'}
24 adult 0 binary 0.918539 {'_modeljson': 'et/dilbert.json'}
25 adult 0 binary 0.895813 {'_modeljson': 'et/poker.json'}
26 Airlines 0 binary 0.683928 {'_modeljson': 'et/2dplanes.json'}
27 Airlines 0 binary 0.709673 {'_modeljson': 'et/adult.json'}
28 Airlines 0 binary 0.724391 {'_modeljson': 'et/Airlines.json'}
29 Airlines 0 binary 0.707411 {'_modeljson': 'et/Albert.json'}
30 Airlines 0 binary 0.713548 {'_modeljson': 'et/Amazon_employee_access.json'}
31 Airlines 0 binary 0.712774 {'_modeljson': 'et/bng_breastTumor.json'}
32 Airlines 0 binary 0.708477 {'_modeljson': 'et/bng_pbc.json'}
33 Airlines 0 binary 0.695604 {'_modeljson': 'et/car.json'}
34 Airlines 0 binary 0.719631 {'_modeljson': 'et/connect-4.json'}
35 Airlines 0 binary 0.619025 {'_modeljson': 'et/default.json'}
36 Airlines 0 binary 0.710038 {'_modeljson': 'et/dilbert.json'}
37 Airlines 0 binary 0.708628 {'_modeljson': 'et/poker.json'}
38 Albert 0 binary 0.707126 {'_modeljson': 'et/2dplanes.json'}
39 Albert 0 binary 0.727819 {'_modeljson': 'et/adult.json'}
40 Albert 0 binary 0.733953 {'_modeljson': 'et/Airlines.json'}
41 Albert 0 binary 0.739138 {'_modeljson': 'et/Albert.json'}
42 Albert 0 binary 0.729251 {'_modeljson': 'et/Amazon_employee_access.json'}
43 Albert 0 binary 0.728612 {'_modeljson': 'et/bng_breastTumor.json'}
44 Albert 0 binary 0.736396 {'_modeljson': 'et/bng_pbc.json'}
45 Albert 0 binary 0.719311 {'_modeljson': 'et/car.json'}
46 Albert 0 binary 0.735032 {'_modeljson': 'et/connect-4.json'}
47 Albert 0 binary 0.725017 {'_modeljson': 'et/default.json'}
48 Albert 0 binary 0.728108 {'_modeljson': 'et/dilbert.json'}
49 Albert 0 binary 0.736668 {'_modeljson': 'et/poker.json'}
50 Amazon_employee_access 0 binary 0.708259 {'_modeljson': 'et/2dplanes.json'}
51 Amazon_employee_access 0 binary 0.872603 {'_modeljson': 'et/adult.json'}
52 Amazon_employee_access 0 binary 0.839293 {'_modeljson': 'et/Airlines.json'}
53 Amazon_employee_access 0 binary 0.834606 {'_modeljson': 'et/Albert.json'}
54 Amazon_employee_access 0 binary 0.873141 {'_modeljson': 'et/Amazon_employee_access.json'}
55 Amazon_employee_access 0 binary 0.860569 {'_modeljson': 'et/bng_breastTumor.json'}
56 Amazon_employee_access 0 binary 0.834654 {'_modeljson': 'et/bng_pbc.json'}
57 Amazon_employee_access 0 binary 0.81679 {'_modeljson': 'et/car.json'}
58 Amazon_employee_access 0 binary 0.831975 {'_modeljson': 'et/connect-4.json'}
59 Amazon_employee_access 0 binary 0.839651 {'_modeljson': 'et/default.json'}
60 Amazon_employee_access 0 binary 0.868815 {'_modeljson': 'et/dilbert.json'}
61 Amazon_employee_access 0 binary 0.841461 {'_modeljson': 'et/poker.json'}
62 bng_breastTumor 0 regression 0.137191 {'_modeljson': 'et/2dplanes.json'}
63 bng_breastTumor 0 regression 0.181002 {'_modeljson': 'et/adult.json'}
64 bng_breastTumor 0 regression 0.163121 {'_modeljson': 'et/Airlines.json'}
65 bng_breastTumor 0 regression 0.116596 {'_modeljson': 'et/Albert.json'}
66 bng_breastTumor 0 regression 0.181745 {'_modeljson': 'et/Amazon_employee_access.json'}
67 bng_breastTumor 0 regression 0.180948 {'_modeljson': 'et/bng_breastTumor.json'}
68 bng_breastTumor 0 regression 0.0784668 {'_modeljson': 'et/bng_pbc.json'}
69 bng_breastTumor 0 regression 0.168552 {'_modeljson': 'et/car.json'}
70 bng_breastTumor 0 regression 0.165576 {'_modeljson': 'et/connect-4.json'}
71 bng_breastTumor 0 regression -0.28734 {'_modeljson': 'et/default.json'}
72 bng_breastTumor 0 regression 0.1822 {'_modeljson': 'et/dilbert.json'}
73 bng_breastTumor 0 regression 0.0780929 {'_modeljson': 'et/poker.json'}
74 bng_pbc 0 regression 0.332032 {'_modeljson': 'et/2dplanes.json'}
75 bng_pbc 0 regression 0.3879 {'_modeljson': 'et/adult.json'}
76 bng_pbc 0 regression 0.411442 {'_modeljson': 'et/Airlines.json'}
77 bng_pbc 0 regression 0.400094 {'_modeljson': 'et/Albert.json'}
78 bng_pbc 0 regression 0.394067 {'_modeljson': 'et/Amazon_employee_access.json'}
79 bng_pbc 0 regression 0.391695 {'_modeljson': 'et/bng_breastTumor.json'}
80 bng_pbc 0 regression 0.421267 {'_modeljson': 'et/bng_pbc.json'}
81 bng_pbc 0 regression 0.361909 {'_modeljson': 'et/car.json'}
82 bng_pbc 0 regression 0.402332 {'_modeljson': 'et/connect-4.json'}
83 bng_pbc 0 regression 0.418622 {'_modeljson': 'et/default.json'}
84 bng_pbc 0 regression 0.388768 {'_modeljson': 'et/dilbert.json'}
85 bng_pbc 0 regression 0.421152 {'_modeljson': 'et/poker.json'}
86 car 0 multiclass -0.0815482 {'_modeljson': 'et/2dplanes.json'}
87 car 0 multiclass -0.218552 {'_modeljson': 'et/adult.json'}
88 car 0 multiclass -0.0474428 {'_modeljson': 'et/Airlines.json'}
89 car 0 multiclass -0.108586 {'_modeljson': 'et/Albert.json'}
90 car 0 multiclass -0.218073 {'_modeljson': 'et/Amazon_employee_access.json'}
91 car 0 multiclass -0.0397411 {'_modeljson': 'et/bng_breastTumor.json'}
92 car 0 multiclass -0.0485655 {'_modeljson': 'et/bng_pbc.json'}
93 car 0 multiclass -0.0524496 {'_modeljson': 'et/car.json'}
94 car 0 multiclass -0.0690461 {'_modeljson': 'et/connect-4.json'}
95 car 0 multiclass -0.111939 {'_modeljson': 'et/default.json'}
96 car 0 multiclass -0.218153 {'_modeljson': 'et/dilbert.json'}
97 car 0 multiclass -0.0502018 {'_modeljson': 'et/poker.json'}
98 connect-4 0 multiclass -0.706448 {'_modeljson': 'et/2dplanes.json'}
99 connect-4 0 multiclass -0.54998 {'_modeljson': 'et/adult.json'}
100 connect-4 0 multiclass -0.495074 {'_modeljson': 'et/Airlines.json'}
101 connect-4 0 multiclass -0.468797 {'_modeljson': 'et/Albert.json'}
102 connect-4 0 multiclass -0.528177 {'_modeljson': 'et/Amazon_employee_access.json'}
103 connect-4 0 multiclass -0.545043 {'_modeljson': 'et/bng_breastTumor.json'}
104 connect-4 0 multiclass -0.57415 {'_modeljson': 'et/bng_pbc.json'}
105 connect-4 0 multiclass -0.639965 {'_modeljson': 'et/car.json'}
106 connect-4 0 multiclass -0.459906 {'_modeljson': 'et/connect-4.json'}
107 connect-4 0 multiclass -0.540561 {'_modeljson': 'et/default.json'}
108 connect-4 0 multiclass -0.547218 {'_modeljson': 'et/dilbert.json'}
109 connect-4 0 multiclass -0.573145 {'_modeljson': 'et/poker.json'}
110 dilbert 0 multiclass -0.626964 {'_modeljson': 'et/2dplanes.json'}
111 dilbert 0 multiclass -0.230603 {'_modeljson': 'et/adult.json'}
112 dilbert 0 multiclass -0.246071 {'_modeljson': 'et/Airlines.json'}
113 dilbert 0 multiclass -0.237068 {'_modeljson': 'et/Albert.json'}
114 dilbert 0 multiclass -0.230785 {'_modeljson': 'et/Amazon_employee_access.json'}
115 dilbert 0 multiclass -0.253409 {'_modeljson': 'et/bng_breastTumor.json'}
116 dilbert 0 multiclass -0.247331 {'_modeljson': 'et/bng_pbc.json'}
117 dilbert 0 multiclass -0.383859 {'_modeljson': 'et/car.json'}
118 dilbert 0 multiclass -0.234819 {'_modeljson': 'et/connect-4.json'}
119 dilbert 0 multiclass -0.308227 {'_modeljson': 'et/default.json'}
120 dilbert 0 multiclass -0.231163 {'_modeljson': 'et/dilbert.json'}
121 dilbert 0 multiclass -0.245383 {'_modeljson': 'et/poker.json'}
122 Dionis 0 multiclass -3.354 {'_modeljson': 'et/2dplanes.json'}
123 Dionis 0 multiclass -1.56815 {'_modeljson': 'et/adult.json'}
124 Dionis 0 multiclass -0.758098 {'_modeljson': 'et/Airlines.json'}
125 Dionis 0 multiclass -1.36204 {'_modeljson': 'et/Amazon_employee_access.json'}
126 Dionis 0 multiclass -1.40398 {'_modeljson': 'et/bng_breastTumor.json'}
127 Dionis 0 multiclass -2.44773 {'_modeljson': 'et/car.json'}
128 Dionis 0 multiclass -0.759589 {'_modeljson': 'et/connect-4.json'}
129 Dionis 0 multiclass -0.789821 {'_modeljson': 'et/default.json'}
130 Dionis 0 multiclass -1.54593 {'_modeljson': 'et/dilbert.json'}
131 poker 0 regression 0.103608 {'_modeljson': 'et/2dplanes.json'}
132 poker 0 regression 0.314258 {'_modeljson': 'et/adult.json'}
133 poker 0 regression 0.531285 {'_modeljson': 'et/Airlines.json'}
134 poker 0 regression 0.30208 {'_modeljson': 'et/Albert.json'}
135 poker 0 regression 0.358474 {'_modeljson': 'et/Amazon_employee_access.json'}
136 poker 0 regression 0.344292 {'_modeljson': 'et/bng_breastTumor.json'}
137 poker 0 regression 0.663188 {'_modeljson': 'et/bng_pbc.json'}
138 poker 0 regression 0.180103 {'_modeljson': 'et/car.json'}
139 poker 0 regression 0.394291 {'_modeljson': 'et/connect-4.json'}
140 poker 0 regression 0.753355 {'_modeljson': 'et/default.json'}
141 poker 0 regression 0.317809 {'_modeljson': 'et/dilbert.json'}
142 poker 0 regression 0.663812 {'_modeljson': 'et/poker.json'}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 103, "num_leaves": 33, "min_child_samples": 4, "learning_rate": 0.05800185361316003, "log_max_bin": 6, "colsample_bytree": 1.0, "reg_alpha": 1.5987124004961213, "reg_lambda": 10.56445079499673}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 733, "num_leaves": 11, "min_child_samples": 94, "learning_rate": 0.06276798296942972, "log_max_bin": 6, "colsample_bytree": 0.6341928918435795, "reg_alpha": 0.5811038918218691, "reg_lambda": 43.304997517523944}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 2541, "num_leaves": 1667, "min_child_samples": 29, "learning_rate": 0.0016660662914022302, "log_max_bin": 8, "colsample_bytree": 0.5157078343718623, "reg_alpha": 0.045792841240713165, "reg_lambda": 0.0012362651138125363, "FLAML_sample_size": 436899}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 12659, "num_leaves": 566, "min_child_samples": 51, "learning_rate": 0.0017248557932071625, "log_max_bin": 10, "colsample_bytree": 0.35373661752616337, "reg_alpha": 0.004824272162679245, "reg_lambda": 8.51563063056529, "FLAML_sample_size": 344444}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 198, "num_leaves": 6241, "min_child_samples": 3, "learning_rate": 0.003807690748728824, "log_max_bin": 10, "colsample_bytree": 0.3192882305722113, "reg_alpha": 0.024630507311503163, "reg_lambda": 0.06738306675149014}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 362, "num_leaves": 1208, "min_child_samples": 8, "learning_rate": 0.02070742242160566, "log_max_bin": 4, "colsample_bytree": 0.37915528071680865, "reg_alpha": 0.002982599447751338, "reg_lambda": 1.136605174453919, "FLAML_sample_size": 337147}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 11842, "num_leaves": 31, "min_child_samples": 3, "learning_rate": 0.0015861878568503534, "log_max_bin": 8, "colsample_bytree": 0.3814347840573729, "reg_alpha": 0.0009765625, "reg_lambda": 0.011319689446351965}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 644, "num_leaves": 40, "min_child_samples": 38, "learning_rate": 0.06007328261566753, "log_max_bin": 5, "colsample_bytree": 0.6950692048656423, "reg_alpha": 0.0009765625, "reg_lambda": 9.849318389111616, "FLAML_sample_size": 94478}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 27202, "num_leaves": 848, "min_child_samples": 2, "learning_rate": 0.0019296395751528979, "log_max_bin": 5, "colsample_bytree": 0.7328229531785452, "reg_alpha": 6.112225454676263, "reg_lambda": 0.08606162543586986, "FLAML_sample_size": 810000}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 311, "num_leaves": 4, "min_child_samples": 5, "learning_rate": 0.5547292134798673, "log_max_bin": 3, "colsample_bytree": 0.9917614238487915, "reg_alpha": 0.0009765625, "reg_lambda": 0.0019177370889840813}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 3726, "num_leaves": 155, "min_child_samples": 4, "learning_rate": 0.040941607728296484, "log_max_bin": 5, "colsample_bytree": 0.5326256194627191, "reg_alpha": 0.7408711930398492, "reg_lambda": 0.5467731065349226}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 7325, "num_leaves": 15, "min_child_samples": 6, "learning_rate": 0.009932524214971736, "log_max_bin": 6, "colsample_bytree": 0.8592091503131608, "reg_alpha": 0.0009997224940106115, "reg_lambda": 0.04069855891326503}}

View File

@ -0,0 +1 @@
{"class": "lgbm", "hyperparameters": {"n_estimators": 32767, "num_leaves": 372, "min_child_samples": 4, "learning_rate": 0.03517259015200922, "log_max_bin": 5, "colsample_bytree": 1.0, "reg_alpha": 0.02271142170225636, "reg_lambda": 0.001963791798843179, "FLAML_sample_size": 830258}}

