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Abstract—In model driven engineering (MDE), meta-models
are the central artifacts. As a complement, the Object Constraint
Language (OCL) is a language used to express constraints and
operations on meta-models. The Eclipse Modeling Framework
(EMF) provides an implementation of OCL, enabling OCL
annotated meta-models.

Existing empirical studies of the OCL have been conducted
on small collections of data. To facilitate empirical research
into the OCL on a larger scale, we present the first publicly-
available data set of OCL expressions. The data set contains
9188 OCL expressions originating from 504 EMF meta-models
in 245 systematically selected GitHub repositories. Both the
original meta-models and the generated abstract syntax trees
are included, allowing for a variety of empirical studies of the
OCL. To illustrate the applicability of this data set in practice,
we performed three case studies.
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I. INTRODUCTION

Model driven engineering (MDE) is being used in industry
to drive increase in productivity [12], e.g., using domain
specific languages (DSLs). DSLs are often based on meta-
models. Meta-models define the concepts and structure of the
domain models that can be built using a DSL. When designing
complex DSLs, the expressivity of meta-models alone is often
not sufficient to accurately specify the domain [20]. To address
this problem, more complex mechanisms have been proposed,
such as the Object Constraint Language (OCL) [22].

While empirical studies of domain specific languages and
meta-models have been conducted in the past [9], [10], [11],
[16], [18], [23], little attention of the research community has
been spent on empirical evaluation of OCL [5], [6], [19].
Reynoso et al. [19] and Correa et al. [6] conducted controlled
experiments on specially prepared models as opposed to the
real-world ones, and Cadavid et al. [5] have studied a relatively
small collection of 840 OCL expressions derived from 34
publicly available and 3 commercial meta-models.

To facilitate further empirical studies of OCL we present
a data set of 9188 OCL expressions derived from 504 meta-
models available on GitHub. Availability of this data set will
enable the researchers

• to replicate earlier studies such as the one by Cadavid et
al. [5] on larger and more diverse data sets;

• to replicate corpus-based studies conducted in the context
of traditional software engineering, in a MDE context;

• to provide a complementary perspective on the earlier
results obtained through controlled experiments [6], [19];

• to evaluate practical limitations of techniques proposed
to analyze [2], [15] and visualize OCL [4];

• to compare characteristics of the OCL expressions from
open source projects with the previously published char-
acteristics of the limited number of closed-source projects
(cf. [5]), validating open source OCL as a vehicle for
further studies.

Furthermore, it will allow the companies specializing in
software quality to benchmark OCL expressions from systems
under investigation against a larger collection of OCL expres-
sions, and thus derive conclusions about the system quality
(cf. similar work for non-MDE software [8], [17]).

The remainder of this paper is organized as follows. First
we explain how we collected the data for our data set. Next
we provide a description of the data set. Then, we demonstrate
three case studies with our data set. Finally, we explain the
limitations and then conclude this paper.

II. GITHUB DATA COLLECTION

A. GitHub as platform for OCL data collection

Several collections of open-source MDE projects are pub-
licly available. For OCL, Jordi Cabot has compiled the OCL
repository1. However, this collection is relatively small (105
.ocl files and 2 .ecore files). Also, it does not have
a clear structure, which hinders automated analysis. Other
examples of meta-model collections include MDE Forge2 and
ReMoDD3. However, none of the meta-models at MDE Forge
contain any OCL expression, and the ReMoDD collection
contains only 81 meta-modeling related artifacts.

To create a more representative, and up-to-date data set we
mine public GitHub repositories. We chose GitHub, as it is
the largest source of open-source in-development software sys-
tems. Moreover, previous studies into the usage of modeling-
related technologies [7], [14] have also used the GitHub data.
Finally, by focussing on GitHub we ensure that our data set
includes the aforementioned OCL repository of Jordi Cabot.

OCL expressions can be stored either in a separate file or
as part of a file containing the meta-model to which the OCL
code refers. The naming convention of Eclipse, the most active
open-source MDE community [14], requires extensions .ocl
for OCL-only files and .ecore for meta-models.

1https://github.com/jcabot/ocl-repository
2http://www.mdeforge.org
3http://www.cs.colostate.edu/remodd/v1



B. GitHub search

GitHub provides advanced search features, allowing one
to look for different artifacts (e.g., commits, code files or
wiki entries) containing or not containing given search strings,
created during a given time period and owned by given users.
Intuitively, we would like to search GitHub for all .ocl files,
and .ecore files containing OCL code.

