
Continuous Defect Prediction: The Idea and a
Related Dataset

Lech Madeyski
Wroclaw University of Science and Technology,
Faculty of Computer Science and Management,

Wyb.Wyspianskiego 27, 50-370 Wroclaw, POLAND,
Lech.Madeyski@pwr.edu.pl

Marcin Kawalerowicz
Opole University of Technology, Faculty of Electrical

Engineering, Automatic Control and Informatics,
ul. Sosnkowskiego 31, 45-272 Opole, POLAND

and CODEFUSION Sp. z o.o., Armii Krajowej 16/2,
45-071 Opole, POLAND, marcin@kawalerowicz.net

Abstract—We would like to present the idea of our Continuous
Defect Prediction (CDP) research and a related dataset that we
created and share. Our dataset is currently a set of more than
11 million data rows, representing files involved in Continuous
Integration (CI) builds, that synthesize the results of CI builds
with data we mine from software repositories. Our dataset
embraces 1265 software projects, 30,022 distinct commit authors
and several software process metrics that in earlier research
appeared to be useful in software defect prediction. In this
particular dataset we use TravisTorrent as the source of CI
data. TravisTorrent synthesizes commit level information from the
Travis CI server and GitHub open-source projects repositories.
We extend this data to a file change level and calculate the
software process metrics that may be used, for example, as
features to predict risky software changes that could break the
build if committed to a repository with CI enabled.

Keywords—mining software repositories, defect prediction, con-
tinuous defect prediction, software repository, open science

I. INTRODUCTION

Identifying defect-prone modules, packages or files has
long intrigued researchers (e.g., [1], [2], [3]). However, limited
resources and tight schedules common in software devel-
opment environments have triggered a change of research
focus into identifying defect-prone (”risky”) software changes
instead of files or packages. Our long-term research goal
is to propose Continuous Defect Prediction (CDP) practice
supported by a tool set using machine learning (ML)-based
prediction models and large dataset (collected from both,
open source and commercial projects) to predict defect-prone
software changes (at the moment limited to success/fail contin-
uous integration outcomes). We refer to our quality assurance
practice as ”Continuous Defect Prediction”, as developers can
receive a continuous feedback from the supporting tool we
are working on as to whether the latest code change is risky
and could break the build if committed/pushed/checked-in
to the repository with Continuous Integration (CI) enabled.
We are building on top of previous works on classifying
software changes either as being clean or buggy, e.g., of Kim
et al. [4], Kamei et al. [5] and Yang et al. [6], as well as
the TravisTorrent dataset made available by Beller at al. [7],
but aim to deliver immediate and continuous feedback for
a developer on how risky the most recent code change is,
and to embed this feedback mechanism into the software
development practice. Actually, this is a follow up to our
previous research on Continuous Test-Driven Development [8]

and Agile Experimentation [9]. Hence, we build upon our
experience and tools developed so far. In this paper, we share a
large dataset used by our prediction models to identify defect-
prone software changes.

Every build on a build server can be triggered by one or
a set of commits (multiple commits pushed together to the
central repository). First we are collecting information about
those commits and then we calculate a set of metrics for every
file change that took part in a given CI build. Those metrics
include for example a number of modified lines (NML) since
the last build, build commit local time of day (BCDTL), a
number of distinct committers (NDC) involved in that build,
a number of revisions (NR) for a given file, last build status
(LBS) of the build where the file was involved. We use these
metrics as features (predictors/independent variables) to create
prediction models where the build result is the dependent
variable.

We are working on CDP in a commercial environment on a
real life project where we use Jenkins CI build results from Bit-
bucket on-premise installation as a source of success/fail build
indication. We combine this information with data collected
from the Git repository. Due to the non-disclosure agreement
we are able to share data collected from a large number of
open source projects, but not from the commercial project we
are involved in. We are sharing the data collected with help the
of the TravisTorrent [7] open database project. TravisTorrent
synthesizes data from the Travis CI build server with the data
collected from GHTorrent – offline mirror of data provided
by the API of popular GitHub version control hosting service.
The data on TravisTorrent comes from popular open-source
projects such as JRuby or Rails. TravisTorrent stores the data
on a commit level meaning a commit is the most fine-grained
piece of data it contains. In turn, we are working on a file
change level. For us every file changed in a commit taking
part in a CI build conveys meaningful information. By using
this information, we build classification models and use them
to predict the outcome of a build before the data is committed
into the repository. Prediction models built on the basis of this
dataset are beyond the scope of this data paper.