View File

@ -0,0 +1,167 @@
task,fold,type,result,params
2dplanes,0,regression,0.946366,{'_modeljson': 'lgbm/2dplanes.json'}
2dplanes,0,regression,0.907774,{'_modeljson': 'lgbm/adult.json'}
2dplanes,0,regression,0.901643,{'_modeljson': 'lgbm/Airlines.json'}
2dplanes,0,regression,0.915098,{'_modeljson': 'lgbm/Albert.json'}
2dplanes,0,regression,0.302328,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
2dplanes,0,regression,0.94523,{'_modeljson': 'lgbm/bng_breastTumor.json'}
2dplanes,0,regression,0.945698,{'_modeljson': 'lgbm/bng_pbc.json'}
2dplanes,0,regression,0.946194,{'_modeljson': 'lgbm/car.json'}
2dplanes,0,regression,0.945549,{'_modeljson': 'lgbm/connect-4.json'}
2dplanes,0,regression,0.946232,{'_modeljson': 'lgbm/default.json'}
2dplanes,0,regression,0.945594,{'_modeljson': 'lgbm/dilbert.json'}
2dplanes,0,regression,0.836996,{'_modeljson': 'lgbm/Dionis.json'}
2dplanes,0,regression,0.917152,{'_modeljson': 'lgbm/poker.json'}
adult,0,binary,0.927203,{'_modeljson': 'lgbm/2dplanes.json'}
adult,0,binary,0.932072,{'_modeljson': 'lgbm/adult.json'}
adult,0,binary,0.926563,{'_modeljson': 'lgbm/Airlines.json'}
adult,0,binary,0.928604,{'_modeljson': 'lgbm/Albert.json'}
adult,0,binary,0.911171,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
adult,0,binary,0.930645,{'_modeljson': 'lgbm/bng_breastTumor.json'}
adult,0,binary,0.928603,{'_modeljson': 'lgbm/bng_pbc.json'}
adult,0,binary,0.915825,{'_modeljson': 'lgbm/car.json'}
adult,0,binary,0.919499,{'_modeljson': 'lgbm/connect-4.json'}
adult,0,binary,0.930109,{'_modeljson': 'lgbm/default.json'}
adult,0,binary,0.932453,{'_modeljson': 'lgbm/dilbert.json'}
adult,0,binary,0.921959,{'_modeljson': 'lgbm/Dionis.json'}
adult,0,binary,0.910763,{'_modeljson': 'lgbm/poker.json'}
Airlines,0,binary,0.705404,{'_modeljson': 'lgbm/2dplanes.json'}
Airlines,0,binary,0.714521,{'_modeljson': 'lgbm/adult.json'}
Airlines,0,binary,0.732288,{'_modeljson': 'lgbm/Airlines.json'}
Airlines,0,binary,0.710273,{'_modeljson': 'lgbm/Albert.json'}
Airlines,0,binary,0.707107,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
Airlines,0,binary,0.718682,{'_modeljson': 'lgbm/bng_breastTumor.json'}
Airlines,0,binary,0.724703,{'_modeljson': 'lgbm/bng_pbc.json'}
Airlines,0,binary,0.690574,{'_modeljson': 'lgbm/car.json'}
Airlines,0,binary,0.725808,{'_modeljson': 'lgbm/connect-4.json'}
Airlines,0,binary,0.710419,{'_modeljson': 'lgbm/default.json'}
Airlines,0,binary,0.710419,{'_modeljson': 'lgbm/default.json'}
Airlines,0,binary,0.718609,{'_modeljson': 'lgbm/dilbert.json'}
Airlines,0,binary,0.716213,{'_modeljson': 'lgbm/Dionis.json'}
Airlines,0,binary,0.654868,{'_modeljson': 'lgbm/poker.json'}
Albert,0,binary,0.744825,{'_modeljson': 'lgbm/2dplanes.json'}
Albert,0,binary,0.758979,{'_modeljson': 'lgbm/adult.json'}
Albert,0,binary,0.758364,{'_modeljson': 'lgbm/Airlines.json'}
Albert,0,binary,0.770923,{'_modeljson': 'lgbm/Albert.json'}
Albert,0,binary,0.745091,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
Albert,0,binary,0.754523,{'_modeljson': 'lgbm/APSFailure.json'}
Albert,0,binary,0.759939,{'_modeljson': 'lgbm/bng_breastTumor.json'}
Albert,0,binary,0.765119,{'_modeljson': 'lgbm/bng_pbc.json'}
Albert,0,binary,0.745067,{'_modeljson': 'lgbm/car.json'}
Albert,0,binary,0.762311,{'_modeljson': 'lgbm/connect-4.json'}
Albert,0,binary,0.753181,{'_modeljson': 'lgbm/default.json'}
Albert,0,binary,0.753181,{'_modeljson': 'lgbm/default.json'}
Albert,0,binary,0.760248,{'_modeljson': 'lgbm/dilbert.json'}
Albert,0,binary,0.758111,{'_modeljson': 'lgbm/Dionis.json'}
Albert,0,binary,0.761768,{'_modeljson': 'lgbm/poker.json'}
Amazon_employee_access,0,binary,0.811238,{'_modeljson': 'lgbm/2dplanes.json'}
Amazon_employee_access,0,binary,0.867285,{'_modeljson': 'lgbm/adult.json'}
Amazon_employee_access,0,binary,0.8888,{'_modeljson': 'lgbm/Airlines.json'}
Amazon_employee_access,0,binary,0.881302,{'_modeljson': 'lgbm/Albert.json'}
Amazon_employee_access,0,binary,0.891085,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
Amazon_employee_access,0,binary,0.816736,{'_modeljson': 'lgbm/APSFailure.json'}
Amazon_employee_access,0,binary,0.861187,{'_modeljson': 'lgbm/bng_breastTumor.json'}
Amazon_employee_access,0,binary,0.848348,{'_modeljson': 'lgbm/bng_pbc.json'}
Amazon_employee_access,0,binary,0.760891,{'_modeljson': 'lgbm/car.json'}
Amazon_employee_access,0,binary,0.872951,{'_modeljson': 'lgbm/connect-4.json'}
Amazon_employee_access,0,binary,0.851183,{'_modeljson': 'lgbm/default.json'}
Amazon_employee_access,0,binary,0.851183,{'_modeljson': 'lgbm/default.json'}
Amazon_employee_access,0,binary,0.851173,{'_modeljson': 'lgbm/dilbert.json'}
Amazon_employee_access,0,binary,0.843577,{'_modeljson': 'lgbm/Dionis.json'}
Amazon_employee_access,0,binary,0.866543,{'_modeljson': 'lgbm/poker.json'}
bng_breastTumor,0,regression,0.186246,{'_modeljson': 'lgbm/2dplanes.json'}
bng_breastTumor,0,regression,0.181787,{'_modeljson': 'lgbm/adult.json'}
bng_breastTumor,0,regression,0.177175,{'_modeljson': 'lgbm/Airlines.json'}
bng_breastTumor,0,regression,0.169053,{'_modeljson': 'lgbm/Albert.json'}
bng_breastTumor,0,regression,0.0734972,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
bng_breastTumor,0,regression,0.192189,{'_modeljson': 'lgbm/APSFailure.json'}
bng_breastTumor,0,regression,0.195887,{'_modeljson': 'lgbm/bng_breastTumor.json'}
bng_breastTumor,0,regression,0.144786,{'_modeljson': 'lgbm/bng_pbc.json'}
bng_breastTumor,0,regression,0.168074,{'_modeljson': 'lgbm/car.json'}
bng_breastTumor,0,regression,0.159819,{'_modeljson': 'lgbm/connect-4.json'}
bng_breastTumor,0,regression,0.192813,{'_modeljson': 'lgbm/default.json'}
bng_breastTumor,0,regression,0.192813,{'_modeljson': 'lgbm/default.json'}
bng_breastTumor,0,regression,0.193994,{'_modeljson': 'lgbm/dilbert.json'}
bng_breastTumor,0,regression,0.162977,{'_modeljson': 'lgbm/Dionis.json'}
bng_breastTumor,0,regression,-0.0283641,{'_modeljson': 'lgbm/poker.json'}
bng_pbc,0,regression,0.415569,{'_modeljson': 'lgbm/2dplanes.json'}
bng_pbc,0,regression,0.421659,{'_modeljson': 'lgbm/adult.json'}
bng_pbc,0,regression,0.433399,{'_modeljson': 'lgbm/Airlines.json'}
bng_pbc,0,regression,0.429397,{'_modeljson': 'lgbm/Albert.json'}
bng_pbc,0,regression,0.218693,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
bng_pbc,0,regression,0.426949,{'_modeljson': 'lgbm/APSFailure.json'}
bng_pbc,0,regression,0.444361,{'_modeljson': 'lgbm/bng_breastTumor.json'}
bng_pbc,0,regression,0.459898,{'_modeljson': 'lgbm/bng_pbc.json'}
bng_pbc,0,regression,0.404274,{'_modeljson': 'lgbm/car.json'}
bng_pbc,0,regression,0.453742,{'_modeljson': 'lgbm/connect-4.json'}
bng_pbc,0,regression,0.425581,{'_modeljson': 'lgbm/default.json'}
bng_pbc,0,regression,0.425581,{'_modeljson': 'lgbm/default.json'}
bng_pbc,0,regression,0.440833,{'_modeljson': 'lgbm/dilbert.json'}
bng_pbc,0,regression,0.42319,{'_modeljson': 'lgbm/Dionis.json'}
bng_pbc,0,regression,0.440263,{'_modeljson': 'lgbm/poker.json'}
car,0,multiclass,-0.126115,{'_modeljson': 'lgbm/2dplanes.json'}
car,0,multiclass,-0.20528,{'_modeljson': 'lgbm/adult.json'}
car,0,multiclass,-0.189212,{'_modeljson': 'lgbm/Airlines.json'}
car,0,multiclass,-0.233147,{'_modeljson': 'lgbm/Albert.json'}
car,0,multiclass,-0.598807,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
car,0,multiclass,-0.119622,{'_modeljson': 'lgbm/APSFailure.json'}
car,0,multiclass,-0.0372956,{'_modeljson': 'lgbm/bng_breastTumor.json'}
car,0,multiclass,-0.179642,{'_modeljson': 'lgbm/bng_pbc.json'}
car,0,multiclass,-0.000121047,{'_modeljson': 'lgbm/car.json'}
car,0,multiclass,-0.050453,{'_modeljson': 'lgbm/connect-4.json'}
car,0,multiclass,-0.00234879,{'_modeljson': 'lgbm/default.json'}
car,0,multiclass,-0.00234879,{'_modeljson': 'lgbm/default.json'}
car,0,multiclass,-0.000295737,{'_modeljson': 'lgbm/dilbert.json'}
car,0,multiclass,-0.297016,{'_modeljson': 'lgbm/Dionis.json'}
car,0,multiclass,-0.00178529,{'_modeljson': 'lgbm/poker.json'}
connect-4,0,multiclass,-0.527657,{'_modeljson': 'lgbm/2dplanes.json'}
connect-4,0,multiclass,-0.462894,{'_modeljson': 'lgbm/adult.json'}
connect-4,0,multiclass,-0.449048,{'_modeljson': 'lgbm/Airlines.json'}
connect-4,0,multiclass,-0.393871,{'_modeljson': 'lgbm/Albert.json'}
connect-4,0,multiclass,-0.73746,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
connect-4,0,multiclass,-0.485399,{'_modeljson': 'lgbm/APSFailure.json'}
connect-4,0,multiclass,-0.393378,{'_modeljson': 'lgbm/bng_breastTumor.json'}
connect-4,0,multiclass,-0.388117,{'_modeljson': 'lgbm/bng_pbc.json'}
connect-4,0,multiclass,-0.484577,{'_modeljson': 'lgbm/car.json'}
connect-4,0,multiclass,-0.32741,{'_modeljson': 'lgbm/connect-4.json'}
connect-4,0,multiclass,-0.482328,{'_modeljson': 'lgbm/default.json'}
connect-4,0,multiclass,-0.482328,{'_modeljson': 'lgbm/default.json'}
connect-4,0,multiclass,-0.413426,{'_modeljson': 'lgbm/dilbert.json'}
connect-4,0,multiclass,-0.438676,{'_modeljson': 'lgbm/Dionis.json'}
connect-4,0,multiclass,-0.489035,{'_modeljson': 'lgbm/poker.json'}
dilbert,0,multiclass,-0.134669,{'_modeljson': 'lgbm/2dplanes.json'}
dilbert,0,multiclass,-0.0405039,{'_modeljson': 'lgbm/adult.json'}
dilbert,0,multiclass,-0.0888238,{'_modeljson': 'lgbm/Airlines.json'}
dilbert,0,multiclass,-0.0618876,{'_modeljson': 'lgbm/Albert.json'}
dilbert,0,multiclass,-0.0653412,{'_modeljson': 'lgbm/APSFailure.json'}
dilbert,0,multiclass,-0.0484292,{'_modeljson': 'lgbm/bng_breastTumor.json'}
dilbert,0,multiclass,-0.126248,{'_modeljson': 'lgbm/bng_pbc.json'}
dilbert,0,multiclass,-0.0473867,{'_modeljson': 'lgbm/car.json'}
dilbert,0,multiclass,-0.0759236,{'_modeljson': 'lgbm/connect-4.json'}
dilbert,0,multiclass,-0.0490604,{'_modeljson': 'lgbm/default.json'}
dilbert,0,multiclass,-0.0490604,{'_modeljson': 'lgbm/default.json'}
dilbert,0,multiclass,-0.034108,{'_modeljson': 'lgbm/dilbert.json'}
dilbert,0,multiclass,-0.0661046,{'_modeljson': 'lgbm/Dionis.json'}
dilbert,0,multiclass,-0.0744684,{'_modeljson': 'lgbm/poker.json'}
Dionis,0,multiclass,-0.395452,{'_modeljson': 'lgbm/2dplanes.json'}
Dionis,0,multiclass,-1.40235,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
Dionis,0,multiclass,-0.306241,{'_modeljson': 'lgbm/APSFailure.json'}
Dionis,0,multiclass,-33.7902,{'_modeljson': 'lgbm/car.json'}
Dionis,0,multiclass,-27.9456,{'_modeljson': 'lgbm/default.json'}
Dionis,0,multiclass,-28.095,{'_modeljson': 'lgbm/default.json'}
Dionis,0,multiclass,-0.318142,{'_modeljson': 'lgbm/Dionis.json'}
poker,0,regression,0.203695,{'_modeljson': 'lgbm/2dplanes.json'}
poker,0,regression,0.424513,{'_modeljson': 'lgbm/adult.json'}
poker,0,regression,0.490528,{'_modeljson': 'lgbm/Airlines.json'}
poker,0,regression,0.767652,{'_modeljson': 'lgbm/Albert.json'}
poker,0,regression,0.0592655,{'_modeljson': 'lgbm/Amazon_employee_access.json'}
poker,0,regression,0.393168,{'_modeljson': 'lgbm/APSFailure.json'}
poker,0,regression,0.614152,{'_modeljson': 'lgbm/bng_breastTumor.json'}
poker,0,regression,0.854134,{'_modeljson': 'lgbm/bng_pbc.json'}
poker,0,regression,0.197075,{'_modeljson': 'lgbm/car.json'}
poker,0,regression,0.879695,{'_modeljson': 'lgbm/connect-4.json'}
poker,0,regression,0.284102,{'_modeljson': 'lgbm/default.json'}
poker,0,regression,0.284102,{'_modeljson': 'lgbm/default.json'}
poker,0,regression,0.433648,{'_modeljson': 'lgbm/dilbert.json'}
poker,0,regression,0.657666,{'_modeljson': 'lgbm/Dionis.json'}
poker,0,regression,0.940835,{'_modeljson': 'lgbm/poker.json'}
1 task fold type result params
2 2dplanes 0 regression 0.946366 {'_modeljson': 'lgbm/2dplanes.json'}
3 2dplanes 0 regression 0.907774 {'_modeljson': 'lgbm/adult.json'}
4 2dplanes 0 regression 0.901643 {'_modeljson': 'lgbm/Airlines.json'}
5 2dplanes 0 regression 0.915098 {'_modeljson': 'lgbm/Albert.json'}
6 2dplanes 0 regression 0.302328 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
7 2dplanes 0 regression 0.94523 {'_modeljson': 'lgbm/bng_breastTumor.json'}
8 2dplanes 0 regression 0.945698 {'_modeljson': 'lgbm/bng_pbc.json'}
9 2dplanes 0 regression 0.946194 {'_modeljson': 'lgbm/car.json'}
10 2dplanes 0 regression 0.945549 {'_modeljson': 'lgbm/connect-4.json'}
11 2dplanes 0 regression 0.946232 {'_modeljson': 'lgbm/default.json'}
12 2dplanes 0 regression 0.945594 {'_modeljson': 'lgbm/dilbert.json'}
13 2dplanes 0 regression 0.836996 {'_modeljson': 'lgbm/Dionis.json'}
14 2dplanes 0 regression 0.917152 {'_modeljson': 'lgbm/poker.json'}
15 adult 0 binary 0.927203 {'_modeljson': 'lgbm/2dplanes.json'}
16 adult 0 binary 0.932072 {'_modeljson': 'lgbm/adult.json'}
17 adult 0 binary 0.926563 {'_modeljson': 'lgbm/Airlines.json'}
18 adult 0 binary 0.928604 {'_modeljson': 'lgbm/Albert.json'}
19 adult 0 binary 0.911171 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
20 adult 0 binary 0.930645 {'_modeljson': 'lgbm/bng_breastTumor.json'}
21 adult 0 binary 0.928603 {'_modeljson': 'lgbm/bng_pbc.json'}
22 adult 0 binary 0.915825 {'_modeljson': 'lgbm/car.json'}
23 adult 0 binary 0.919499 {'_modeljson': 'lgbm/connect-4.json'}
24 adult 0 binary 0.930109 {'_modeljson': 'lgbm/default.json'}
25 adult 0 binary 0.932453 {'_modeljson': 'lgbm/dilbert.json'}
26 adult 0 binary 0.921959 {'_modeljson': 'lgbm/Dionis.json'}
27 adult 0 binary 0.910763 {'_modeljson': 'lgbm/poker.json'}
28 Airlines 0 binary 0.705404 {'_modeljson': 'lgbm/2dplanes.json'}
29 Airlines 0 binary 0.714521 {'_modeljson': 'lgbm/adult.json'}
30 Airlines 0 binary 0.732288 {'_modeljson': 'lgbm/Airlines.json'}
31 Airlines 0 binary 0.710273 {'_modeljson': 'lgbm/Albert.json'}
32 Airlines 0 binary 0.707107 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
33 Airlines 0 binary 0.718682 {'_modeljson': 'lgbm/bng_breastTumor.json'}
34 Airlines 0 binary 0.724703 {'_modeljson': 'lgbm/bng_pbc.json'}
35 Airlines 0 binary 0.690574 {'_modeljson': 'lgbm/car.json'}
36 Airlines 0 binary 0.725808 {'_modeljson': 'lgbm/connect-4.json'}
37 Airlines 0 binary 0.710419 {'_modeljson': 'lgbm/default.json'}
38 Airlines 0 binary 0.710419 {'_modeljson': 'lgbm/default.json'}
39 Airlines 0 binary 0.718609 {'_modeljson': 'lgbm/dilbert.json'}
40 Airlines 0 binary 0.716213 {'_modeljson': 'lgbm/Dionis.json'}
41 Airlines 0 binary 0.654868 {'_modeljson': 'lgbm/poker.json'}
42 Albert 0 binary 0.744825 {'_modeljson': 'lgbm/2dplanes.json'}
43 Albert 0 binary 0.758979 {'_modeljson': 'lgbm/adult.json'}
44 Albert 0 binary 0.758364 {'_modeljson': 'lgbm/Airlines.json'}
45 Albert 0 binary 0.770923 {'_modeljson': 'lgbm/Albert.json'}
46 Albert 0 binary 0.745091 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
47 Albert 0 binary 0.754523 {'_modeljson': 'lgbm/APSFailure.json'}
48 Albert 0 binary 0.759939 {'_modeljson': 'lgbm/bng_breastTumor.json'}
49 Albert 0 binary 0.765119 {'_modeljson': 'lgbm/bng_pbc.json'}
50 Albert 0 binary 0.745067 {'_modeljson': 'lgbm/car.json'}
51 Albert 0 binary 0.762311 {'_modeljson': 'lgbm/connect-4.json'}
52 Albert 0 binary 0.753181 {'_modeljson': 'lgbm/default.json'}
53 Albert 0 binary 0.753181 {'_modeljson': 'lgbm/default.json'}
54 Albert 0 binary 0.760248 {'_modeljson': 'lgbm/dilbert.json'}
55 Albert 0 binary 0.758111 {'_modeljson': 'lgbm/Dionis.json'}
56 Albert 0 binary 0.761768 {'_modeljson': 'lgbm/poker.json'}
57 Amazon_employee_access 0 binary 0.811238 {'_modeljson': 'lgbm/2dplanes.json'}
58 Amazon_employee_access 0 binary 0.867285 {'_modeljson': 'lgbm/adult.json'}
59 Amazon_employee_access 0 binary 0.8888 {'_modeljson': 'lgbm/Airlines.json'}
60 Amazon_employee_access 0 binary 0.881302 {'_modeljson': 'lgbm/Albert.json'}
61 Amazon_employee_access 0 binary 0.891085 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
62 Amazon_employee_access 0 binary 0.816736 {'_modeljson': 'lgbm/APSFailure.json'}
63 Amazon_employee_access 0 binary 0.861187 {'_modeljson': 'lgbm/bng_breastTumor.json'}
64 Amazon_employee_access 0 binary 0.848348 {'_modeljson': 'lgbm/bng_pbc.json'}
65 Amazon_employee_access 0 binary 0.760891 {'_modeljson': 'lgbm/car.json'}
66 Amazon_employee_access 0 binary 0.872951 {'_modeljson': 'lgbm/connect-4.json'}
67 Amazon_employee_access 0 binary 0.851183 {'_modeljson': 'lgbm/default.json'}
68 Amazon_employee_access 0 binary 0.851183 {'_modeljson': 'lgbm/default.json'}
69 Amazon_employee_access 0 binary 0.851173 {'_modeljson': 'lgbm/dilbert.json'}
70 Amazon_employee_access 0 binary 0.843577 {'_modeljson': 'lgbm/Dionis.json'}
71 Amazon_employee_access 0 binary 0.866543 {'_modeljson': 'lgbm/poker.json'}
72 bng_breastTumor 0 regression 0.186246 {'_modeljson': 'lgbm/2dplanes.json'}
73 bng_breastTumor 0 regression 0.181787 {'_modeljson': 'lgbm/adult.json'}
74 bng_breastTumor 0 regression 0.177175 {'_modeljson': 'lgbm/Airlines.json'}
75 bng_breastTumor 0 regression 0.169053 {'_modeljson': 'lgbm/Albert.json'}
76 bng_breastTumor 0 regression 0.0734972 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
77 bng_breastTumor 0 regression 0.192189 {'_modeljson': 'lgbm/APSFailure.json'}
78 bng_breastTumor 0 regression 0.195887 {'_modeljson': 'lgbm/bng_breastTumor.json'}
79 bng_breastTumor 0 regression 0.144786 {'_modeljson': 'lgbm/bng_pbc.json'}
80 bng_breastTumor 0 regression 0.168074 {'_modeljson': 'lgbm/car.json'}
81 bng_breastTumor 0 regression 0.159819 {'_modeljson': 'lgbm/connect-4.json'}
82 bng_breastTumor 0 regression 0.192813 {'_modeljson': 'lgbm/default.json'}
83 bng_breastTumor 0 regression 0.192813 {'_modeljson': 'lgbm/default.json'}
84 bng_breastTumor 0 regression 0.193994 {'_modeljson': 'lgbm/dilbert.json'}
85 bng_breastTumor 0 regression 0.162977 {'_modeljson': 'lgbm/Dionis.json'}
86 bng_breastTumor 0 regression -0.0283641 {'_modeljson': 'lgbm/poker.json'}
87 bng_pbc 0 regression 0.415569 {'_modeljson': 'lgbm/2dplanes.json'}
88 bng_pbc 0 regression 0.421659 {'_modeljson': 'lgbm/adult.json'}
89 bng_pbc 0 regression 0.433399 {'_modeljson': 'lgbm/Airlines.json'}
90 bng_pbc 0 regression 0.429397 {'_modeljson': 'lgbm/Albert.json'}
91 bng_pbc 0 regression 0.218693 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
92 bng_pbc 0 regression 0.426949 {'_modeljson': 'lgbm/APSFailure.json'}
93 bng_pbc 0 regression 0.444361 {'_modeljson': 'lgbm/bng_breastTumor.json'}
94 bng_pbc 0 regression 0.459898 {'_modeljson': 'lgbm/bng_pbc.json'}
95 bng_pbc 0 regression 0.404274 {'_modeljson': 'lgbm/car.json'}
96 bng_pbc 0 regression 0.453742 {'_modeljson': 'lgbm/connect-4.json'}
97 bng_pbc 0 regression 0.425581 {'_modeljson': 'lgbm/default.json'}
98 bng_pbc 0 regression 0.425581 {'_modeljson': 'lgbm/default.json'}
99 bng_pbc 0 regression 0.440833 {'_modeljson': 'lgbm/dilbert.json'}
100 bng_pbc 0 regression 0.42319 {'_modeljson': 'lgbm/Dionis.json'}
101 bng_pbc 0 regression 0.440263 {'_modeljson': 'lgbm/poker.json'}
102 car 0 multiclass -0.126115 {'_modeljson': 'lgbm/2dplanes.json'}
103 car 0 multiclass -0.20528 {'_modeljson': 'lgbm/adult.json'}
104 car 0 multiclass -0.189212 {'_modeljson': 'lgbm/Airlines.json'}
105 car 0 multiclass -0.233147 {'_modeljson': 'lgbm/Albert.json'}
106 car 0 multiclass -0.598807 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
107 car 0 multiclass -0.119622 {'_modeljson': 'lgbm/APSFailure.json'}
108 car 0 multiclass -0.0372956 {'_modeljson': 'lgbm/bng_breastTumor.json'}
109 car 0 multiclass -0.179642 {'_modeljson': 'lgbm/bng_pbc.json'}
110 car 0 multiclass -0.000121047 {'_modeljson': 'lgbm/car.json'}
111 car 0 multiclass -0.050453 {'_modeljson': 'lgbm/connect-4.json'}
112 car 0 multiclass -0.00234879 {'_modeljson': 'lgbm/default.json'}
113 car 0 multiclass -0.00234879 {'_modeljson': 'lgbm/default.json'}
114 car 0 multiclass -0.000295737 {'_modeljson': 'lgbm/dilbert.json'}
115 car 0 multiclass -0.297016 {'_modeljson': 'lgbm/Dionis.json'}
116 car 0 multiclass -0.00178529 {'_modeljson': 'lgbm/poker.json'}
117 connect-4 0 multiclass -0.527657 {'_modeljson': 'lgbm/2dplanes.json'}
118 connect-4 0 multiclass -0.462894 {'_modeljson': 'lgbm/adult.json'}
119 connect-4 0 multiclass -0.449048 {'_modeljson': 'lgbm/Airlines.json'}
120 connect-4 0 multiclass -0.393871 {'_modeljson': 'lgbm/Albert.json'}
121 connect-4 0 multiclass -0.73746 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
122 connect-4 0 multiclass -0.485399 {'_modeljson': 'lgbm/APSFailure.json'}
123 connect-4 0 multiclass -0.393378 {'_modeljson': 'lgbm/bng_breastTumor.json'}
124 connect-4 0 multiclass -0.388117 {'_modeljson': 'lgbm/bng_pbc.json'}
125 connect-4 0 multiclass -0.484577 {'_modeljson': 'lgbm/car.json'}
126 connect-4 0 multiclass -0.32741 {'_modeljson': 'lgbm/connect-4.json'}
127 connect-4 0 multiclass -0.482328 {'_modeljson': 'lgbm/default.json'}
128 connect-4 0 multiclass -0.482328 {'_modeljson': 'lgbm/default.json'}
129 connect-4 0 multiclass -0.413426 {'_modeljson': 'lgbm/dilbert.json'}
130 connect-4 0 multiclass -0.438676 {'_modeljson': 'lgbm/Dionis.json'}
131 connect-4 0 multiclass -0.489035 {'_modeljson': 'lgbm/poker.json'}
132 dilbert 0 multiclass -0.134669 {'_modeljson': 'lgbm/2dplanes.json'}
133 dilbert 0 multiclass -0.0405039 {'_modeljson': 'lgbm/adult.json'}
134 dilbert 0 multiclass -0.0888238 {'_modeljson': 'lgbm/Airlines.json'}
135 dilbert 0 multiclass -0.0618876 {'_modeljson': 'lgbm/Albert.json'}
136 dilbert 0 multiclass -0.0653412 {'_modeljson': 'lgbm/APSFailure.json'}
137 dilbert 0 multiclass -0.0484292 {'_modeljson': 'lgbm/bng_breastTumor.json'}
138 dilbert 0 multiclass -0.126248 {'_modeljson': 'lgbm/bng_pbc.json'}
139 dilbert 0 multiclass -0.0473867 {'_modeljson': 'lgbm/car.json'}
140 dilbert 0 multiclass -0.0759236 {'_modeljson': 'lgbm/connect-4.json'}
141 dilbert 0 multiclass -0.0490604 {'_modeljson': 'lgbm/default.json'}
142 dilbert 0 multiclass -0.0490604 {'_modeljson': 'lgbm/default.json'}
143 dilbert 0 multiclass -0.034108 {'_modeljson': 'lgbm/dilbert.json'}
144 dilbert 0 multiclass -0.0661046 {'_modeljson': 'lgbm/Dionis.json'}
145 dilbert 0 multiclass -0.0744684 {'_modeljson': 'lgbm/poker.json'}
146 Dionis 0 multiclass -0.395452 {'_modeljson': 'lgbm/2dplanes.json'}
147 Dionis 0 multiclass -1.40235 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
148 Dionis 0 multiclass -0.306241 {'_modeljson': 'lgbm/APSFailure.json'}
149 Dionis 0 multiclass -33.7902 {'_modeljson': 'lgbm/car.json'}
150 Dionis 0 multiclass -27.9456 {'_modeljson': 'lgbm/default.json'}
151 Dionis 0 multiclass -28.095 {'_modeljson': 'lgbm/default.json'}
152 Dionis 0 multiclass -0.318142 {'_modeljson': 'lgbm/Dionis.json'}
153 poker 0 regression 0.203695 {'_modeljson': 'lgbm/2dplanes.json'}
154 poker 0 regression 0.424513 {'_modeljson': 'lgbm/adult.json'}
155 poker 0 regression 0.490528 {'_modeljson': 'lgbm/Airlines.json'}
156 poker 0 regression 0.767652 {'_modeljson': 'lgbm/Albert.json'}
157 poker 0 regression 0.0592655 {'_modeljson': 'lgbm/Amazon_employee_access.json'}
158 poker 0 regression 0.393168 {'_modeljson': 'lgbm/APSFailure.json'}
159 poker 0 regression 0.614152 {'_modeljson': 'lgbm/bng_breastTumor.json'}
160 poker 0 regression 0.854134 {'_modeljson': 'lgbm/bng_pbc.json'}
161 poker 0 regression 0.197075 {'_modeljson': 'lgbm/car.json'}
162 poker 0 regression 0.879695 {'_modeljson': 'lgbm/connect-4.json'}
163 poker 0 regression 0.284102 {'_modeljson': 'lgbm/default.json'}
164 poker 0 regression 0.284102 {'_modeljson': 'lgbm/default.json'}
165 poker 0 regression 0.433648 {'_modeljson': 'lgbm/dilbert.json'}
166 poker 0 regression 0.657666 {'_modeljson': 'lgbm/Dionis.json'}
167 poker 0 regression 0.940835 {'_modeljson': 'lgbm/poker.json'}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 38, "max_features": 1.0, "max_leaves": 58}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 418, "max_features": 0.5303485415288045, "max_leaves": 6452, "criterion": "entropy", "FLAML_sample_size": 436899}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.10091610074262287, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 501, "max_features": 0.24484242524861066, "max_leaves": 1156, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 510, "max_features": 0.12094682590862652, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 337147}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 1212, "max_features": 0.3129111648657632, "max_leaves": 779, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 288, "max_features": 0.6436380990499977, "max_leaves": 1823, "FLAML_sample_size": 94478}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.3158919059422144, "max_leaves": 32767, "FLAML_sample_size": 810000}}