However, GitHub requires at least one search term to be
included in addition to the requirement that a file has a given
extension, i.e., one cannot identify every file with a particular
extension. Kolovos et al. [14] also faced this limitation. To
mitigate this problem the authors constructed search terms that
provided the largest number of relevant results. For .ocl they,
e.g., included the term context. However, this query does not
match .ocl files without the term context. Using the query
extension:ocl NOT context, we conclude that 999 code results
would have been missed using the method of Kolovos et al.

Therefore, we suggest an alternative approach to query
construction. As the search string we take the negation of a
search term that matches no .ocl files. This negated term,
by definition, matches all .ocl files. In our case the search
term “foofoo” returned no results for files with the .ocl
extension. (i.e., the query extension:ocl foofoo returned no
results). Hence, the query extension:ocl NOT foofoo yields all
files with the .ocl extension.

Next, we create a query that matches .ecore files con-
taining OCL constraints. To enable the use of embedded
OCL constraints in a .ecore file, the .ecore file should
contain an annotation with the value “http://www.eclipse.org/
emf/2002/Ecore/OCL”4. This value is persisted verbatim, and
we use it to search for .ecore files containing OCL.

Hence, we look for the “code” results of the following
queries: (1) extension:ocl NOT foofoo; (2) extension:ecore
“http://www.eclipse.org/emf/2002/Ecore/OCL”. In March
2017 the queries produced 6237 and 1045 hits, respectively.
As an .ocl file requires one or more corresponding .ecore
files to be parsed. To ensure that all our data is processable,
we need to also obtain these .ecore files. On GitHub,
every code match belongs to a file in a repository. Rather
than identifying single files, we download the full repository
of the files identified by our queries, and identify the files
required for parsing OCL offline.

The next limitation of GitHub search is that only 1000
results are retrieved. We circumvent this by incrementally
modifying our search query: we exclude repositories that
we have already been found in previous iterations (using
-repo:[user]/[repo]). For example, if in the first iteration
we find only code results from the repositories eclipse/ocl
and eclipse/ecore, the query for our next iteration will be
extension:ecore http://www.eclipse.org/emf/2002/Ecore/OCL
-repo:eclipse/ocl -repo:eclipse/ecore. We repeat this procedure
as long as results are retrieved. Finally, all excluded reposito-
ries form the list of relevant repositories.

4http://help.eclipse.org

The last limitation that we encountered during our search
process is the limitation of the search query length. However,
this did not lead to problems, because when the query length
reached this limit, the number of code results was less than
1000 (the maximum number of search results shown by
GitHub), so instead of excluding more repositories from the
search, all repositories that occurred in the results are added
to the list of relevant repositories.

As a result of this search process, we have two lists of
repositories, one for each of the two search queries. Merging
these lists and eliminating duplicates yields a list of 519
relevant repositories.

C. Downloading and stripping the repositories

Using a Python script, we download the 519 relevant
repositories. Next, we remove all files and empty directories
other than files ending in .ocl and .ecore, as we only want
to keep those for our data set. This results in a collection of
of 6258 .ocl files and 21188 .ecore files. In order to keep
the files parsable we preserve the original file names and the
directory structure.

D. Parsing

We have observed that there are many duplicate files both
in the same repository as well as across repositories. This
happens for example when files or directories are copied or
when dependencies are included. To prevent bias in the usage
statistics, we only want to include unique files.

Hence, we first identify duplicates using MD5 hashing of
the files (i.e., their content). In the collection of 27446 (6258
+ 21188) files, only 10894 files are unique (spread over the
519 repositories).

Using the Eclipse Modeling Framework, we parse all unique
files and store them as abstract syntax trees (ASTs) in XMI
format conforming to the OCL Pivot Meta Model [24]. We
successfully parse 8947 files (76%) resulting in 8947 AST
files. The remaining 2759 files resulted in parse errors, due
to e.g., the extension .ocl being used for technologies not
related to the Object Constraint Language, missing references,
or syntax errors. 274 of the 519 repositories contained no
parsable OCL constraints at all. Since we are only interested
in files with (parsable) OCL expressions, we exclude AST
files with no parsable OCL expressions. This step resulted 504
AST files containing 9188 OCL expressions, derived from 245
(519− 274) repositories.

III. DATA DESCRIPTION

The dataset, as well as the scripts that we wrote to compose
it, is publicly available on GitHub5.