We have collected more than 11 million rows of data for
1265 GitHub projects where more than 30,000 developers were
active. We are making this data available for a broader public
in hope it will help other researchers interested in defect-prone
software change prediction, behaviour of software developers
or other areas of software engineering research and practice.

ar
X

iv
:1

70
3.

04
14

2v
1 

 [
cs

.S
E

] 
 1

2 
M

ar
 2

01
7



II. DATA COLLECTION AND STORAGE

We are collecting the CDP relevant data from two sources:
continuous integration process and version control system
(software repository). The data from CI process are gathered
from the CI server. We were interested in two pieces of infor-
mation the CI server can provide us: build result and mark of
the commit or commits involved in that build. This information
can be obtained from the CI server over an API or from another
source, as an associated database, for example. The database
usage can help to deal with temporary CI information. The
data from the associated database is usually not cleaned as it
is the case with the CI build information. It is customary to
keep only the last n builds information (e.g., date and time of
the build, its result, build logs) to preserve the storage space
on the CI server. We use TravisTorrent database to obtain
the data on the build results and commits involved in those
builds. TravisTorrent synthesizes the information taken from
the Travis CI server using its API and GitHub repository data
taken from its offline mirror (GHTorrent). We are specifically
querying the travistorrent_11_1_2017 table and using
the following columns:

1) git trigger commit (hash of the commit which trig-
gered the build),

2) gh project name (project name on GitHub),
3) gh pushed at (time of the push that triggered the

build),
4) tr status (build result).

We are accessing Jenkins CI build results stored in a
Bitbucket database in our CDP work on a commercial project.
Both Jenkins and Bitbucket are installed on premise at a
company building banking software. Apart from Jenkins CI,
we also made it possible to use the TeamCity CI server
API to collect the build results. We support the Git source
control system, however the approach does not limit us to
this particular system by any means. It is possible to extend
the approach to: Subversion, Mercurial or other source control
systems.

It is worth mentioning that depending on the chosen
CI server, the build results enumeration can vary. We are
mapping them to three states: success, failure, and unknown
(for example if the build was interrupted, ended with a warning
or was marked as unstable by the CI server), as shown in
Table I.

TABLE I. JENKINS, TRAVIS AND TEAMCITY BUILD RESULTS MAPPING

Our database Jenkins Travis TeamCity
1 (success) SUCCESS passed NORMAL

0 (failure) FAILURE failed FAILURE

NOT BUILT ERROR
999 (unknown) ABORTED errored WARNING

UNSTABLE UNKNOWN

One build on a CI server can be made for one particular
commit or for any number of distinct commits. The infor-
mation on commits involved in a CI build can be obtained
from a CI server API or from a database. We are querying the
TravisTorrent database to get the information we need (using
the git_trigger_commit column described earlier in this
section) using the following query:

1 SELECT git_trigger_commit, gh_project_name, tr_status, gh_pushed_at
2 FROM travistorrent_11_1_2017
3 WHERE gh_project_name = :projectName
4 AND gh_pushed_at IS NOT NULL
5 AND tr_build_id >=
6 (SELECT tr_build_id FROM travistorrent_11_1_2017
7 WHERE git_trigger_commit=:commit_from)
8 AND tr_build_id <=
9 (SELECT tr_build_id FROM travistorrent_11_1_2017

10 WHERE git_trigger_commit=:commit_to)
11 ORDER BY tr_build_id DESC

The specific commits involved in the build are calculated
based on the branch topology tree of the software repository.