1
test/default/rf/car.json Normal file
View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 792, "max_features": 1.0, "max_leaves": 67, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 1907, "max_features": 0.3728618389498168, "max_leaves": 11731, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 350, "max_features": 0.748250835121453, "max_leaves": 433, "criterion": "entropy"}}

View File

@ -0,0 +1 @@
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}

145
test/default/rf/results.csv Normal file
View File

@ -0,0 +1,145 @@
task,fold,type,result,metric,params,info
2dplanes,0,regression,0.946488,r2,{'_modeljson': 'rf/2dplanes.json'},
2dplanes,0,regression,0.936392,r2,{'_modeljson': 'rf/adult.json'},
2dplanes,0,regression,0.940486,r2,{'_modeljson': 'rf/Airlines.json'},
2dplanes,0,regression,0.924025,r2,{'_modeljson': 'rf/Albert.json'},
2dplanes,0,regression,0.911362,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
2dplanes,0,regression,0.944353,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
2dplanes,0,regression,0.932343,r2,{'_modeljson': 'rf/bng_pbc.json'},
2dplanes,0,regression,0.946423,r2,{'_modeljson': 'rf/car.json'},
2dplanes,0,regression,0.937309,r2,{'_modeljson': 'rf/connect-4.json'},
2dplanes,0,regression,0.930126,r2,{'_modeljson': 'rf/default.json'},
2dplanes,0,regression,0.945707,r2,{'_modeljson': 'rf/dilbert.json'},
2dplanes,0,regression,0.923313,r2,{'_modeljson': 'rf/Dionis.json'},
2dplanes,0,regression,0.930579,r2,{'_modeljson': 'rf/poker.json'},
adult,0,binary,0.912946,auc,{'_modeljson': 'rf/2dplanes.json'},
adult,0,binary,0.91978,auc,{'_modeljson': 'rf/adult.json'},
adult,0,binary,0.910127,auc,{'_modeljson': 'rf/Airlines.json'},
adult,0,binary,0.910553,auc,{'_modeljson': 'rf/Albert.json'},
adult,0,binary,0.919662,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
adult,0,binary,0.915769,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
adult,0,binary,0.91003,auc,{'_modeljson': 'rf/bng_pbc.json'},
adult,0,binary,0.914697,auc,{'_modeljson': 'rf/car.json'},
adult,0,binary,0.911118,auc,{'_modeljson': 'rf/connect-4.json'},
adult,0,binary,0.907368,auc,{'_modeljson': 'rf/default.json'},
adult,0,binary,0.919216,auc,{'_modeljson': 'rf/dilbert.json'},
adult,0,binary,0.910528,auc,{'_modeljson': 'rf/Dionis.json'},
adult,0,binary,0.904508,auc,{'_modeljson': 'rf/poker.json'},
Airlines,0,binary,0.687817,auc,{'_modeljson': 'rf/2dplanes.json'},
Airlines,0,binary,0.712804,auc,{'_modeljson': 'rf/adult.json'},
Airlines,0,binary,0.727357,auc,{'_modeljson': 'rf/Airlines.json'},
Airlines,0,binary,0.705541,auc,{'_modeljson': 'rf/Albert.json'},
Airlines,0,binary,0.71012,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
Airlines,0,binary,0.722532,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
Airlines,0,binary,0.709287,auc,{'_modeljson': 'rf/bng_pbc.json'},
Airlines,0,binary,0.688678,auc,{'_modeljson': 'rf/car.json'},
Airlines,0,binary,0.725288,auc,{'_modeljson': 'rf/connect-4.json'},
Airlines,0,binary,0.657276,auc,{'_modeljson': 'rf/default.json'},
Airlines,0,binary,0.708515,auc,{'_modeljson': 'rf/dilbert.json'},
Airlines,0,binary,0.705826,auc,{'_modeljson': 'rf/Dionis.json'},
Airlines,0,binary,0.699484,auc,{'_modeljson': 'rf/poker.json'},
Albert,0,binary,0.712348,auc,{'_modeljson': 'rf/2dplanes.json'},
Albert,0,binary,0.72836,auc,{'_modeljson': 'rf/adult.json'},
Albert,0,binary,0.734105,auc,{'_modeljson': 'rf/Airlines.json'},
Albert,0,binary,0.737119,auc,{'_modeljson': 'rf/Albert.json'},
Albert,0,binary,0.729216,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
Albert,0,binary,0.731546,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
Albert,0,binary,0.734847,auc,{'_modeljson': 'rf/bng_pbc.json'},
Albert,0,binary,0.713965,auc,{'_modeljson': 'rf/car.json'},
Albert,0,binary,0.735372,auc,{'_modeljson': 'rf/connect-4.json'},
Albert,0,binary,0.728232,auc,{'_modeljson': 'rf/default.json'},
Albert,0,binary,0.726823,auc,{'_modeljson': 'rf/dilbert.json'},
Albert,0,binary,0.735994,auc,{'_modeljson': 'rf/Dionis.json'},
Amazon_employee_access,0,binary,0.728779,auc,{'_modeljson': 'rf/2dplanes.json'},
Amazon_employee_access,0,binary,0.87801,auc,{'_modeljson': 'rf/adult.json'},
Amazon_employee_access,0,binary,0.88085,auc,{'_modeljson': 'rf/Airlines.json'},
Amazon_employee_access,0,binary,0.881869,auc,{'_modeljson': 'rf/Albert.json'},
Amazon_employee_access,0,binary,0.881463,auc,{'_modeljson': 'rf/Amazon_employee_access.json'},
Amazon_employee_access,0,binary,0.882723,auc,{'_modeljson': 'rf/bng_breastTumor.json'},
Amazon_employee_access,0,binary,0.88299,auc,{'_modeljson': 'rf/bng_pbc.json'},
Amazon_employee_access,0,binary,0.808575,auc,{'_modeljson': 'rf/car.json'},
Amazon_employee_access,0,binary,0.881209,auc,{'_modeljson': 'rf/connect-4.json'},
Amazon_employee_access,0,binary,0.877507,auc,{'_modeljson': 'rf/default.json'},
Amazon_employee_access,0,binary,0.875146,auc,{'_modeljson': 'rf/dilbert.json'},
Amazon_employee_access,0,binary,0.878121,auc,{'_modeljson': 'rf/Dionis.json'},
Amazon_employee_access,0,binary,0.886312,auc,{'_modeljson': 'rf/poker.json'},
bng_breastTumor,0,regression,0.153657,r2,{'_modeljson': 'rf/2dplanes.json'},
bng_breastTumor,0,regression,0.156403,r2,{'_modeljson': 'rf/adult.json'},
bng_breastTumor,0,regression,0.174569,r2,{'_modeljson': 'rf/Airlines.json'},
bng_breastTumor,0,regression,0.0441869,r2,{'_modeljson': 'rf/Albert.json'},
bng_breastTumor,0,regression,0.157992,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
bng_breastTumor,0,regression,0.186635,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
bng_breastTumor,0,regression,0.0527547,r2,{'_modeljson': 'rf/bng_pbc.json'},
bng_breastTumor,0,regression,0.158852,r2,{'_modeljson': 'rf/car.json'},
bng_breastTumor,0,regression,0.150611,r2,{'_modeljson': 'rf/connect-4.json'},
bng_breastTumor,0,regression,-0.02142,r2,{'_modeljson': 'rf/default.json'},
bng_breastTumor,0,regression,0.183562,r2,{'_modeljson': 'rf/dilbert.json'},
bng_breastTumor,0,regression,0.0414589,r2,{'_modeljson': 'rf/Dionis.json'},
bng_breastTumor,0,regression,0.00390625,r2,{'_modeljson': 'rf/poker.json'},
bng_pbc,0,regression,0.344043,r2,{'_modeljson': 'rf/2dplanes.json'},
bng_pbc,0,regression,0.402376,r2,{'_modeljson': 'rf/adult.json'},
bng_pbc,0,regression,0.423262,r2,{'_modeljson': 'rf/Airlines.json'},
bng_pbc,0,regression,0.386142,r2,{'_modeljson': 'rf/Albert.json'},
bng_pbc,0,regression,0.403857,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
bng_pbc,0,regression,0.413944,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
bng_pbc,0,regression,0.43206,r2,{'_modeljson': 'rf/bng_pbc.json'},
bng_pbc,0,regression,0.348594,r2,{'_modeljson': 'rf/car.json'},
bng_pbc,0,regression,0.427588,r2,{'_modeljson': 'rf/connect-4.json'},
bng_pbc,0,regression,0.415337,r2,{'_modeljson': 'rf/default.json'},
bng_pbc,0,regression,0.393936,r2,{'_modeljson': 'rf/dilbert.json'},
bng_pbc,0,regression,0.415246,r2,{'_modeljson': 'rf/Dionis.json'},
car,0,multiclass,-0.0575382,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
car,0,multiclass,-0.155878,neg_logloss,{'_modeljson': 'rf/adult.json'},
car,0,multiclass,-0.0691041,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
car,0,multiclass,-0.156607,neg_logloss,{'_modeljson': 'rf/Albert.json'},
car,0,multiclass,-0.156968,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
car,0,multiclass,-0.0692317,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
car,0,multiclass,-0.159856,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
car,0,multiclass,-0.046769,neg_logloss,{'_modeljson': 'rf/car.json'},
car,0,multiclass,-0.0981933,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
car,0,multiclass,-0.0971712,neg_logloss,{'_modeljson': 'rf/default.json'},
car,0,multiclass,-0.0564843,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
car,0,multiclass,-0.157771,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
car,0,multiclass,-0.0511764,neg_logloss,{'_modeljson': 'rf/poker.json'},
connect-4,0,multiclass,-0.725888,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
connect-4,0,multiclass,-0.576056,neg_logloss,{'_modeljson': 'rf/adult.json'},
connect-4,0,multiclass,-0.48458,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
connect-4,0,multiclass,-0.505598,neg_logloss,{'_modeljson': 'rf/Albert.json'},
connect-4,0,multiclass,-0.568184,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
connect-4,0,multiclass,-0.537511,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
connect-4,0,multiclass,-0.479022,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
connect-4,0,multiclass,-0.713123,neg_logloss,{'_modeljson': 'rf/car.json'},
connect-4,0,multiclass,-0.475306,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
connect-4,0,multiclass,-0.518061,neg_logloss,{'_modeljson': 'rf/default.json'},
connect-4,0,multiclass,-0.599112,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
connect-4,0,multiclass,-0.503642,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
connect-4,0,multiclass,-0.57852,neg_logloss,{'_modeljson': 'rf/poker.json'},
dilbert,0,multiclass,-0.557959,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
dilbert,0,multiclass,-0.294462,neg_logloss,{'_modeljson': 'rf/adult.json'},
dilbert,0,multiclass,-0.293928,neg_logloss,{'_modeljson': 'rf/Airlines.json'},
dilbert,0,multiclass,-0.299661,neg_logloss,{'_modeljson': 'rf/Albert.json'},
dilbert,0,multiclass,-0.294668,neg_logloss,{'_modeljson': 'rf/Amazon_employee_access.json'},
dilbert,0,multiclass,-0.314706,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
dilbert,0,multiclass,-0.313807,neg_logloss,{'_modeljson': 'rf/bng_pbc.json'},
dilbert,0,multiclass,-0.51482,neg_logloss,{'_modeljson': 'rf/car.json'},
dilbert,0,multiclass,-0.293982,neg_logloss,{'_modeljson': 'rf/connect-4.json'},
dilbert,0,multiclass,-0.343209,neg_logloss,{'_modeljson': 'rf/default.json'},
dilbert,0,multiclass,-0.2945,neg_logloss,{'_modeljson': 'rf/dilbert.json'},
dilbert,0,multiclass,-0.298305,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
Dionis,0,multiclass,-3.55264,neg_logloss,{'_modeljson': 'rf/2dplanes.json'},
Dionis,0,multiclass,-1.07117,neg_logloss,{'_modeljson': 'rf/bng_breastTumor.json'},
Dionis,0,multiclass,-0.784388,neg_logloss,{'_modeljson': 'rf/default.json'},
Dionis,0,multiclass,-0.580332,neg_logloss,{'_modeljson': 'rf/Dionis.json'},
poker,0,regression,0.125176,r2,{'_modeljson': 'rf/2dplanes.json'},
poker,0,regression,0.148019,r2,{'_modeljson': 'rf/adult.json'},
poker,0,regression,0.322507,r2,{'_modeljson': 'rf/Airlines.json'},
poker,0,regression,0.172264,r2,{'_modeljson': 'rf/Albert.json'},
poker,0,regression,0.113673,r2,{'_modeljson': 'rf/Amazon_employee_access.json'},
poker,0,regression,0.243427,r2,{'_modeljson': 'rf/bng_breastTumor.json'},
poker,0,regression,0.379662,r2,{'_modeljson': 'rf/bng_pbc.json'},
poker,0,regression,0.133342,r2,{'_modeljson': 'rf/car.json'},
poker,0,regression,0.296597,r2,{'_modeljson': 'rf/connect-4.json'},
poker,0,regression,0.608532,r2,{'_modeljson': 'rf/default.json'},
poker,0,regression,0.192625,r2,{'_modeljson': 'rf/dilbert.json'},
poker,0,regression,0.172139,r2,{'_modeljson': 'rf/Dionis.json'},
poker,0,regression,0.528869,r2,{'_modeljson': 'rf/poker.json'},
1 task fold type result metric params info
2 2dplanes 0 regression 0.946488 r2 {'_modeljson': 'rf/2dplanes.json'}
3 2dplanes 0 regression 0.936392 r2 {'_modeljson': 'rf/adult.json'}
4 2dplanes 0 regression 0.940486 r2 {'_modeljson': 'rf/Airlines.json'}
5 2dplanes 0 regression 0.924025 r2 {'_modeljson': 'rf/Albert.json'}
6 2dplanes 0 regression 0.911362 r2 {'_modeljson': 'rf/Amazon_employee_access.json'}
7 2dplanes 0 regression 0.944353 r2 {'_modeljson': 'rf/bng_breastTumor.json'}
8 2dplanes 0 regression 0.932343 r2 {'_modeljson': 'rf/bng_pbc.json'}
9 2dplanes 0 regression 0.946423 r2 {'_modeljson': 'rf/car.json'}
10 2dplanes 0 regression 0.937309 r2 {'_modeljson': 'rf/connect-4.json'}
11 2dplanes 0 regression 0.930126 r2 {'_modeljson': 'rf/default.json'}
12 2dplanes 0 regression 0.945707 r2 {'_modeljson': 'rf/dilbert.json'}
13 2dplanes 0 regression 0.923313 r2 {'_modeljson': 'rf/Dionis.json'}
14 2dplanes 0 regression 0.930579 r2 {'_modeljson': 'rf/poker.json'}
15 adult 0 binary 0.912946 auc {'_modeljson': 'rf/2dplanes.json'}
16 adult 0 binary 0.91978 auc {'_modeljson': 'rf/adult.json'}
17 adult 0 binary 0.910127 auc {'_modeljson': 'rf/Airlines.json'}
18 adult 0 binary 0.910553 auc {'_modeljson': 'rf/Albert.json'}
19 adult 0 binary 0.919662 auc {'_modeljson': 'rf/Amazon_employee_access.json'}
20 adult 0 binary 0.915769 auc {'_modeljson': 'rf/bng_breastTumor.json'}
21 adult 0 binary 0.91003 auc {'_modeljson': 'rf/bng_pbc.json'}
22 adult 0 binary 0.914697 auc {'_modeljson': 'rf/car.json'}
23 adult 0 binary 0.911118 auc {'_modeljson': 'rf/connect-4.json'}
24 adult 0 binary 0.907368 auc {'_modeljson': 'rf/default.json'}
25 adult 0 binary 0.919216 auc {'_modeljson': 'rf/dilbert.json'}
26 adult 0 binary 0.910528 auc {'_modeljson': 'rf/Dionis.json'}
27 adult 0 binary 0.904508 auc {'_modeljson': 'rf/poker.json'}
28 Airlines 0 binary 0.687817 auc {'_modeljson': 'rf/2dplanes.json'}
29 Airlines 0 binary 0.712804 auc {'_modeljson': 'rf/adult.json'}
30 Airlines 0 binary 0.727357 auc {'_modeljson': 'rf/Airlines.json'}
31 Airlines 0 binary 0.705541 auc {'_modeljson': 'rf/Albert.json'}
32 Airlines 0 binary 0.71012 auc {'_modeljson': 'rf/Amazon_employee_access.json'}
33 Airlines 0 binary 0.722532 auc {'_modeljson': 'rf/bng_breastTumor.json'}
34 Airlines 0 binary 0.709287 auc {'_modeljson': 'rf/bng_pbc.json'}
35 Airlines 0 binary 0.688678 auc {'_modeljson': 'rf/car.json'}
36 Airlines 0 binary 0.725288 auc {'_modeljson': 'rf/connect-4.json'}
37 Airlines 0 binary 0.657276 auc {'_modeljson': 'rf/default.json'}
38 Airlines 0 binary 0.708515 auc {'_modeljson': 'rf/dilbert.json'}
39 Airlines 0 binary 0.705826 auc {'_modeljson': 'rf/Dionis.json'}
40 Airlines 0 binary 0.699484 auc {'_modeljson': 'rf/poker.json'}
41 Albert 0 binary 0.712348 auc {'_modeljson': 'rf/2dplanes.json'}
42 Albert 0 binary 0.72836 auc {'_modeljson': 'rf/adult.json'}
43 Albert 0 binary 0.734105 auc {'_modeljson': 'rf/Airlines.json'}
44 Albert 0 binary 0.737119 auc {'_modeljson': 'rf/Albert.json'}
45 Albert 0 binary 0.729216 auc {'_modeljson': 'rf/Amazon_employee_access.json'}
46 Albert 0 binary 0.731546 auc {'_modeljson': 'rf/bng_breastTumor.json'}
47 Albert 0 binary 0.734847 auc {'_modeljson': 'rf/bng_pbc.json'}
48 Albert 0 binary 0.713965 auc {'_modeljson': 'rf/car.json'}
49 Albert 0 binary 0.735372 auc {'_modeljson': 'rf/connect-4.json'}
50 Albert 0 binary 0.728232 auc {'_modeljson': 'rf/default.json'}
51 Albert 0 binary 0.726823 auc {'_modeljson': 'rf/dilbert.json'}
52 Albert 0 binary 0.735994 auc {'_modeljson': 'rf/Dionis.json'}
53 Amazon_employee_access 0 binary 0.728779 auc {'_modeljson': 'rf/2dplanes.json'}
54 Amazon_employee_access 0 binary 0.87801 auc {'_modeljson': 'rf/adult.json'}
55 Amazon_employee_access 0 binary 0.88085 auc {'_modeljson': 'rf/Airlines.json'}
56 Amazon_employee_access 0 binary 0.881869 auc {'_modeljson': 'rf/Albert.json'}
57 Amazon_employee_access 0 binary 0.881463 auc {'_modeljson': 'rf/Amazon_employee_access.json'}
58 Amazon_employee_access 0 binary 0.882723 auc {'_modeljson': 'rf/bng_breastTumor.json'}
59 Amazon_employee_access 0 binary 0.88299 auc {'_modeljson': 'rf/bng_pbc.json'}
60 Amazon_employee_access 0 binary 0.808575 auc {'_modeljson': 'rf/car.json'}
61 Amazon_employee_access 0 binary 0.881209 auc {'_modeljson': 'rf/connect-4.json'}
62 Amazon_employee_access 0 binary 0.877507 auc {'_modeljson': 'rf/default.json'}
63 Amazon_employee_access 0 binary 0.875146 auc {'_modeljson': 'rf/dilbert.json'}
64 Amazon_employee_access 0 binary 0.878121 auc {'_modeljson': 'rf/Dionis.json'}
65 Amazon_employee_access 0 binary 0.886312 auc {'_modeljson': 'rf/poker.json'}
66 bng_breastTumor 0 regression 0.153657 r2 {'_modeljson': 'rf/2dplanes.json'}
67 bng_breastTumor 0 regression 0.156403 r2 {'_modeljson': 'rf/adult.json'}
68 bng_breastTumor 0 regression 0.174569 r2 {'_modeljson': 'rf/Airlines.json'}
69 bng_breastTumor 0 regression 0.0441869 r2 {'_modeljson': 'rf/Albert.json'}
70 bng_breastTumor 0 regression 0.157992 r2 {'_modeljson': 'rf/Amazon_employee_access.json'}
71 bng_breastTumor 0 regression 0.186635 r2 {'_modeljson': 'rf/bng_breastTumor.json'}
72 bng_breastTumor 0 regression 0.0527547 r2 {'_modeljson': 'rf/bng_pbc.json'}
73 bng_breastTumor 0 regression 0.158852 r2 {'_modeljson': 'rf/car.json'}
74 bng_breastTumor 0 regression 0.150611 r2 {'_modeljson': 'rf/connect-4.json'}
75 bng_breastTumor 0 regression -0.02142 r2 {'_modeljson': 'rf/default.json'}
76 bng_breastTumor 0 regression 0.183562 r2 {'_modeljson': 'rf/dilbert.json'}
77 bng_breastTumor 0 regression 0.0414589 r2 {'_modeljson': 'rf/Dionis.json'}
78 bng_breastTumor 0 regression 0.00390625 r2 {'_modeljson': 'rf/poker.json'}
79 bng_pbc 0 regression 0.344043 r2 {'_modeljson': 'rf/2dplanes.json'}
80 bng_pbc 0 regression 0.402376 r2 {'_modeljson': 'rf/adult.json'}
81 bng_pbc 0 regression 0.423262 r2 {'_modeljson': 'rf/Airlines.json'}
82 bng_pbc 0 regression 0.386142 r2 {'_modeljson': 'rf/Albert.json'}
83 bng_pbc 0 regression 0.403857 r2 {'_modeljson': 'rf/Amazon_employee_access.json'}
84 bng_pbc 0 regression 0.413944 r2 {'_modeljson': 'rf/bng_breastTumor.json'}
85 bng_pbc 0 regression 0.43206 r2 {'_modeljson': 'rf/bng_pbc.json'}
86 bng_pbc 0 regression 0.348594 r2 {'_modeljson': 'rf/car.json'}
87 bng_pbc 0 regression 0.427588 r2 {'_modeljson': 'rf/connect-4.json'}
88 bng_pbc 0 regression 0.415337 r2 {'_modeljson': 'rf/default.json'}
89 bng_pbc 0 regression 0.393936 r2 {'_modeljson': 'rf/dilbert.json'}
90 bng_pbc 0 regression 0.415246 r2 {'_modeljson': 'rf/Dionis.json'}
91 car 0 multiclass -0.0575382 neg_logloss {'_modeljson': 'rf/2dplanes.json'}
92 car 0 multiclass -0.155878 neg_logloss {'_modeljson': 'rf/adult.json'}
93 car 0 multiclass -0.0691041 neg_logloss {'_modeljson': 'rf/Airlines.json'}
94 car 0 multiclass -0.156607 neg_logloss {'_modeljson': 'rf/Albert.json'}
95 car 0 multiclass -0.156968 neg_logloss {'_modeljson': 'rf/Amazon_employee_access.json'}
96 car 0 multiclass -0.0692317 neg_logloss {'_modeljson': 'rf/bng_breastTumor.json'}
97 car 0 multiclass -0.159856 neg_logloss {'_modeljson': 'rf/bng_pbc.json'}
98 car 0 multiclass -0.046769 neg_logloss {'_modeljson': 'rf/car.json'}
99 car 0 multiclass -0.0981933 neg_logloss {'_modeljson': 'rf/connect-4.json'}
100 car 0 multiclass -0.0971712 neg_logloss {'_modeljson': 'rf/default.json'}
101 car 0 multiclass -0.0564843 neg_logloss {'_modeljson': 'rf/dilbert.json'}
102 car 0 multiclass -0.157771 neg_logloss {'_modeljson': 'rf/Dionis.json'}
103 car 0 multiclass -0.0511764 neg_logloss {'_modeljson': 'rf/poker.json'}
104 connect-4 0 multiclass -0.725888 neg_logloss {'_modeljson': 'rf/2dplanes.json'}
105 connect-4 0 multiclass -0.576056 neg_logloss {'_modeljson': 'rf/adult.json'}
106 connect-4 0 multiclass -0.48458 neg_logloss {'_modeljson': 'rf/Airlines.json'}
107 connect-4 0 multiclass -0.505598 neg_logloss {'_modeljson': 'rf/Albert.json'}
108 connect-4 0 multiclass -0.568184 neg_logloss {'_modeljson': 'rf/Amazon_employee_access.json'}
109 connect-4 0 multiclass -0.537511 neg_logloss {'_modeljson': 'rf/bng_breastTumor.json'}
110 connect-4 0 multiclass -0.479022 neg_logloss {'_modeljson': 'rf/bng_pbc.json'}
111 connect-4 0 multiclass -0.713123 neg_logloss {'_modeljson': 'rf/car.json'}
112 connect-4 0 multiclass -0.475306 neg_logloss {'_modeljson': 'rf/connect-4.json'}
113 connect-4 0 multiclass -0.518061 neg_logloss {'_modeljson': 'rf/default.json'}
114 connect-4 0 multiclass -0.599112 neg_logloss {'_modeljson': 'rf/dilbert.json'}
115 connect-4 0 multiclass -0.503642 neg_logloss {'_modeljson': 'rf/Dionis.json'}
116 connect-4 0 multiclass -0.57852 neg_logloss {'_modeljson': 'rf/poker.json'}
117 dilbert 0 multiclass -0.557959 neg_logloss {'_modeljson': 'rf/2dplanes.json'}
118 dilbert 0 multiclass -0.294462 neg_logloss {'_modeljson': 'rf/adult.json'}
119 dilbert 0 multiclass -0.293928 neg_logloss {'_modeljson': 'rf/Airlines.json'}
120 dilbert 0 multiclass -0.299661 neg_logloss {'_modeljson': 'rf/Albert.json'}
121 dilbert 0 multiclass -0.294668 neg_logloss {'_modeljson': 'rf/Amazon_employee_access.json'}
122 dilbert 0 multiclass -0.314706 neg_logloss {'_modeljson': 'rf/bng_breastTumor.json'}
123 dilbert 0 multiclass -0.313807 neg_logloss {'_modeljson': 'rf/bng_pbc.json'}
124 dilbert 0 multiclass -0.51482 neg_logloss {'_modeljson': 'rf/car.json'}
125 dilbert 0 multiclass -0.293982 neg_logloss {'_modeljson': 'rf/connect-4.json'}
126 dilbert 0 multiclass -0.343209 neg_logloss {'_modeljson': 'rf/default.json'}
127 dilbert 0 multiclass -0.2945 neg_logloss {'_modeljson': 'rf/dilbert.json'}
128 dilbert 0 multiclass -0.298305 neg_logloss {'_modeljson': 'rf/Dionis.json'}
129 Dionis 0 multiclass -3.55264 neg_logloss {'_modeljson': 'rf/2dplanes.json'}
130 Dionis 0 multiclass -1.07117 neg_logloss {'_modeljson': 'rf/bng_breastTumor.json'}
131 Dionis 0 multiclass -0.784388 neg_logloss {'_modeljson': 'rf/default.json'}
132 Dionis 0 multiclass -0.580332 neg_logloss {'_modeljson': 'rf/Dionis.json'}
133 poker 0 regression 0.125176 r2 {'_modeljson': 'rf/2dplanes.json'}
134 poker 0 regression 0.148019 r2 {'_modeljson': 'rf/adult.json'}
135 poker 0 regression 0.322507 r2 {'_modeljson': 'rf/Airlines.json'}
136 poker 0 regression 0.172264 r2 {'_modeljson': 'rf/Albert.json'}
137 poker 0 regression 0.113673 r2 {'_modeljson': 'rf/Amazon_employee_access.json'}
138 poker 0 regression 0.243427 r2 {'_modeljson': 'rf/bng_breastTumor.json'}
139 poker 0 regression 0.379662 r2 {'_modeljson': 'rf/bng_pbc.json'}
140 poker 0 regression 0.133342 r2 {'_modeljson': 'rf/car.json'}
141 poker 0 regression 0.296597 r2 {'_modeljson': 'rf/connect-4.json'}
142 poker 0 regression 0.608532 r2 {'_modeljson': 'rf/default.json'}
143 poker 0 regression 0.192625 r2 {'_modeljson': 'rf/dilbert.json'}
144 poker 0 regression 0.172139 r2 {'_modeljson': 'rf/Dionis.json'}
145 poker 0 regression 0.528869 r2 {'_modeljson': 'rf/poker.json'}