The repos directory contains data from the 245 repos-
itories identified in the previous section. Directories imitate
the structure of the repositories; however, all files other than
.ocl and .ecore are removed, as well as directories that
are empty as a result. For each repository, a .json file with
metadata is included.

5https://github.com/tue-mdse/ocl-dataset
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Fig. 1. Frequency of OCL constructs in analyzed expressions.

The oclas directory contains files with the abstract syntax
trees (ASTs) of the .ocl and .ecore files. The ASTs are
stored in XMI format conforming to the OCL Pivot Meta-
Model [24]. The files are named by the MD5 hashes of their
contents, and have the .oclas extension. We identify the files
using MD5 since in Section II-D we have eliminated multiple
occurrences of files with the identical contents.

The meta.json file contains meta information about the
repositories and the AST files. The JSON object in this file
contains two keys: oclas and repos. The oclas object
maps the names of the AST files to an array of .ecore
or .ocl files (of which the contents are identical) that the
AST refers to. The repos object maps the names of the
repositories to commit hashes that were the most recent
commits when we downloaded the repositories.

IV. APPLICATIONS

In the introduction we mentioned several possible applica-
tions of this data set. To show how our data set can be used
in practice, we (partially) replicate the study of Cadavid et al.
[5] and discuss the practicality of the assumptions made by
Anastakis et al. [2].

Cadavid et al. [5] analyzed the practical usage of OCL in
37 meta-models. To perform a partial replication of this study,
we reuse the original methodology and apply it to our data
set of OCL expressions in 504 meta-models. According to the
definition of Shull et al. [21], we perform an exact replication.

A. Measuring the frequency of OCL constructs

Using the EMF, we count the frequency of each OCL
construct in all AST files. Figure 1 shows these frequencies.

These results are in line with the original results by Cadavid
et al. [5], e.g., the set of the 6 of most used constructs is the
same. Also, the chart looks similar, however we cannot mea-
sure the differences precisely due to the lack of exact numbers
in the original study. They present a percentage that we can
compare though: they name 10 constructs that capture 98.6%
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Fig. 2. Frequency of top 25 of operations called in occurrences of
OperationCall.

of all constructs present. Calculating this statistic using our
data set gives 97.8%. Hence the original result is reproducible,
which indicates a gain in confidence of the original study.

B. Measuring the frequency of called operations

We also reproduced another metric from the same pa-
per: the frequency of operations called in occurrences of
OperationCall (the most used OCL construct). Figure 2
shows the resulting frequencies. We only show the top 25
operations, to make the chart readable.

In contrast to the previous one, this chart is not in line with
the original results. We mention a few notable differences: the
most used operation in the original paper is not even in our
top 25. Furthermore, our second most used operation ‘and’
is at place 21 in the original paper. These and other notable
differences imply that the scope of the conclusions from this
data in the original paper is limited.

C. Limiting a threat to validity of another study

In our third case study, we investigate a threat to validity
of another paper. Anastasakis et al., study the difference in
expressivity between OCL and Alloy [2].

They conclude that there are various OCL concepts that
cannot be expressed in Alloy, possibly rendering their tech-
nique inapplicable in practice. Their leading example is the
Iterate operation, which has no equivalent in Alloy. In our
data set, the Iterate operation is used in 8% (19/245) of
the projects. More specifically 5% (24/504) of the metamodels
in our dataset use this particular OCL constraint. However, in
the metamodels, only 1% (82/9188) of the OCL expressions
incorporate this operation. Hence, most OCL expressions are
not affected, and the technique of Anastakis et al. can be
applied to almost all expressions.

V. LIMITATIONS

As with any empirical research, the data collection process
is subject to several threats to validity.



Several threats to validity have been introduced by our
decision to use GitHub. The “peril of mining GitHub” [13]
most relevant for our work is that “many active projects do
not conduct all their software development on GitHub”. To
mitigate this threat, as a future work we plan to extend the
data set with additional sources of data, such as SourceForge,
OMG documents, and scientific articles.

The limitations of the search functionality of GitHub [1] also
induce several threats to validity. The search functionality of
GitHub only allows searching of the main branch in reposito-
ries, i.e., our search query might miss files [3]. However, our
data is less likely to contain experimental files, giving a more
accurate representation of finished products. Similarly, files
might be missed due to project forks being excluded by default
from the GitHub search. While, in general, this is beneficial
as it reduces noise in the data, it is also possible that forks
contain new data as well, which we then miss.