View File

@ -0,0 +1,222 @@
import sys
from sklearn.datasets import load_iris, fetch_california_housing, load_breast_cancer
from sklearn.model_selection import train_test_split
import pandas as pd
from flaml import AutoML
from flaml.default import (
portfolio,
regret,
preprocess_and_suggest_hyperparams,
suggest_hyperparams,
suggest_learner,
)
def test_build_portfolio(path="test/default", strategy="greedy"):
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task binary --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
portfolio.main()
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task multiclass --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
portfolio.main()
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task regression --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
portfolio.main()
def test_greedy_feedback(path="test/default", strategy="greedy-feedback"):
# sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task binary --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
# portfolio.main()
# sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task multiclass --estimator lgbm xgboost xgb_limitdepth rf extra_tree --strategy {strategy}".split()
# portfolio.main()
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task regression --estimator lgbm --strategy {strategy}".split()
portfolio.main()
def test_iris(as_frame=True):
automl = AutoML()
automl_settings = {
"time_budget": 2,
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris.log",
"n_jobs": 1,
"starting_points": "data",
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
automl.fit(X_train, y_train, **automl_settings)
automl_settings["starting_points"] = "data:test/default"
automl.fit(X_train, y_train, **automl_settings)
def test_housing(as_frame=True):
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "regression",
"estimator_list": ["xgboost", "lgbm"],
"log_file_name": "test/housing.log",
"n_jobs": 1,
"starting_points": "data",
"max_iter": 0,
}
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=as_frame)
automl.fit(X_train, y_train, **automl_settings)
def test_regret():
sys.argv = "regret.py --result_csv test/default/lgbm/results.csv --task_type binary --output test/default/lgbm/binary_regret.csv".split()
regret.main()
def test_suggest_classification():
location = "test/default"
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
suggested = suggest_hyperparams(
"classification", X_train, y_train, "lgbm", location=location
)
print(suggested)
suggested = preprocess_and_suggest_hyperparams(
"classification", X_train, y_train, "xgboost", location=location
)
print(suggested)
suggested = suggest_hyperparams(
"classification", X_train, y_train, "xgb_limitdepth", location=location
)
print(suggested)
X, y = load_iris(return_X_y=True, as_frame=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42
)
(
hyperparams,
estimator_class,
X,
y,
feature_transformer,
label_transformer,
) = preprocess_and_suggest_hyperparams(
"classification", X_train, y_train, "lgbm", location=location
)
model = estimator_class(**hyperparams) # estimator_class is LGBMClassifier
model.fit(X, y)
X_test = feature_transformer.transform(X_test)
y_pred = label_transformer.inverse_transform(
pd.Series(model.predict(X_test).astype(int))
)
print(y_pred)
suggested = suggest_hyperparams(
"classification", X_train, y_train, "xgboost", location=location
)
print(suggested)
suggested = preprocess_and_suggest_hyperparams(
"classification", X_train, y_train, "xgb_limitdepth", location=location
)
print(suggested)
suggested = suggest_hyperparams(
"classification", X_train, y_train, "xgb_limitdepth", location=location
)
suggested = suggest_learner(
"classification",
X_train,
y_train,
estimator_list=["xgboost", "xgb_limitdepth"],
location=location,
)
print(suggested)
def test_suggest_regression():
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
suggested = suggest_hyperparams(
"regression", X_train, y_train, "lgbm", location=location
)
print(suggested)
suggested = preprocess_and_suggest_hyperparams(
"regression", X_train, y_train, "xgboost", location=location
)
print(suggested)
suggested = suggest_hyperparams(
"regression", X_train, y_train, "xgb_limitdepth", location=location
)
print(suggested)
suggested = suggest_learner("regression", X_train, y_train, location=location)
print(suggested)
def test_rf():
from flaml.default.estimator import RandomForestRegressor, RandomForestClassifier
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
rf = RandomForestClassifier()
rf.fit(X_train[:100], y_train[:100])
rf.predict(X_train)
rf.predict_proba(X_train)
print(rf)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
rf = RandomForestRegressor(default_location=location)
rf.fit(X_train[:100], y_train[:100])
rf.predict(X_train)
print(rf)
def test_extratrees():
from flaml.default.estimator import ExtraTreesRegressor, ExtraTreesClassifier
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
classifier = ExtraTreesClassifier()
classifier.fit(X_train[:100], y_train[:100])
classifier.predict(X_train)
classifier.predict_proba(X_train)
print(classifier)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
regressor = ExtraTreesRegressor(default_location=location)
regressor.fit(X_train[:100], y_train[:100])
regressor.predict(X_train)
print(regressor)
def test_lgbm():
from flaml.default.estimator import LGBMRegressor, LGBMClassifier
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
classifier = LGBMClassifier(n_jobs=1)
classifier.fit(X_train, y_train)
classifier.predict(X_train, pred_contrib=True)
classifier.predict_proba(X_train)
print(classifier.get_params())
print(classifier)
print(classifier.classes_)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
regressor = LGBMRegressor(default_location=location)
regressor.fit(X_train, y_train)
regressor.predict(X_train)
print(regressor)
def test_xgboost():
from flaml.default.estimator import XGBRegressor, XGBClassifier
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
classifier = XGBClassifier(max_depth=0)
classifier.fit(X_train[:100], y_train[:100])
classifier.predict(X_train)
classifier.predict_proba(X_train)
print(classifier)
print(classifier.classes_)
location = "test/default"
X_train, y_train = fetch_california_housing(return_X_y=True, as_frame=True)
regressor = XGBRegressor(default_location=location)
regressor.fit(X_train[:100], y_train[:100])
regressor.predict(X_train)
print(regressor)
if __name__ == "__main__":
test_build_portfolio("flaml/default")

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 2704, "max_depth": 2, "min_child_weight": 0.23751738294732322, "learning_rate": 0.019828117294812268, "subsample": 0.8798706041292946, "colsample_bylevel": 0.978891799553329, "colsample_bytree": 1.0, "reg_alpha": 0.3023181744217667, "reg_lambda": 101.10719177747677}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3573, "max_depth": 13, "min_child_weight": 2.921657581984971, "learning_rate": 0.00699976723859477, "subsample": 0.6110504706508572, "colsample_bylevel": 0.9998661537469163, "colsample_bytree": 0.5457693412489456, "reg_alpha": 0.05315763138176945, "reg_lambda": 23.067599600958623, "FLAML_sample_size": 436899}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3526, "max_depth": 13, "min_child_weight": 0.0994486725676356, "learning_rate": 0.0009765625, "subsample": 0.46123759274652554, "colsample_bylevel": 1.0, "colsample_bytree": 0.4498813776397717, "reg_alpha": 0.002599398546499414, "reg_lambda": 0.028336396854402753}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 5457, "max_depth": 6, "min_child_weight": 0.19978269031877885, "learning_rate": 0.003906732665632749, "subsample": 0.8207785234496902, "colsample_bylevel": 0.8438751931476698, "colsample_bytree": 0.42202862997585794, "reg_alpha": 0.017372558844968737, "reg_lambda": 0.03977802121721031}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 7782, "max_depth": 7, "min_child_weight": 0.3794874452608909, "learning_rate": 0.006733035771172325, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 0.5611305922560855, "reg_alpha": 8.203853065625196, "reg_lambda": 56.48543538808782, "FLAML_sample_size": 94478}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1013, "max_depth": 15, "min_child_weight": 57.33124114425335, "learning_rate": 0.009706354607542536, "subsample": 1.0, "colsample_bylevel": 0.7925997002174675, "colsample_bytree": 0.874062117666267, "reg_alpha": 0.7965442116152655, "reg_lambda": 2.769937488341342, "FLAML_sample_size": 810000}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 624, "max_depth": 3, "min_child_weight": 0.0017043575728019624, "learning_rate": 0.8481863978692453, "subsample": 0.9897901748446495, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 0.008686469265798288}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1499, "max_depth": 11, "min_child_weight": 0.07563529776156448, "learning_rate": 0.039042609221240955, "subsample": 0.7832981935783824, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 23.513066752844153}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 405, "max_depth": 4, "min_child_weight": 0.2264977130755997, "learning_rate": 0.3390883186947167, "subsample": 0.8078627200173096, "colsample_bylevel": 0.8570282862730856, "colsample_bytree": 0.8280063772581445, "reg_alpha": 0.007634576038353066, "reg_lambda": 1.7101180066063097}}

View File

@ -0,0 +1 @@
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3234, "max_depth": 13, "min_child_weight": 0.07784911437942721, "learning_rate": 0.0565426521738442, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.007928962402687697, "reg_lambda": 3.881249823648859, "FLAML_sample_size": 830258}}

View File

@ -0,0 +1,116 @@
task,fold,type,result,params
2dplanes,0,regression,0.946567,{'_modeljson': 'xgblimit/2dplanes.json'}
2dplanes,0,regression,0.94503,{'_modeljson': 'xgblimit/adult.json'}
2dplanes,0,regression,0.945074,{'_modeljson': 'xgblimit/Airlines.json'}
2dplanes,0,regression,0.806694,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
2dplanes,0,regression,0.945799,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
2dplanes,0,regression,0.944103,{'_modeljson': 'xgblimit/bng_pbc.json'}
2dplanes,0,regression,0.945327,{'_modeljson': 'xgblimit/car.json'}
2dplanes,0,regression,0.923926,{'_modeljson': 'xgblimit/connect-4.json'}
2dplanes,0,regression,0.944454,{'_modeljson': 'xgblimit/default.json'}
2dplanes,0,regression,0.945212,{'_modeljson': 'xgblimit/dilbert.json'}
2dplanes,0,regression,0.910852,{'_modeljson': 'xgblimit/poker.json'}
adult,0,binary,0.923082,{'_modeljson': 'xgblimit/2dplanes.json'}
adult,0,binary,0.932355,{'_modeljson': 'xgblimit/adult.json'}
adult,0,binary,0.928373,{'_modeljson': 'xgblimit/Airlines.json'}
adult,0,binary,0.927574,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
adult,0,binary,0.929427,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
adult,0,binary,0.92204,{'_modeljson': 'xgblimit/bng_pbc.json'}
adult,0,binary,0.721115,{'_modeljson': 'xgblimit/car.json'}
adult,0,binary,0.921465,{'_modeljson': 'xgblimit/connect-4.json'}
adult,0,binary,0.931234,{'_modeljson': 'xgblimit/default.json'}
adult,0,binary,0.927801,{'_modeljson': 'xgblimit/dilbert.json'}
adult,0,binary,0.916878,{'_modeljson': 'xgblimit/poker.json'}
Airlines,0,binary,0.699604,{'_modeljson': 'xgblimit/2dplanes.json'}
Airlines,0,binary,0.711053,{'_modeljson': 'xgblimit/adult.json'}
Airlines,0,binary,0.732443,{'_modeljson': 'xgblimit/Airlines.json'}
Airlines,0,binary,0.72875,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
Airlines,0,binary,0.725056,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
Airlines,0,binary,0.730476,{'_modeljson': 'xgblimit/bng_pbc.json'}
Airlines,0,binary,0.71788,{'_modeljson': 'xgblimit/car.json'}
Airlines,0,binary,0.72604,{'_modeljson': 'xgblimit/connect-4.json'}
Airlines,0,binary,0.719845,{'_modeljson': 'xgblimit/default.json'}
Airlines,0,binary,0.719302,{'_modeljson': 'xgblimit/dilbert.json'}
Airlines,0,binary,0.684382,{'_modeljson': 'xgblimit/poker.json'}
Albert,0,binary,0.743682,{'_modeljson': 'xgblimit/2dplanes.json'}
Albert,0,binary,0.759246,{'_modeljson': 'xgblimit/adult.json'}
Albert,0,binary,0.766177,{'_modeljson': 'xgblimit/Airlines.json'}
Albert,0,binary,0.74969,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
Albert,0,binary,0.766961,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
Albert,0,binary,0.764534,{'_modeljson': 'xgblimit/bng_pbc.json'}
Albert,0,binary,0.753311,{'_modeljson': 'xgblimit/car.json'}
Albert,0,binary,0.765229,{'_modeljson': 'xgblimit/connect-4.json'}
Albert,0,binary,0.757802,{'_modeljson': 'xgblimit/default.json'}
Albert,0,binary,0.7596,{'_modeljson': 'xgblimit/dilbert.json'}
Albert,0,binary,0.761456,{'_modeljson': 'xgblimit/poker.json'}
Amazon_employee_access,0,binary,0.759779,{'_modeljson': 'xgblimit/2dplanes.json'}
Amazon_employee_access,0,binary,0.876747,{'_modeljson': 'xgblimit/adult.json'}
Amazon_employee_access,0,binary,0.864954,{'_modeljson': 'xgblimit/Airlines.json'}
Amazon_employee_access,0,binary,0.894651,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
Amazon_employee_access,0,binary,0.845645,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
Amazon_employee_access,0,binary,0.789099,{'_modeljson': 'xgblimit/bng_pbc.json'}
Amazon_employee_access,0,binary,0.550859,{'_modeljson': 'xgblimit/car.json'}
Amazon_employee_access,0,binary,0.870599,{'_modeljson': 'xgblimit/connect-4.json'}
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgblimit/default.json'}
Amazon_employee_access,0,binary,0.86385,{'_modeljson': 'xgblimit/dilbert.json'}
Amazon_employee_access,0,binary,0.864415,{'_modeljson': 'xgblimit/poker.json'}
bng_breastTumor,0,regression,0.163382,{'_modeljson': 'xgblimit/2dplanes.json'}
bng_breastTumor,0,regression,0.1789,{'_modeljson': 'xgblimit/adult.json'}
bng_breastTumor,0,regression,0.188483,{'_modeljson': 'xgblimit/Airlines.json'}
bng_breastTumor,0,regression,0.159704,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
bng_breastTumor,0,regression,0.1953,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
bng_breastTumor,0,regression,0.191805,{'_modeljson': 'xgblimit/bng_pbc.json'}
bng_breastTumor,0,regression,0.12139,{'_modeljson': 'xgblimit/car.json'}
bng_breastTumor,0,regression,0.163165,{'_modeljson': 'xgblimit/connect-4.json'}
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgblimit/default.json'}
bng_breastTumor,0,regression,0.183899,{'_modeljson': 'xgblimit/dilbert.json'}
bng_breastTumor,0,regression,0.108646,{'_modeljson': 'xgblimit/poker.json'}
bng_pbc,0,regression,0.384556,{'_modeljson': 'xgblimit/2dplanes.json'}
bng_pbc,0,regression,0.42041,{'_modeljson': 'xgblimit/adult.json'}
bng_pbc,0,regression,0.449808,{'_modeljson': 'xgblimit/Airlines.json'}
bng_pbc,0,regression,0.409944,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
bng_pbc,0,regression,0.439854,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
bng_pbc,0,regression,0.457955,{'_modeljson': 'xgblimit/bng_pbc.json'}
bng_pbc,0,regression,0.418702,{'_modeljson': 'xgblimit/car.json'}
bng_pbc,0,regression,0.455731,{'_modeljson': 'xgblimit/connect-4.json'}
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgblimit/default.json'}
bng_pbc,0,regression,0.423052,{'_modeljson': 'xgblimit/dilbert.json'}
bng_pbc,0,regression,0.447478,{'_modeljson': 'xgblimit/poker.json'}
car,0,multiclass,-0.18106,{'_modeljson': 'xgblimit/2dplanes.json'}
car,0,multiclass,-0.170386,{'_modeljson': 'xgblimit/adult.json'}
car,0,multiclass,-0.169973,{'_modeljson': 'xgblimit/Airlines.json'}
car,0,multiclass,-0.498314,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
car,0,multiclass,-0.230405,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
car,0,multiclass,-0.330863,{'_modeljson': 'xgblimit/bng_pbc.json'}
car,0,multiclass,-8.16E-05,{'_modeljson': 'xgblimit/car.json'}
car,0,multiclass,-0.0239037,{'_modeljson': 'xgblimit/connect-4.json'}
car,0,multiclass,-0.010029,{'_modeljson': 'xgblimit/default.json'}
car,0,multiclass,-0.00720156,{'_modeljson': 'xgblimit/dilbert.json'}
car,0,multiclass,-0.00360416,{'_modeljson': 'xgblimit/poker.json'}
connect-4,0,multiclass,-0.597091,{'_modeljson': 'xgblimit/2dplanes.json'}
connect-4,0,multiclass,-0.484427,{'_modeljson': 'xgblimit/adult.json'}
connect-4,0,multiclass,-0.387769,{'_modeljson': 'xgblimit/Airlines.json'}
connect-4,0,multiclass,-0.553347,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
connect-4,0,multiclass,-0.425107,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
connect-4,0,multiclass,-0.441974,{'_modeljson': 'xgblimit/bng_pbc.json'}
connect-4,0,multiclass,-0.410519,{'_modeljson': 'xgblimit/car.json'}
connect-4,0,multiclass,-0.342773,{'_modeljson': 'xgblimit/connect-4.json'}
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgblimit/default.json'}
connect-4,0,multiclass,-0.416631,{'_modeljson': 'xgblimit/dilbert.json'}
connect-4,0,multiclass,-0.466644,{'_modeljson': 'xgblimit/poker.json'}
dilbert,0,multiclass,-0.189149,{'_modeljson': 'xgblimit/2dplanes.json'}
dilbert,0,multiclass,-0.184569,{'_modeljson': 'xgblimit/bng_pbc.json'}
dilbert,0,multiclass,-0.0485906,{'_modeljson': 'xgblimit/car.json'}
dilbert,0,multiclass,-0.0643938,{'_modeljson': 'xgblimit/default.json'}
dilbert,0,multiclass,-0.0425865,{'_modeljson': 'xgblimit/dilbert.json'}
poker,0,regression,0.194424,{'_modeljson': 'xgblimit/2dplanes.json'}
poker,0,regression,0.443714,{'_modeljson': 'xgblimit/adult.json'}
poker,0,regression,0.837273,{'_modeljson': 'xgblimit/Airlines.json'}
poker,0,regression,0.354783,{'_modeljson': 'xgblimit/Amazon_employee_access.json'}
poker,0,regression,0.749681,{'_modeljson': 'xgblimit/bng_breastTumor.json'}
poker,0,regression,0.782336,{'_modeljson': 'xgblimit/bng_pbc.json'}
poker,0,regression,0.640848,{'_modeljson': 'xgblimit/car.json'}
poker,0,regression,0.924649,{'_modeljson': 'xgblimit/connect-4.json'}
poker,0,regression,0.635679,{'_modeljson': 'xgblimit/default.json'}
poker,0,regression,0.672338,{'_modeljson': 'xgblimit/dilbert.json'}
poker,0,regression,0.92563,{'_modeljson': 'xgblimit/poker.json'}
1 task fold type result params
2 2dplanes 0 regression 0.946567 {'_modeljson': 'xgblimit/2dplanes.json'}
3 2dplanes 0 regression 0.94503 {'_modeljson': 'xgblimit/adult.json'}
4 2dplanes 0 regression 0.945074 {'_modeljson': 'xgblimit/Airlines.json'}
5 2dplanes 0 regression 0.806694 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
6 2dplanes 0 regression 0.945799 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
7 2dplanes 0 regression 0.944103 {'_modeljson': 'xgblimit/bng_pbc.json'}
8 2dplanes 0 regression 0.945327 {'_modeljson': 'xgblimit/car.json'}
9 2dplanes 0 regression 0.923926 {'_modeljson': 'xgblimit/connect-4.json'}
10 2dplanes 0 regression 0.944454 {'_modeljson': 'xgblimit/default.json'}
11 2dplanes 0 regression 0.945212 {'_modeljson': 'xgblimit/dilbert.json'}
12 2dplanes 0 regression 0.910852 {'_modeljson': 'xgblimit/poker.json'}
13 adult 0 binary 0.923082 {'_modeljson': 'xgblimit/2dplanes.json'}
14 adult 0 binary 0.932355 {'_modeljson': 'xgblimit/adult.json'}
15 adult 0 binary 0.928373 {'_modeljson': 'xgblimit/Airlines.json'}
16 adult 0 binary 0.927574 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
17 adult 0 binary 0.929427 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
18 adult 0 binary 0.92204 {'_modeljson': 'xgblimit/bng_pbc.json'}
19 adult 0 binary 0.721115 {'_modeljson': 'xgblimit/car.json'}
20 adult 0 binary 0.921465 {'_modeljson': 'xgblimit/connect-4.json'}
21 adult 0 binary 0.931234 {'_modeljson': 'xgblimit/default.json'}
22 adult 0 binary 0.927801 {'_modeljson': 'xgblimit/dilbert.json'}
23 adult 0 binary 0.916878 {'_modeljson': 'xgblimit/poker.json'}
24 Airlines 0 binary 0.699604 {'_modeljson': 'xgblimit/2dplanes.json'}
25 Airlines 0 binary 0.711053 {'_modeljson': 'xgblimit/adult.json'}
26 Airlines 0 binary 0.732443 {'_modeljson': 'xgblimit/Airlines.json'}
27 Airlines 0 binary 0.72875 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
28 Airlines 0 binary 0.725056 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
29 Airlines 0 binary 0.730476 {'_modeljson': 'xgblimit/bng_pbc.json'}
30 Airlines 0 binary 0.71788 {'_modeljson': 'xgblimit/car.json'}
31 Airlines 0 binary 0.72604 {'_modeljson': 'xgblimit/connect-4.json'}
32 Airlines 0 binary 0.719845 {'_modeljson': 'xgblimit/default.json'}
33 Airlines 0 binary 0.719302 {'_modeljson': 'xgblimit/dilbert.json'}
34 Airlines 0 binary 0.684382 {'_modeljson': 'xgblimit/poker.json'}
35 Albert 0 binary 0.743682 {'_modeljson': 'xgblimit/2dplanes.json'}
36 Albert 0 binary 0.759246 {'_modeljson': 'xgblimit/adult.json'}
37 Albert 0 binary 0.766177 {'_modeljson': 'xgblimit/Airlines.json'}
38 Albert 0 binary 0.74969 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
39 Albert 0 binary 0.766961 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
40 Albert 0 binary 0.764534 {'_modeljson': 'xgblimit/bng_pbc.json'}
41 Albert 0 binary 0.753311 {'_modeljson': 'xgblimit/car.json'}
42 Albert 0 binary 0.765229 {'_modeljson': 'xgblimit/connect-4.json'}
43 Albert 0 binary 0.757802 {'_modeljson': 'xgblimit/default.json'}
44 Albert 0 binary 0.7596 {'_modeljson': 'xgblimit/dilbert.json'}
45 Albert 0 binary 0.761456 {'_modeljson': 'xgblimit/poker.json'}
46 Amazon_employee_access 0 binary 0.759779 {'_modeljson': 'xgblimit/2dplanes.json'}
47 Amazon_employee_access 0 binary 0.876747 {'_modeljson': 'xgblimit/adult.json'}
48 Amazon_employee_access 0 binary 0.864954 {'_modeljson': 'xgblimit/Airlines.json'}
49 Amazon_employee_access 0 binary 0.894651 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
50 Amazon_employee_access 0 binary 0.845645 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
51 Amazon_employee_access 0 binary 0.789099 {'_modeljson': 'xgblimit/bng_pbc.json'}
52 Amazon_employee_access 0 binary 0.550859 {'_modeljson': 'xgblimit/car.json'}
53 Amazon_employee_access 0 binary 0.870599 {'_modeljson': 'xgblimit/connect-4.json'}
54 Amazon_employee_access 0 binary 0.851702 {'_modeljson': 'xgblimit/default.json'}
55 Amazon_employee_access 0 binary 0.86385 {'_modeljson': 'xgblimit/dilbert.json'}
56 Amazon_employee_access 0 binary 0.864415 {'_modeljson': 'xgblimit/poker.json'}
57 bng_breastTumor 0 regression 0.163382 {'_modeljson': 'xgblimit/2dplanes.json'}
58 bng_breastTumor 0 regression 0.1789 {'_modeljson': 'xgblimit/adult.json'}
59 bng_breastTumor 0 regression 0.188483 {'_modeljson': 'xgblimit/Airlines.json'}
60 bng_breastTumor 0 regression 0.159704 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
61 bng_breastTumor 0 regression 0.1953 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
62 bng_breastTumor 0 regression 0.191805 {'_modeljson': 'xgblimit/bng_pbc.json'}
63 bng_breastTumor 0 regression 0.12139 {'_modeljson': 'xgblimit/car.json'}
64 bng_breastTumor 0 regression 0.163165 {'_modeljson': 'xgblimit/connect-4.json'}
65 bng_breastTumor 0 regression 0.186541 {'_modeljson': 'xgblimit/default.json'}
66 bng_breastTumor 0 regression 0.183899 {'_modeljson': 'xgblimit/dilbert.json'}
67 bng_breastTumor 0 regression 0.108646 {'_modeljson': 'xgblimit/poker.json'}
68 bng_pbc 0 regression 0.384556 {'_modeljson': 'xgblimit/2dplanes.json'}
69 bng_pbc 0 regression 0.42041 {'_modeljson': 'xgblimit/adult.json'}
70 bng_pbc 0 regression 0.449808 {'_modeljson': 'xgblimit/Airlines.json'}
71 bng_pbc 0 regression 0.409944 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
72 bng_pbc 0 regression 0.439854 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
73 bng_pbc 0 regression 0.457955 {'_modeljson': 'xgblimit/bng_pbc.json'}
74 bng_pbc 0 regression 0.418702 {'_modeljson': 'xgblimit/car.json'}
75 bng_pbc 0 regression 0.455731 {'_modeljson': 'xgblimit/connect-4.json'}
76 bng_pbc 0 regression 0.436902 {'_modeljson': 'xgblimit/default.json'}
77 bng_pbc 0 regression 0.423052 {'_modeljson': 'xgblimit/dilbert.json'}
78 bng_pbc 0 regression 0.447478 {'_modeljson': 'xgblimit/poker.json'}
79 car 0 multiclass -0.18106 {'_modeljson': 'xgblimit/2dplanes.json'}
80 car 0 multiclass -0.170386 {'_modeljson': 'xgblimit/adult.json'}
81 car 0 multiclass -0.169973 {'_modeljson': 'xgblimit/Airlines.json'}
82 car 0 multiclass -0.498314 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
83 car 0 multiclass -0.230405 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
84 car 0 multiclass -0.330863 {'_modeljson': 'xgblimit/bng_pbc.json'}
85 car 0 multiclass -8.16E-05 {'_modeljson': 'xgblimit/car.json'}
86 car 0 multiclass -0.0239037 {'_modeljson': 'xgblimit/connect-4.json'}
87 car 0 multiclass -0.010029 {'_modeljson': 'xgblimit/default.json'}
88 car 0 multiclass -0.00720156 {'_modeljson': 'xgblimit/dilbert.json'}
89 car 0 multiclass -0.00360416 {'_modeljson': 'xgblimit/poker.json'}
90 connect-4 0 multiclass -0.597091 {'_modeljson': 'xgblimit/2dplanes.json'}
91 connect-4 0 multiclass -0.484427 {'_modeljson': 'xgblimit/adult.json'}
92 connect-4 0 multiclass -0.387769 {'_modeljson': 'xgblimit/Airlines.json'}
93 connect-4 0 multiclass -0.553347 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
94 connect-4 0 multiclass -0.425107 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
95 connect-4 0 multiclass -0.441974 {'_modeljson': 'xgblimit/bng_pbc.json'}
96 connect-4 0 multiclass -0.410519 {'_modeljson': 'xgblimit/car.json'}
97 connect-4 0 multiclass -0.342773 {'_modeljson': 'xgblimit/connect-4.json'}
98 connect-4 0 multiclass -0.430665 {'_modeljson': 'xgblimit/default.json'}
99 connect-4 0 multiclass -0.416631 {'_modeljson': 'xgblimit/dilbert.json'}
100 connect-4 0 multiclass -0.466644 {'_modeljson': 'xgblimit/poker.json'}
101 dilbert 0 multiclass -0.189149 {'_modeljson': 'xgblimit/2dplanes.json'}
102 dilbert 0 multiclass -0.184569 {'_modeljson': 'xgblimit/bng_pbc.json'}
103 dilbert 0 multiclass -0.0485906 {'_modeljson': 'xgblimit/car.json'}
104 dilbert 0 multiclass -0.0643938 {'_modeljson': 'xgblimit/default.json'}
105 dilbert 0 multiclass -0.0425865 {'_modeljson': 'xgblimit/dilbert.json'}
106 poker 0 regression 0.194424 {'_modeljson': 'xgblimit/2dplanes.json'}
107 poker 0 regression 0.443714 {'_modeljson': 'xgblimit/adult.json'}
108 poker 0 regression 0.837273 {'_modeljson': 'xgblimit/Airlines.json'}
109 poker 0 regression 0.354783 {'_modeljson': 'xgblimit/Amazon_employee_access.json'}
110 poker 0 regression 0.749681 {'_modeljson': 'xgblimit/bng_breastTumor.json'}
111 poker 0 regression 0.782336 {'_modeljson': 'xgblimit/bng_pbc.json'}
112 poker 0 regression 0.640848 {'_modeljson': 'xgblimit/car.json'}
113 poker 0 regression 0.924649 {'_modeljson': 'xgblimit/connect-4.json'}
114 poker 0 regression 0.635679 {'_modeljson': 'xgblimit/default.json'}
115 poker 0 regression 0.672338 {'_modeljson': 'xgblimit/dilbert.json'}
116 poker 0 regression 0.92563 {'_modeljson': 'xgblimit/poker.json'}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 6705, "max_leaves": 24, "min_child_weight": 58.562722088466444, "learning_rate": 0.0009765625, "subsample": 0.8993009465247683, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.2679275019160531, "reg_lambda": 91.95034898844547}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 17309, "max_leaves": 1146, "min_child_weight": 0.0193980002033358, "learning_rate": 0.0009765625, "subsample": 0.4169778612218198, "colsample_bylevel": 1.0, "colsample_bytree": 0.5504959296065052, "reg_alpha": 0.00505548829948545, "reg_lambda": 21.287234956122028, "FLAML_sample_size": 436899}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 6357, "max_leaves": 206, "min_child_weight": 1.9495322566288034, "learning_rate": 0.0068766724195393905, "subsample": 0.9451618245005704, "colsample_bylevel": 0.9030482524943064, "colsample_bytree": 0.9278972006416252, "reg_alpha": 0.01857648400903689, "reg_lambda": 6.021166480604588, "FLAML_sample_size": 344444}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 591, "max_leaves": 16651, "min_child_weight": 0.03356567864689129, "learning_rate": 0.002595066436678338, "subsample": 0.9114132805513452, "colsample_bylevel": 0.9503441844594458, "colsample_bytree": 0.5703338448066768, "reg_alpha": 0.010405212349127894, "reg_lambda": 0.05352660657433639}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 23282, "max_leaves": 19, "min_child_weight": 0.02198438885474473, "learning_rate": 0.001700636796132106, "subsample": 1.0, "colsample_bylevel": 0.8954745234489918, "colsample_bytree": 0.22331977285961732, "reg_alpha": 0.4115502489939291, "reg_lambda": 0.015523027968801352}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 4038, "max_leaves": 89, "min_child_weight": 0.23500921146599626, "learning_rate": 0.0039779941096963365, "subsample": 0.9421092355451888, "colsample_bylevel": 0.7772326835688742, "colsample_bytree": 0.6864341727912397, "reg_alpha": 4.8782018848557, "reg_lambda": 0.7531969031616396, "FLAML_sample_size": 94478}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 32767, "max_leaves": 623, "min_child_weight": 0.03783048691639616, "learning_rate": 0.0021758863899615554, "subsample": 0.9086242379539484, "colsample_bylevel": 0.5880499360809446, "colsample_bytree": 1.0, "reg_alpha": 0.0037398450188259108, "reg_lambda": 16.894310259361305, "FLAML_sample_size": 810000}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 765, "max_leaves": 6, "min_child_weight": 0.001, "learning_rate": 1.0, "subsample": 0.9833803894285497, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0012553728257619922, "reg_lambda": 0.03280542610559108}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 6458, "max_leaves": 196, "min_child_weight": 0.020541449256787844, "learning_rate": 0.0067240405208345, "subsample": 0.5764514509827234, "colsample_bylevel": 1.0, "colsample_bytree": 0.9478632468968712, "reg_alpha": 0.08196899811780128, "reg_lambda": 1.3914579996946315}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 5739, "max_leaves": 5, "min_child_weight": 0.1359602026207002, "learning_rate": 0.14496176867613397, "subsample": 0.864897070662231, "colsample_bylevel": 0.01, "colsample_bytree": 0.9394057513384305, "reg_alpha": 0.001103317921178771, "reg_lambda": 0.1655504349283218}}