Moreover, only files smaller than 384 KB are searchable.
This means that the search misses repositories in which
all .ocl and .ecore files exceed 384KB (note that we
download full repositories that we identified, potentially in-
cluding files bigger than 384KB). To estimate the number of
.ecore and .ocl files larger than 384KB, we investigate
the repositories that we included in the data set. We conclude
that of all .ecore and .ocl files in the repositories, 3%
(739/25130) is bigger than 384 KB. We therefore expect the
impact of this threat to be limited.

Finally, another limitation of the search pertains to very
big repositories: GitHub search covers only repositories with
fewer than 500,000 files. This may cause us to miss files in
very large repositories.

VI. CONCLUSIONS

In order to facilitate empirical research into the OCL,
we presented a data set of 9188 OCL expressions, derived
from 504 unique .ocl and .ecore files, originating from
245 systematically selected GitHub repositories. The data set
includes the original .ocl and .ecore files, as well as the
generated AST files. The AST files are stored in XMI format
conforming to the OCL Pivot Meta Model.

This data set allows for a variety of empirical studies of
the OCL, including usage studies and practical evaluations
of proposed techniques. We performed three case studies to
illustrate the applicability of this data set in practice. Two of
these case studies are replications of a usage study on a smaller
scale. In the third one, we use our data set to limit a thread
to validity of a previous study.

As future work, we consider extending our data set with
OCL expressions and corresponding meta-models from other
sources such as Google Code, SourceForge and data sources
used by existing research into the OCL.
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Study of the Impact of OCL Smells and Refactorings on the Understand-
ability of OCL Specifications, pages 76–90. Springer, 2007.

[7] Regina Hebig, Truong Ho Quang, Michel RV Chaudron, Gregorio
Robles, and Miguel Angel Fernandez. The quest for open source projects
that use UML: mining GitHub. In MODELS, pages 173–183. ACM,
2016.

[8] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for
measuring maintainability. In Ricardo Jorge Machado, Fernando Brito
e Abreu, and Paulo Rupino da Cunha, editors, QUATIC, pages 30–39.
IEEE, 2007.

[9] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Domain-
Specific Languages in Practice: A User Study on the Success Factors,
pages 423–437. Springer, 2009.

[10] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven en-
gineering practices in industry. In Proceedings of the 33rd International
Conference on Software Engineering, pages 633–642. ACM, 2011.

[11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristof-
fersen. Empirical assessment of mde in industry. In ICSE, pages 471–
480. IEEE, 2011.

[12] John Edward Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of MDE in industry. In ICSE, pages
471–480, 2011.

[13] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. Germán, and Daniela Damian. The promises and perils of
mining GitHub. In MSR, pages 92–101, 2014.

[14] Dimitrios S Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontze-
los, Sophia Ananiadou, and Richard F Paige. Assessing the use of eclipse
mde technologies in open-source software projects. In OSS4MDE@
MoDELS, pages 20–29, 2015.

[15] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive val-
idation of OCL models by integrating SAT solving into USE. In
Judith Bishop and Antonio Vallecillo, editors, TOOLS, pages 290–306.
Springer, 2011.

[16] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A.
Fernandez. An empirical study of the state of the practice and acceptance
of model-driven engineering in four industrial cases. Empirical Software
Engineering, 18(1):89–116, 2013.

[17] Paloma Oliveira, Fernando Paim Lima, Marco Tulio Valente, and
Alexander Serebrenik. RTTool: A tool for extracting relative thresholds
for source code metrics. In ICSME, pages 629–632. IEEE, 2014.

[18] Marian Petre. Uml in practice. In Proceedings of the 2013 International
Conference on Software Engineering, pages 722–731. IEEE Press, 2013.

[19] Luis Reynoso, Marcela Genero, Mario Piattini, and Esperanza Manso.
Does object coupling really affect the understanding and modifying of
OCL expressions? In SAC, pages 1721–1727. ACM, 2006.

[20] Mark Richters and Martin Gogolla. On formalizing the UML object
constraint language OCL. In Conceptual Modeling, pages 449–464,
1998.

[21] Forrest J Shull, Jeffrey C Carver, Sira Vegas, and Natalia Juristo.
The role of replications in empirical software engineering. Empirical
Software Engineering, 13(2):211–218, 2008.

[22] Jos Warmer and Anneke Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley, 2 edition, 2003.

[23] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of
practice in model-driven engineering. IEEE software, 31(3):79–85, 2014.

[24] Edward D. Willink. Aligning OCL with UML. ECEASST, 44, 2011.