View File

@ -0,0 +1 @@
{"class": "xgboost", "hyperparameters": {"n_estimators": 6866, "max_leaves": 238, "min_child_weight": 0.1000665069590469, "learning_rate": 0.05522440252112267, "subsample": 0.9621433799637473, "colsample_bylevel": 0.8366787895853636, "colsample_bytree": 1.0, "reg_alpha": 0.002455941636379231, "reg_lambda": 0.02487031358204277, "FLAML_sample_size": 830258}}

View File

@ -0,0 +1,222 @@
task,fold,type,result,params
2dplanes,0,regression,0.946474,{'_modeljson': 'xgb/2dplanes.json'}
2dplanes,0,regression,0.849793,{'_modeljson': 'xgb/adult.json'}
2dplanes,0,regression,0.940611,{'_modeljson': 'xgb/Albert.json'}
2dplanes,0,regression,0.68908,{'_modeljson': 'xgb/Amazon_employee_access.json'}
2dplanes,0,regression,0.945551,{'_modeljson': 'xgb/bng_breastTumor.json'}
2dplanes,0,regression,0.929904,{'_modeljson': 'xgb/bng_pbc.json'}
2dplanes,0,regression,0.944099,{'_modeljson': 'xgb/car.json'}
2dplanes,0,regression,0.938336,{'_modeljson': 'xgb/connect-4.json'}
2dplanes,0,regression,0.944454,{'_modeljson': 'xgb/default.json'}
2dplanes,0,regression,0.945477,{'_modeljson': 'xgb/dilbert.json'}
2dplanes,0,regression,0.91563,{'_modeljson': 'xgb/poker.json'}
dilbert,0,multiclass,-0.362419,{'_modeljson': 'xgb/2dplanes.json'}
dilbert,0,multiclass,-0.515024,{'_modeljson': 'xgb/Amazon_employee_access.json'}
dilbert,0,multiclass,-0.158604,{'_modeljson': 'xgb/car.json'}
dilbert,0,multiclass,-0.0643938,{'_modeljson': 'xgb/default.json'}
dilbert,0,multiclass,-0.0383872,{'_modeljson': 'xgb/dilbert.json'}
dilbert,0,multiclass,-0.0611286,{'_modeljson': 'xgb/poker.json'}
poker,0,regression,0.20821,{'_modeljson': 'xgb/2dplanes.json'}
poker,0,regression,0.206438,{'_modeljson': 'xgb/adult.json'}
poker,0,regression,0.815665,{'_modeljson': 'xgb/Airlines.json'}
poker,0,regression,0.857257,{'_modeljson': 'xgb/Albert.json'}
poker,0,regression,0.362568,{'_modeljson': 'xgb/Amazon_employee_access.json'}
poker,0,regression,0.559622,{'_modeljson': 'xgb/bng_breastTumor.json'}
poker,0,regression,0.922282,{'_modeljson': 'xgb/bng_pbc.json'}
poker,0,regression,0.846139,{'_modeljson': 'xgb/car.json'}
poker,0,regression,0.891631,{'_modeljson': 'xgb/connect-4.json'}
poker,0,regression,0.635679,{'_modeljson': 'xgb/default.json'}
poker,0,regression,0.377996,{'_modeljson': 'xgb/dilbert.json'}
poker,0,regression,0.935986,{'_modeljson': 'xgb/poker.json'}
adult,0,binary,0.918094,{'_modeljson': 'xgb/2dplanes.json'}
adult,0,binary,0.932468,{'_modeljson': 'xgb/adult.json'}
adult,0,binary,0.92673,{'_modeljson': 'xgb/Airlines.json'}
adult,0,binary,0.922077,{'_modeljson': 'xgb/Albert.json'}
adult,0,binary,0.920837,{'_modeljson': 'xgb/Amazon_employee_access.json'}
adult,0,binary,0.92964,{'_modeljson': 'xgb/bng_breastTumor.json'}
adult,0,binary,0.916531,{'_modeljson': 'xgb/bng_pbc.json'}
adult,0,binary,0.884114,{'_modeljson': 'xgb/car.json'}
adult,0,binary,0.917887,{'_modeljson': 'xgb/connect-4.json'}
adult,0,binary,0.931234,{'_modeljson': 'xgb/default.json'}
adult,0,binary,0.928861,{'_modeljson': 'xgb/dilbert.json'}
adult,0,binary,0.909018,{'_modeljson': 'xgb/poker.json'}
Airlines,0,binary,0.703353,{'_modeljson': 'xgb/2dplanes.json'}
Airlines,0,binary,0.696962,{'_modeljson': 'xgb/adult.json'}
Airlines,0,binary,0.73153,{'_modeljson': 'xgb/Airlines.json'}
Airlines,0,binary,0.731577,{'_modeljson': 'xgb/Albert.json'}
Airlines,0,binary,0.725394,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Airlines,0,binary,0.722896,{'_modeljson': 'xgb/bng_breastTumor.json'}
Airlines,0,binary,0.716839,{'_modeljson': 'xgb/bng_pbc.json'}
Airlines,0,binary,0.715654,{'_modeljson': 'xgb/car.json'}
Airlines,0,binary,0.73107,{'_modeljson': 'xgb/connect-4.json'}
Airlines,0,binary,0.719845,{'_modeljson': 'xgb/default.json'}
Airlines,0,binary,0.71873,{'_modeljson': 'xgb/dilbert.json'}
Airlines,0,binary,0.676427,{'_modeljson': 'xgb/poker.json'}
Albert,0,binary,0.742648,{'_modeljson': 'xgb/2dplanes.json'}
Albert,0,binary,0.758723,{'_modeljson': 'xgb/adult.json'}
Albert,0,binary,0.763066,{'_modeljson': 'xgb/Airlines.json'}
Albert,0,binary,0.768073,{'_modeljson': 'xgb/Albert.json'}
Albert,0,binary,0.74349,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Albert,0,binary,0.764,{'_modeljson': 'xgb/bng_breastTumor.json'}
Albert,0,binary,0.767514,{'_modeljson': 'xgb/bng_pbc.json'}
Albert,0,binary,0.743392,{'_modeljson': 'xgb/car.json'}
Albert,0,binary,0.766006,{'_modeljson': 'xgb/connect-4.json'}
Albert,0,binary,0.757802,{'_modeljson': 'xgb/default.json'}
Albert,0,binary,0.746511,{'_modeljson': 'xgb/dilbert.json'}
Albert,0,binary,0.761985,{'_modeljson': 'xgb/poker.json'}
Amazon_employee_access,0,binary,0.727287,{'_modeljson': 'xgb/2dplanes.json'}
Amazon_employee_access,0,binary,0.855441,{'_modeljson': 'xgb/adult.json'}
Amazon_employee_access,0,binary,0.85984,{'_modeljson': 'xgb/Airlines.json'}
Amazon_employee_access,0,binary,0.873629,{'_modeljson': 'xgb/Albert.json'}
Amazon_employee_access,0,binary,0.897708,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Amazon_employee_access,0,binary,0.862679,{'_modeljson': 'xgb/bng_breastTumor.json'}
Amazon_employee_access,0,binary,0.872059,{'_modeljson': 'xgb/bng_pbc.json'}
Amazon_employee_access,0,binary,0.657192,{'_modeljson': 'xgb/car.json'}
Amazon_employee_access,0,binary,0.877547,{'_modeljson': 'xgb/connect-4.json'}
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgb/default.json'}
Amazon_employee_access,0,binary,0.853361,{'_modeljson': 'xgb/dilbert.json'}
Amazon_employee_access,0,binary,0.859734,{'_modeljson': 'xgb/poker.json'}
bng_breastTumor,0,regression,0.184421,{'_modeljson': 'xgb/2dplanes.json'}
bng_breastTumor,0,regression,0.163226,{'_modeljson': 'xgb/adult.json'}
bng_breastTumor,0,regression,0.18037,{'_modeljson': 'xgb/Airlines.json'}
bng_breastTumor,0,regression,0.177238,{'_modeljson': 'xgb/Albert.json'}
bng_breastTumor,0,regression,-0.118976,{'_modeljson': 'xgb/Amazon_employee_access.json'}
bng_breastTumor,0,regression,0.195539,{'_modeljson': 'xgb/bng_breastTumor.json'}
bng_breastTumor,0,regression,0.106337,{'_modeljson': 'xgb/bng_pbc.json'}
bng_breastTumor,0,regression,0.149326,{'_modeljson': 'xgb/car.json'}
bng_breastTumor,0,regression,0.161193,{'_modeljson': 'xgb/connect-4.json'}
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgb/default.json'}
bng_breastTumor,0,regression,0.186499,{'_modeljson': 'xgb/dilbert.json'}
bng_breastTumor,0,regression,-0.032219,{'_modeljson': 'xgb/poker.json'}
bng_pbc,0,regression,0.411719,{'_modeljson': 'xgb/2dplanes.json'}
bng_pbc,0,regression,0.409769,{'_modeljson': 'xgb/adult.json'}
bng_pbc,0,regression,0.450806,{'_modeljson': 'xgb/Airlines.json'}
bng_pbc,0,regression,0.458384,{'_modeljson': 'xgb/Albert.json'}
bng_pbc,0,regression,0.236669,{'_modeljson': 'xgb/Amazon_employee_access.json'}
bng_pbc,0,regression,0.441873,{'_modeljson': 'xgb/bng_breastTumor.json'}
bng_pbc,0,regression,0.462226,{'_modeljson': 'xgb/bng_pbc.json'}
bng_pbc,0,regression,0.431868,{'_modeljson': 'xgb/car.json'}
bng_pbc,0,regression,0.45678,{'_modeljson': 'xgb/connect-4.json'}
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgb/default.json'}
bng_pbc,0,regression,0.418839,{'_modeljson': 'xgb/dilbert.json'}
bng_pbc,0,regression,0.448148,{'_modeljson': 'xgb/poker.json'}
car,0,multiclass,-0.38726,{'_modeljson': 'xgb/2dplanes.json'}
car,0,multiclass,-0.22547,{'_modeljson': 'xgb/adult.json'}
car,0,multiclass,-0.208402,{'_modeljson': 'xgb/Airlines.json'}
car,0,multiclass,-0.0256159,{'_modeljson': 'xgb/Albert.json'}
car,0,multiclass,-0.627705,{'_modeljson': 'xgb/Amazon_employee_access.json'}
car,0,multiclass,-0.166328,{'_modeljson': 'xgb/bng_breastTumor.json'}
car,0,multiclass,-0.0201057,{'_modeljson': 'xgb/bng_pbc.json'}
car,0,multiclass,-8.45E-05,{'_modeljson': 'xgb/car.json'}
car,0,multiclass,-0.0129025,{'_modeljson': 'xgb/connect-4.json'}
car,0,multiclass,-0.010029,{'_modeljson': 'xgb/default.json'}
car,0,multiclass,-0.00218674,{'_modeljson': 'xgb/dilbert.json'}
car,0,multiclass,-0.00426392,{'_modeljson': 'xgb/poker.json'}
connect-4,0,multiclass,-0.578339,{'_modeljson': 'xgb/2dplanes.json'}
connect-4,0,multiclass,-0.489378,{'_modeljson': 'xgb/adult.json'}
connect-4,0,multiclass,-0.406886,{'_modeljson': 'xgb/Airlines.json'}
connect-4,0,multiclass,-0.332411,{'_modeljson': 'xgb/Albert.json'}
connect-4,0,multiclass,-0.636516,{'_modeljson': 'xgb/Amazon_employee_access.json'}
connect-4,0,multiclass,-0.425947,{'_modeljson': 'xgb/bng_breastTumor.json'}
connect-4,0,multiclass,-0.354612,{'_modeljson': 'xgb/bng_pbc.json'}
connect-4,0,multiclass,-0.452201,{'_modeljson': 'xgb/car.json'}
connect-4,0,multiclass,-0.338363,{'_modeljson': 'xgb/connect-4.json'}
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgb/default.json'}
connect-4,0,multiclass,-0.497404,{'_modeljson': 'xgb/dilbert.json'}
connect-4,0,multiclass,-0.592309,{'_modeljson': 'xgb/poker.json'}
adult,0,binary,0.918094,{'_modeljson': 'xgb/2dplanes.json'}
adult,0,binary,0.932468,{'_modeljson': 'xgb/adult.json'}
adult,0,binary,0.92673,{'_modeljson': 'xgb/Airlines.json'}
adult,0,binary,0.922077,{'_modeljson': 'xgb/Albert.json'}
adult,0,binary,0.920837,{'_modeljson': 'xgb/Amazon_employee_access.json'}
adult,0,binary,0.92964,{'_modeljson': 'xgb/bng_breastTumor.json'}
adult,0,binary,0.916531,{'_modeljson': 'xgb/bng_pbc.json'}
adult,0,binary,0.884114,{'_modeljson': 'xgb/car.json'}
adult,0,binary,0.917887,{'_modeljson': 'xgb/connect-4.json'}
adult,0,binary,0.931234,{'_modeljson': 'xgb/default.json'}
adult,0,binary,0.928861,{'_modeljson': 'xgb/dilbert.json'}
adult,0,binary,0.909018,{'_modeljson': 'xgb/poker.json'}
Airlines,0,binary,0.703353,{'_modeljson': 'xgb/2dplanes.json'}
Airlines,0,binary,0.696962,{'_modeljson': 'xgb/adult.json'}
Airlines,0,binary,0.73153,{'_modeljson': 'xgb/Airlines.json'}
Airlines,0,binary,0.731577,{'_modeljson': 'xgb/Albert.json'}
Airlines,0,binary,0.725394,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Airlines,0,binary,0.722896,{'_modeljson': 'xgb/bng_breastTumor.json'}
Airlines,0,binary,0.716839,{'_modeljson': 'xgb/bng_pbc.json'}
Airlines,0,binary,0.715654,{'_modeljson': 'xgb/car.json'}
Airlines,0,binary,0.73107,{'_modeljson': 'xgb/connect-4.json'}
Airlines,0,binary,0.719845,{'_modeljson': 'xgb/default.json'}
Airlines,0,binary,0.71873,{'_modeljson': 'xgb/dilbert.json'}
Airlines,0,binary,0.676427,{'_modeljson': 'xgb/poker.json'}
Albert,0,binary,0.742648,{'_modeljson': 'xgb/2dplanes.json'}
Albert,0,binary,0.758723,{'_modeljson': 'xgb/adult.json'}
Albert,0,binary,0.763066,{'_modeljson': 'xgb/Airlines.json'}
Albert,0,binary,0.768073,{'_modeljson': 'xgb/Albert.json'}
Albert,0,binary,0.74349,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Albert,0,binary,0.764,{'_modeljson': 'xgb/bng_breastTumor.json'}
Albert,0,binary,0.767514,{'_modeljson': 'xgb/bng_pbc.json'}
Albert,0,binary,0.743392,{'_modeljson': 'xgb/car.json'}
Albert,0,binary,0.766006,{'_modeljson': 'xgb/connect-4.json'}
Albert,0,binary,0.757802,{'_modeljson': 'xgb/default.json'}
Albert,0,binary,0.746511,{'_modeljson': 'xgb/dilbert.json'}
Albert,0,binary,0.761985,{'_modeljson': 'xgb/poker.json'}
Amazon_employee_access,0,binary,0.727287,{'_modeljson': 'xgb/2dplanes.json'}
Amazon_employee_access,0,binary,0.855441,{'_modeljson': 'xgb/adult.json'}
Amazon_employee_access,0,binary,0.85984,{'_modeljson': 'xgb/Airlines.json'}
Amazon_employee_access,0,binary,0.873629,{'_modeljson': 'xgb/Albert.json'}
Amazon_employee_access,0,binary,0.897708,{'_modeljson': 'xgb/Amazon_employee_access.json'}
Amazon_employee_access,0,binary,0.862679,{'_modeljson': 'xgb/bng_breastTumor.json'}
Amazon_employee_access,0,binary,0.872059,{'_modeljson': 'xgb/bng_pbc.json'}
Amazon_employee_access,0,binary,0.657192,{'_modeljson': 'xgb/car.json'}
Amazon_employee_access,0,binary,0.877547,{'_modeljson': 'xgb/connect-4.json'}
Amazon_employee_access,0,binary,0.851702,{'_modeljson': 'xgb/default.json'}
Amazon_employee_access,0,binary,0.853361,{'_modeljson': 'xgb/dilbert.json'}
Amazon_employee_access,0,binary,0.859734,{'_modeljson': 'xgb/poker.json'}
bng_breastTumor,0,regression,0.184421,{'_modeljson': 'xgb/2dplanes.json'}
bng_breastTumor,0,regression,0.163226,{'_modeljson': 'xgb/adult.json'}
bng_breastTumor,0,regression,0.18037,{'_modeljson': 'xgb/Airlines.json'}
bng_breastTumor,0,regression,0.177238,{'_modeljson': 'xgb/Albert.json'}
bng_breastTumor,0,regression,-0.118976,{'_modeljson': 'xgb/Amazon_employee_access.json'}
bng_breastTumor,0,regression,0.195539,{'_modeljson': 'xgb/bng_breastTumor.json'}
bng_breastTumor,0,regression,0.106337,{'_modeljson': 'xgb/bng_pbc.json'}
bng_breastTumor,0,regression,0.149326,{'_modeljson': 'xgb/car.json'}
bng_breastTumor,0,regression,0.161193,{'_modeljson': 'xgb/connect-4.json'}
bng_breastTumor,0,regression,0.186541,{'_modeljson': 'xgb/default.json'}
bng_breastTumor,0,regression,0.186499,{'_modeljson': 'xgb/dilbert.json'}
bng_breastTumor,0,regression,-0.032219,{'_modeljson': 'xgb/poker.json'}
bng_pbc,0,regression,0.411719,{'_modeljson': 'xgb/2dplanes.json'}
bng_pbc,0,regression,0.409769,{'_modeljson': 'xgb/adult.json'}
bng_pbc,0,regression,0.450806,{'_modeljson': 'xgb/Airlines.json'}
bng_pbc,0,regression,0.458384,{'_modeljson': 'xgb/Albert.json'}
bng_pbc,0,regression,0.236669,{'_modeljson': 'xgb/Amazon_employee_access.json'}
bng_pbc,0,regression,0.441873,{'_modeljson': 'xgb/bng_breastTumor.json'}
bng_pbc,0,regression,0.462226,{'_modeljson': 'xgb/bng_pbc.json'}
bng_pbc,0,regression,0.431868,{'_modeljson': 'xgb/car.json'}
bng_pbc,0,regression,0.45678,{'_modeljson': 'xgb/connect-4.json'}
bng_pbc,0,regression,0.436902,{'_modeljson': 'xgb/default.json'}
bng_pbc,0,regression,0.418839,{'_modeljson': 'xgb/dilbert.json'}
bng_pbc,0,regression,0.448148,{'_modeljson': 'xgb/poker.json'}
car,0,multiclass,-0.38726,{'_modeljson': 'xgb/2dplanes.json'}
car,0,multiclass,-0.22547,{'_modeljson': 'xgb/adult.json'}
car,0,multiclass,-0.208402,{'_modeljson': 'xgb/Airlines.json'}
car,0,multiclass,-0.0256159,{'_modeljson': 'xgb/Albert.json'}
car,0,multiclass,-0.627705,{'_modeljson': 'xgb/Amazon_employee_access.json'}
car,0,multiclass,-0.166328,{'_modeljson': 'xgb/bng_breastTumor.json'}
car,0,multiclass,-0.0201057,{'_modeljson': 'xgb/bng_pbc.json'}
car,0,multiclass,-8.45E-05,{'_modeljson': 'xgb/car.json'}
car,0,multiclass,-0.0129025,{'_modeljson': 'xgb/connect-4.json'}
car,0,multiclass,-0.010029,{'_modeljson': 'xgb/default.json'}
car,0,multiclass,-0.00218674,{'_modeljson': 'xgb/dilbert.json'}
car,0,multiclass,-0.00426392,{'_modeljson': 'xgb/poker.json'}
connect-4,0,multiclass,-0.578339,{'_modeljson': 'xgb/2dplanes.json'}
connect-4,0,multiclass,-0.489378,{'_modeljson': 'xgb/adult.json'}
connect-4,0,multiclass,-0.406886,{'_modeljson': 'xgb/Airlines.json'}
connect-4,0,multiclass,-0.332411,{'_modeljson': 'xgb/Albert.json'}
connect-4,0,multiclass,-0.636516,{'_modeljson': 'xgb/Amazon_employee_access.json'}
connect-4,0,multiclass,-0.425947,{'_modeljson': 'xgb/bng_breastTumor.json'}
connect-4,0,multiclass,-0.354612,{'_modeljson': 'xgb/bng_pbc.json'}
connect-4,0,multiclass,-0.452201,{'_modeljson': 'xgb/car.json'}
connect-4,0,multiclass,-0.338363,{'_modeljson': 'xgb/connect-4.json'}
connect-4,0,multiclass,-0.430665,{'_modeljson': 'xgb/default.json'}
connect-4,0,multiclass,-0.497404,{'_modeljson': 'xgb/dilbert.json'}
connect-4,0,multiclass,-0.592309,{'_modeljson': 'xgb/poker.json'}
1 task fold type result params
2 2dplanes 0 regression 0.946474 {'_modeljson': 'xgb/2dplanes.json'}
3 2dplanes 0 regression 0.849793 {'_modeljson': 'xgb/adult.json'}
4 2dplanes 0 regression 0.940611 {'_modeljson': 'xgb/Albert.json'}
5 2dplanes 0 regression 0.68908 {'_modeljson': 'xgb/Amazon_employee_access.json'}
6 2dplanes 0 regression 0.945551 {'_modeljson': 'xgb/bng_breastTumor.json'}
7 2dplanes 0 regression 0.929904 {'_modeljson': 'xgb/bng_pbc.json'}
8 2dplanes 0 regression 0.944099 {'_modeljson': 'xgb/car.json'}
9 2dplanes 0 regression 0.938336 {'_modeljson': 'xgb/connect-4.json'}
10 2dplanes 0 regression 0.944454 {'_modeljson': 'xgb/default.json'}
11 2dplanes 0 regression 0.945477 {'_modeljson': 'xgb/dilbert.json'}
12 2dplanes 0 regression 0.91563 {'_modeljson': 'xgb/poker.json'}
13 dilbert 0 multiclass -0.362419 {'_modeljson': 'xgb/2dplanes.json'}
14 dilbert 0 multiclass -0.515024 {'_modeljson': 'xgb/Amazon_employee_access.json'}
15 dilbert 0 multiclass -0.158604 {'_modeljson': 'xgb/car.json'}
16 dilbert 0 multiclass -0.0643938 {'_modeljson': 'xgb/default.json'}
17 dilbert 0 multiclass -0.0383872 {'_modeljson': 'xgb/dilbert.json'}
18 dilbert 0 multiclass -0.0611286 {'_modeljson': 'xgb/poker.json'}
19 poker 0 regression 0.20821 {'_modeljson': 'xgb/2dplanes.json'}
20 poker 0 regression 0.206438 {'_modeljson': 'xgb/adult.json'}
21 poker 0 regression 0.815665 {'_modeljson': 'xgb/Airlines.json'}
22 poker 0 regression 0.857257 {'_modeljson': 'xgb/Albert.json'}
23 poker 0 regression 0.362568 {'_modeljson': 'xgb/Amazon_employee_access.json'}
24 poker 0 regression 0.559622 {'_modeljson': 'xgb/bng_breastTumor.json'}
25 poker 0 regression 0.922282 {'_modeljson': 'xgb/bng_pbc.json'}
26 poker 0 regression 0.846139 {'_modeljson': 'xgb/car.json'}
27 poker 0 regression 0.891631 {'_modeljson': 'xgb/connect-4.json'}
28 poker 0 regression 0.635679 {'_modeljson': 'xgb/default.json'}
29 poker 0 regression 0.377996 {'_modeljson': 'xgb/dilbert.json'}
30 poker 0 regression 0.935986 {'_modeljson': 'xgb/poker.json'}
31 adult 0 binary 0.918094 {'_modeljson': 'xgb/2dplanes.json'}
32 adult 0 binary 0.932468 {'_modeljson': 'xgb/adult.json'}
33 adult 0 binary 0.92673 {'_modeljson': 'xgb/Airlines.json'}
34 adult 0 binary 0.922077 {'_modeljson': 'xgb/Albert.json'}
35 adult 0 binary 0.920837 {'_modeljson': 'xgb/Amazon_employee_access.json'}
36 adult 0 binary 0.92964 {'_modeljson': 'xgb/bng_breastTumor.json'}
37 adult 0 binary 0.916531 {'_modeljson': 'xgb/bng_pbc.json'}
38 adult 0 binary 0.884114 {'_modeljson': 'xgb/car.json'}
39 adult 0 binary 0.917887 {'_modeljson': 'xgb/connect-4.json'}
40 adult 0 binary 0.931234 {'_modeljson': 'xgb/default.json'}
41 adult 0 binary 0.928861 {'_modeljson': 'xgb/dilbert.json'}
42 adult 0 binary 0.909018 {'_modeljson': 'xgb/poker.json'}
43 Airlines 0 binary 0.703353 {'_modeljson': 'xgb/2dplanes.json'}
44 Airlines 0 binary 0.696962 {'_modeljson': 'xgb/adult.json'}
45 Airlines 0 binary 0.73153 {'_modeljson': 'xgb/Airlines.json'}
46 Airlines 0 binary 0.731577 {'_modeljson': 'xgb/Albert.json'}
47 Airlines 0 binary 0.725394 {'_modeljson': 'xgb/Amazon_employee_access.json'}
48 Airlines 0 binary 0.722896 {'_modeljson': 'xgb/bng_breastTumor.json'}
49 Airlines 0 binary 0.716839 {'_modeljson': 'xgb/bng_pbc.json'}
50 Airlines 0 binary 0.715654 {'_modeljson': 'xgb/car.json'}
51 Airlines 0 binary 0.73107 {'_modeljson': 'xgb/connect-4.json'}
52 Airlines 0 binary 0.719845 {'_modeljson': 'xgb/default.json'}
53 Airlines 0 binary 0.71873 {'_modeljson': 'xgb/dilbert.json'}
54 Airlines 0 binary 0.676427 {'_modeljson': 'xgb/poker.json'}
55 Albert 0 binary 0.742648 {'_modeljson': 'xgb/2dplanes.json'}
56 Albert 0 binary 0.758723 {'_modeljson': 'xgb/adult.json'}
57 Albert 0 binary 0.763066 {'_modeljson': 'xgb/Airlines.json'}
58 Albert 0 binary 0.768073 {'_modeljson': 'xgb/Albert.json'}
59 Albert 0 binary 0.74349 {'_modeljson': 'xgb/Amazon_employee_access.json'}
60 Albert 0 binary 0.764 {'_modeljson': 'xgb/bng_breastTumor.json'}
61 Albert 0 binary 0.767514 {'_modeljson': 'xgb/bng_pbc.json'}
62 Albert 0 binary 0.743392 {'_modeljson': 'xgb/car.json'}
63 Albert 0 binary 0.766006 {'_modeljson': 'xgb/connect-4.json'}
64 Albert 0 binary 0.757802 {'_modeljson': 'xgb/default.json'}
65 Albert 0 binary 0.746511 {'_modeljson': 'xgb/dilbert.json'}
66 Albert 0 binary 0.761985 {'_modeljson': 'xgb/poker.json'}
67 Amazon_employee_access 0 binary 0.727287 {'_modeljson': 'xgb/2dplanes.json'}
68 Amazon_employee_access 0 binary 0.855441 {'_modeljson': 'xgb/adult.json'}
69 Amazon_employee_access 0 binary 0.85984 {'_modeljson': 'xgb/Airlines.json'}
70 Amazon_employee_access 0 binary 0.873629 {'_modeljson': 'xgb/Albert.json'}
71 Amazon_employee_access 0 binary 0.897708 {'_modeljson': 'xgb/Amazon_employee_access.json'}
72 Amazon_employee_access 0 binary 0.862679 {'_modeljson': 'xgb/bng_breastTumor.json'}
73 Amazon_employee_access 0 binary 0.872059 {'_modeljson': 'xgb/bng_pbc.json'}
74 Amazon_employee_access 0 binary 0.657192 {'_modeljson': 'xgb/car.json'}
75 Amazon_employee_access 0 binary 0.877547 {'_modeljson': 'xgb/connect-4.json'}
76 Amazon_employee_access 0 binary 0.851702 {'_modeljson': 'xgb/default.json'}
77 Amazon_employee_access 0 binary 0.853361 {'_modeljson': 'xgb/dilbert.json'}
78 Amazon_employee_access 0 binary 0.859734 {'_modeljson': 'xgb/poker.json'}
79 bng_breastTumor 0 regression 0.184421 {'_modeljson': 'xgb/2dplanes.json'}
80 bng_breastTumor 0 regression 0.163226 {'_modeljson': 'xgb/adult.json'}
81 bng_breastTumor 0 regression 0.18037 {'_modeljson': 'xgb/Airlines.json'}
82 bng_breastTumor 0 regression 0.177238 {'_modeljson': 'xgb/Albert.json'}
83 bng_breastTumor 0 regression -0.118976 {'_modeljson': 'xgb/Amazon_employee_access.json'}
84 bng_breastTumor 0 regression 0.195539 {'_modeljson': 'xgb/bng_breastTumor.json'}
85 bng_breastTumor 0 regression 0.106337 {'_modeljson': 'xgb/bng_pbc.json'}
86 bng_breastTumor 0 regression 0.149326 {'_modeljson': 'xgb/car.json'}
87 bng_breastTumor 0 regression 0.161193 {'_modeljson': 'xgb/connect-4.json'}
88 bng_breastTumor 0 regression 0.186541 {'_modeljson': 'xgb/default.json'}
89 bng_breastTumor 0 regression 0.186499 {'_modeljson': 'xgb/dilbert.json'}
90 bng_breastTumor 0 regression -0.032219 {'_modeljson': 'xgb/poker.json'}
91 bng_pbc 0 regression 0.411719 {'_modeljson': 'xgb/2dplanes.json'}
92 bng_pbc 0 regression 0.409769 {'_modeljson': 'xgb/adult.json'}
93 bng_pbc 0 regression 0.450806 {'_modeljson': 'xgb/Airlines.json'}
94 bng_pbc 0 regression 0.458384 {'_modeljson': 'xgb/Albert.json'}
95 bng_pbc 0 regression 0.236669 {'_modeljson': 'xgb/Amazon_employee_access.json'}
96 bng_pbc 0 regression 0.441873 {'_modeljson': 'xgb/bng_breastTumor.json'}
97 bng_pbc 0 regression 0.462226 {'_modeljson': 'xgb/bng_pbc.json'}
98 bng_pbc 0 regression 0.431868 {'_modeljson': 'xgb/car.json'}
99 bng_pbc 0 regression 0.45678 {'_modeljson': 'xgb/connect-4.json'}
100 bng_pbc 0 regression 0.436902 {'_modeljson': 'xgb/default.json'}
101 bng_pbc 0 regression 0.418839 {'_modeljson': 'xgb/dilbert.json'}
102 bng_pbc 0 regression 0.448148 {'_modeljson': 'xgb/poker.json'}
103 car 0 multiclass -0.38726 {'_modeljson': 'xgb/2dplanes.json'}
104 car 0 multiclass -0.22547 {'_modeljson': 'xgb/adult.json'}
105 car 0 multiclass -0.208402 {'_modeljson': 'xgb/Airlines.json'}
106 car 0 multiclass -0.0256159 {'_modeljson': 'xgb/Albert.json'}
107 car 0 multiclass -0.627705 {'_modeljson': 'xgb/Amazon_employee_access.json'}
108 car 0 multiclass -0.166328 {'_modeljson': 'xgb/bng_breastTumor.json'}
109 car 0 multiclass -0.0201057 {'_modeljson': 'xgb/bng_pbc.json'}
110 car 0 multiclass -8.45E-05 {'_modeljson': 'xgb/car.json'}
111 car 0 multiclass -0.0129025 {'_modeljson': 'xgb/connect-4.json'}
112 car 0 multiclass -0.010029 {'_modeljson': 'xgb/default.json'}
113 car 0 multiclass -0.00218674 {'_modeljson': 'xgb/dilbert.json'}
114 car 0 multiclass -0.00426392 {'_modeljson': 'xgb/poker.json'}
115 connect-4 0 multiclass -0.578339 {'_modeljson': 'xgb/2dplanes.json'}
116 connect-4 0 multiclass -0.489378 {'_modeljson': 'xgb/adult.json'}
117 connect-4 0 multiclass -0.406886 {'_modeljson': 'xgb/Airlines.json'}
118 connect-4 0 multiclass -0.332411 {'_modeljson': 'xgb/Albert.json'}
119 connect-4 0 multiclass -0.636516 {'_modeljson': 'xgb/Amazon_employee_access.json'}
120 connect-4 0 multiclass -0.425947 {'_modeljson': 'xgb/bng_breastTumor.json'}
121 connect-4 0 multiclass -0.354612 {'_modeljson': 'xgb/bng_pbc.json'}
122 connect-4 0 multiclass -0.452201 {'_modeljson': 'xgb/car.json'}
123 connect-4 0 multiclass -0.338363 {'_modeljson': 'xgb/connect-4.json'}
124 connect-4 0 multiclass -0.430665 {'_modeljson': 'xgb/default.json'}
125 connect-4 0 multiclass -0.497404 {'_modeljson': 'xgb/dilbert.json'}
126 connect-4 0 multiclass -0.592309 {'_modeljson': 'xgb/poker.json'}
127 adult 0 binary 0.918094 {'_modeljson': 'xgb/2dplanes.json'}
128 adult 0 binary 0.932468 {'_modeljson': 'xgb/adult.json'}
129 adult 0 binary 0.92673 {'_modeljson': 'xgb/Airlines.json'}
130 adult 0 binary 0.922077 {'_modeljson': 'xgb/Albert.json'}
131 adult 0 binary 0.920837 {'_modeljson': 'xgb/Amazon_employee_access.json'}
132 adult 0 binary 0.92964 {'_modeljson': 'xgb/bng_breastTumor.json'}
133 adult 0 binary 0.916531 {'_modeljson': 'xgb/bng_pbc.json'}
134 adult 0 binary 0.884114 {'_modeljson': 'xgb/car.json'}
135 adult 0 binary 0.917887 {'_modeljson': 'xgb/connect-4.json'}
136 adult 0 binary 0.931234 {'_modeljson': 'xgb/default.json'}
137 adult 0 binary 0.928861 {'_modeljson': 'xgb/dilbert.json'}
138 adult 0 binary 0.909018 {'_modeljson': 'xgb/poker.json'}
139 Airlines 0 binary 0.703353 {'_modeljson': 'xgb/2dplanes.json'}
140 Airlines 0 binary 0.696962 {'_modeljson': 'xgb/adult.json'}
141 Airlines 0 binary 0.73153 {'_modeljson': 'xgb/Airlines.json'}
142 Airlines 0 binary 0.731577 {'_modeljson': 'xgb/Albert.json'}
143 Airlines 0 binary 0.725394 {'_modeljson': 'xgb/Amazon_employee_access.json'}
144 Airlines 0 binary 0.722896 {'_modeljson': 'xgb/bng_breastTumor.json'}
145 Airlines 0 binary 0.716839 {'_modeljson': 'xgb/bng_pbc.json'}
146 Airlines 0 binary 0.715654 {'_modeljson': 'xgb/car.json'}
147 Airlines 0 binary 0.73107 {'_modeljson': 'xgb/connect-4.json'}
148 Airlines 0 binary 0.719845 {'_modeljson': 'xgb/default.json'}
149 Airlines 0 binary 0.71873 {'_modeljson': 'xgb/dilbert.json'}
150 Airlines 0 binary 0.676427 {'_modeljson': 'xgb/poker.json'}
151 Albert 0 binary 0.742648 {'_modeljson': 'xgb/2dplanes.json'}
152 Albert 0 binary 0.758723 {'_modeljson': 'xgb/adult.json'}
153 Albert 0 binary 0.763066 {'_modeljson': 'xgb/Airlines.json'}
154 Albert 0 binary 0.768073 {'_modeljson': 'xgb/Albert.json'}
155 Albert 0 binary 0.74349 {'_modeljson': 'xgb/Amazon_employee_access.json'}
156 Albert 0 binary 0.764 {'_modeljson': 'xgb/bng_breastTumor.json'}
157 Albert 0 binary 0.767514 {'_modeljson': 'xgb/bng_pbc.json'}
158 Albert 0 binary 0.743392 {'_modeljson': 'xgb/car.json'}
159 Albert 0 binary 0.766006 {'_modeljson': 'xgb/connect-4.json'}
160 Albert 0 binary 0.757802 {'_modeljson': 'xgb/default.json'}
161 Albert 0 binary 0.746511 {'_modeljson': 'xgb/dilbert.json'}
162 Albert 0 binary 0.761985 {'_modeljson': 'xgb/poker.json'}
163 Amazon_employee_access 0 binary 0.727287 {'_modeljson': 'xgb/2dplanes.json'}
164 Amazon_employee_access 0 binary 0.855441 {'_modeljson': 'xgb/adult.json'}
165 Amazon_employee_access 0 binary 0.85984 {'_modeljson': 'xgb/Airlines.json'}
166 Amazon_employee_access 0 binary 0.873629 {'_modeljson': 'xgb/Albert.json'}
167 Amazon_employee_access 0 binary 0.897708 {'_modeljson': 'xgb/Amazon_employee_access.json'}
168 Amazon_employee_access 0 binary 0.862679 {'_modeljson': 'xgb/bng_breastTumor.json'}
169 Amazon_employee_access 0 binary 0.872059 {'_modeljson': 'xgb/bng_pbc.json'}
170 Amazon_employee_access 0 binary 0.657192 {'_modeljson': 'xgb/car.json'}
171 Amazon_employee_access 0 binary 0.877547 {'_modeljson': 'xgb/connect-4.json'}
172 Amazon_employee_access 0 binary 0.851702 {'_modeljson': 'xgb/default.json'}
173 Amazon_employee_access 0 binary 0.853361 {'_modeljson': 'xgb/dilbert.json'}
174 Amazon_employee_access 0 binary 0.859734 {'_modeljson': 'xgb/poker.json'}
175 bng_breastTumor 0 regression 0.184421 {'_modeljson': 'xgb/2dplanes.json'}
176 bng_breastTumor 0 regression 0.163226 {'_modeljson': 'xgb/adult.json'}
177 bng_breastTumor 0 regression 0.18037 {'_modeljson': 'xgb/Airlines.json'}
178 bng_breastTumor 0 regression 0.177238 {'_modeljson': 'xgb/Albert.json'}
179 bng_breastTumor 0 regression -0.118976 {'_modeljson': 'xgb/Amazon_employee_access.json'}
180 bng_breastTumor 0 regression 0.195539 {'_modeljson': 'xgb/bng_breastTumor.json'}
181 bng_breastTumor 0 regression 0.106337 {'_modeljson': 'xgb/bng_pbc.json'}
182 bng_breastTumor 0 regression 0.149326 {'_modeljson': 'xgb/car.json'}
183 bng_breastTumor 0 regression 0.161193 {'_modeljson': 'xgb/connect-4.json'}
184 bng_breastTumor 0 regression 0.186541 {'_modeljson': 'xgb/default.json'}
185 bng_breastTumor 0 regression 0.186499 {'_modeljson': 'xgb/dilbert.json'}
186 bng_breastTumor 0 regression -0.032219 {'_modeljson': 'xgb/poker.json'}
187 bng_pbc 0 regression 0.411719 {'_modeljson': 'xgb/2dplanes.json'}
188 bng_pbc 0 regression 0.409769 {'_modeljson': 'xgb/adult.json'}
189 bng_pbc 0 regression 0.450806 {'_modeljson': 'xgb/Airlines.json'}
190 bng_pbc 0 regression 0.458384 {'_modeljson': 'xgb/Albert.json'}
191 bng_pbc 0 regression 0.236669 {'_modeljson': 'xgb/Amazon_employee_access.json'}
192 bng_pbc 0 regression 0.441873 {'_modeljson': 'xgb/bng_breastTumor.json'}
193 bng_pbc 0 regression 0.462226 {'_modeljson': 'xgb/bng_pbc.json'}
194 bng_pbc 0 regression 0.431868 {'_modeljson': 'xgb/car.json'}
195 bng_pbc 0 regression 0.45678 {'_modeljson': 'xgb/connect-4.json'}
196 bng_pbc 0 regression 0.436902 {'_modeljson': 'xgb/default.json'}
197 bng_pbc 0 regression 0.418839 {'_modeljson': 'xgb/dilbert.json'}
198 bng_pbc 0 regression 0.448148 {'_modeljson': 'xgb/poker.json'}
199 car 0 multiclass -0.38726 {'_modeljson': 'xgb/2dplanes.json'}
200 car 0 multiclass -0.22547 {'_modeljson': 'xgb/adult.json'}
201 car 0 multiclass -0.208402 {'_modeljson': 'xgb/Airlines.json'}
202 car 0 multiclass -0.0256159 {'_modeljson': 'xgb/Albert.json'}
203 car 0 multiclass -0.627705 {'_modeljson': 'xgb/Amazon_employee_access.json'}
204 car 0 multiclass -0.166328 {'_modeljson': 'xgb/bng_breastTumor.json'}
205 car 0 multiclass -0.0201057 {'_modeljson': 'xgb/bng_pbc.json'}
206 car 0 multiclass -8.45E-05 {'_modeljson': 'xgb/car.json'}
207 car 0 multiclass -0.0129025 {'_modeljson': 'xgb/connect-4.json'}
208 car 0 multiclass -0.010029 {'_modeljson': 'xgb/default.json'}
209 car 0 multiclass -0.00218674 {'_modeljson': 'xgb/dilbert.json'}
210 car 0 multiclass -0.00426392 {'_modeljson': 'xgb/poker.json'}
211 connect-4 0 multiclass -0.578339 {'_modeljson': 'xgb/2dplanes.json'}
212 connect-4 0 multiclass -0.489378 {'_modeljson': 'xgb/adult.json'}
213 connect-4 0 multiclass -0.406886 {'_modeljson': 'xgb/Airlines.json'}
214 connect-4 0 multiclass -0.332411 {'_modeljson': 'xgb/Albert.json'}
215 connect-4 0 multiclass -0.636516 {'_modeljson': 'xgb/Amazon_employee_access.json'}
216 connect-4 0 multiclass -0.425947 {'_modeljson': 'xgb/bng_breastTumor.json'}
217 connect-4 0 multiclass -0.354612 {'_modeljson': 'xgb/bng_pbc.json'}
218 connect-4 0 multiclass -0.452201 {'_modeljson': 'xgb/car.json'}
219 connect-4 0 multiclass -0.338363 {'_modeljson': 'xgb/connect-4.json'}
220 connect-4 0 multiclass -0.430665 {'_modeljson': 'xgb/default.json'}
221 connect-4 0 multiclass -0.497404 {'_modeljson': 'xgb/dilbert.json'}
222 connect-4 0 multiclass -0.592309 {'_modeljson': 'xgb/poker.json'}

16
test/default_lgbm.py Normal file
View File

@ -0,0 +1,16 @@
from flaml.data import load_openml_dataset
from flaml.default import LGBMRegressor
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
lgbm = LGBMRegressor()
hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams(
X_train, y_train
)
print(hyperparams)
lgbm.fit(X_train, y_train)
y_pred = lgbm.predict(X_test)
print("flamlized lgbm r2 =", 1 - sklearn_metric_loss_score("r2", y_pred, y_test))
print(lgbm)

13
test/default_xgb.py Normal file
View File

@ -0,0 +1,13 @@
from flaml.data import load_openml_dataset
from flaml.default import XGBClassifier
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_pred = xgb.predict(X_test)
print(
"flamlized xgb accuracy =",
1 - sklearn_metric_loss_score("accuracy", y_pred, y_test),
)
print(xgb)

View File

@ -0,0 +1,97 @@
# Default - Flamlized Estimator
Flamlized estimators automatically use data-dependent default hyperparameter configurations for each estimator, offering a unique zero-shot AutoML capability, or "no tuning" AutoML.
This example requires openml==0.10.2.
## Flamlized LGBMRegressor
### Zero-shot AutoML
```python
from flaml.data import load_openml_dataset
from flaml.default import LGBMRegressor
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
lgbm = LGBMRegressor()
lgbm.fit(X_train, y_train)
y_pred = lgbm.predict(X_test)
print("flamlized lgbm r2", "=", 1 - sklearn_metric_loss_score("r2", y_pred, y_test))
print(lgbm)
```
#### Sample output
```
load dataset from ./openml_ds537.pkl
Dataset name: houses
X_train.shape: (15480, 8), y_train.shape: (15480,);
X_test.shape: (5160, 8), y_test.shape: (5160,)
flamlized lgbm r2 = 0.8537444671194614
LGBMRegressor(colsample_bytree=0.7019911744574896,
learning_rate=0.022635758411078528, max_bin=511,
min_child_samples=2, n_estimators=4797, num_leaves=122,
reg_alpha=0.004252223402511765, reg_lambda=0.11288241427227624,
verbose=-1)
```
### Suggest hyperparameters without training
```
from flaml.data import load_openml_dataset
from flaml.default import LGBMRegressor
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
lgbm = LGBMRegressor()
hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams(X_train, y_train)
print(hyperparams)
```
#### Sample output
```
load dataset from ./openml_ds537.pkl
Dataset name: houses
X_train.shape: (15480, 8), y_train.shape: (15480,);
X_test.shape: (5160, 8), y_test.shape: (5160,)
{'n_estimators': 4797, 'num_leaves': 122, 'min_child_samples': 2, 'learning_rate': 0.022635758411078528, 'colsample_bytree': 0.7019911744574896, 'reg_alpha': 0.004252223402511765, 'reg_lambda': 0.11288241427227624, 'max_bin': 511, 'verbose': -1}
```
## Flamlized XGBClassifier
### Zero-shot AutoML
```python
from flaml.data import load_openml_dataset
from flaml.default import XGBClassifier
from flaml.ml import sklearn_metric_loss_score
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_pred = xgb.predict(X_test)
print("flamlized xgb accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
print(xgb)
```
#### Sample output
```
load dataset from ./openml_ds1169.pkl
Dataset name: airlines
X_train.shape: (404537, 7), y_train.shape: (404537,);
X_test.shape: (134846, 7), y_test.shape: (134846,)
flamlized xgb accuracy = 0.6729009388487608
XGBClassifier(base_score=0.5, booster='gbtree',
colsample_bylevel=0.4601573737792679, colsample_bynode=1,
colsample_bytree=1.0, gamma=0, gpu_id=-1, grow_policy='lossguide',
importance_type='gain', interaction_constraints='',
learning_rate=0.04039771837785377, max_delta_step=0, max_depth=0,
max_leaves=159, min_child_weight=0.3396294979905001, missing=nan,
monotone_constraints='()', n_estimators=540, n_jobs=4,
num_parallel_tree=1, random_state=0,
reg_alpha=0.0012362430984376035, reg_lambda=3.093428791531145,
scale_pos_weight=1, subsample=1.0, tree_method='hist',
use_label_encoder=False, validate_parameters=1, verbosity=0)
```

View File

@ -19,7 +19,7 @@ and learner selection method invented by Microsoft Research.
Install FLAML from pip: `pip install flaml`. Find more options in [Installation](Installation).
There are two ways of using flaml:
There are several ways of using flaml:
#### [Task-oriented AutoML](Use-Cases/task-oriented-automl)
@ -76,6 +76,16 @@ analysis = tune.run(
```
Please see this [script](https://github.com/microsoft/FLAML/blob/main/test/tune_example.py) for the complete version of the above example.
#### [Zero-shot AutoML](Use-Cases/Zero-Shot-AutoML)
FLAML offers a unique, seamless and effortless way to leverage AutoML for the commonly used classifiers and regressors such as LightGBM and XGBoost. For example, if you are using `lightgbm.LGBMClassifier` as your current learner, all you need to do is to replace `from ligthgbm import LGBMClassifier` by:
```python
from flaml.default import LGBMClassifier
```
Then, you can use it just like you use the original `LGMBClassifier`. Your other code can remain unchanged. When you call the `fit()` function from `flaml.default.LGBMClassifier`, it will automatically instantiate a good data-dependent hyperparameter configuration for your dataset, which is expected to work better than the default configuration.
### Where to Go Next?
* Understand the use cases for [Task-oriented AutoML](Use-Cases/task-oriented-automl) and [Tune user-defined function](Use-Cases/Tune-User-Defined-Function).

Some files were not shown because too many files have changed in this diff Show More