Then the software repository is utilized as the source of
the file level metrics gathered for CDP. Those metrics are the
features for the prediction model. In that regard the type of the
software repository (whether it is Git, Subversion, Mercurial or
any other) from which the data were harvested is irrelevant. We
are currently acquiring the data from Git repositories (GitHub
to be specific). We are not using GitHub API to avoid problems
with bandwidth throttling reported in [10], as in the case of
TravisTorrent. We are cloning all of the GitHub repositories
to a local disk instead. As a source of data we are using the
commit history stored locally. As it turns out, this poses no
problem to GitHub and is not a problem with regards to the
space needed. We have cloned 1265 projects which occupied
a disk space of little more than 43GB. To facilitate the Git
repository operations (cloning, reading the commit history) we
are using the LibGit2Sharp1 library.

Table II shows the metrics we are collecting from the
software repository together with the information on to how
they are acquired. The software process metrics we use were
inspired by Madeyski and Jureczko [11] who found that some
process metrics (namely NDC and NML) can significantly
improve software defect prediction models based on product
metrics. Together with these metrics our dataset contains also:

1) Project name
2) File path
3) Commit hash
4) Build commit hash
5) Export date (time stamp of the moment the data were

collected)

TABLE II. METRIC HARVESTED FROM THE SOFTWARE REPOSITORY

Metric Abbr. How acquired
NumberOfRevisions NR Count the revisions participating in

build

NumberOfDistinctCommiters NDC Count unique developers involved
in revisions in build

NumberOfModifiedLines NML Count modified lines since the last
build

NumberOfRevisions NR Count all the revisions of a given
file

BuildDateTimeLocal BDTL Build server local date and time of
the start of the build

BuildCommitDateTimeLocal BCDTL Local time stamp of the commit
that caused the build

LastBuildStatus LBS Status of the previous build

AuthorIdentification AI Author Git user.name setting

The data are stored in a simple Microsoft SQL Server
database. The part of the database that stores the metrics

1https://github.com/libgit2/libgit2sharp

https://github.com/libgit2/libgit2sharp


(table Metrics) is presented in Table III. The rest of our
database containing tables for defect prediction requests and
classification models is not presented here as it is beyond the
scope of this paper.

TABLE III. MICROSOFT SQL SERVER DATA STORAGE COLUMN
INFORMATION FOR METRICS TABLE

Column name Type Nullable
Id bigint no

Path nvarchar(500) yes

OldPath nvarchar(500) yes

NumberOfRevisions int yes

NumberOfDistinctCommitters int yes

NumberOfModifiedLines int yes

BuildResult int no

Commit nvarchar(255) yes

BuildCommit nvarchar(255) yes

ExportDateUtc datetime no

NumberOfRevisions int yes

BuildDateTimeLocal datetime no

BuildCommitDateTimeLocal datetime no

BuildProjectName nvarchar(255) yes

Author nvarchar(255) yes

PreviousBuildResult int yes

ProjectName nvarchar(255) yes

III. DESCRIPTION OF DATASET

At the time of writing this article we collected the dataset
including 11,464,816 rows (representing files that participated
in a CI build) in the Metrics database table. The metrics were
collected for the 1265 projects gathered in the TravisTorrent
database. The count of rows for different project vary dras-
tically (with the minimum at 1, maximum at 2706617, 1st
Quartile at 405, 3rd Quartile 2876, median at 938 and mean
at 9063). Figure 1 shows the histogram of the rows count over
the projects on a logarithmic scale. We have 30,022 distinct
commit authors in our database. Interestingly there is a large
number of projects with rather small number of data rows
in our database, e.g., we have 657 projects with less than
1000 data records (1e+03 mark on Figure 1), meaning all the
commits in those projects changed less than 1000 files.

Fig. 1. Log10 scaled histogram of the count of file records per project in
our database

We have done some exploratory data analysis for 10
largest projects in our database (the ones with the most
rows) and for 10 randomly chosen (using the following SQL
command: select top 10 ... order by newid()
projects with rows count greater than the mean in our database.

TABLE IV. SUMMARY DATA FOR METRICS FOR 10 RANDOM PROJECTS

NR NDC NML BCDTLl
Rand Top Rand Top Rand Top Rand Top

Min. 1 1 1 1 0 0 0 0

1stQu. 1 1 1 1 1 4 8.011 10.9

Med. 1 1 1 1 4 20 13.01 16.7

Mean 1.95 1.14 1.18 1.04 38.78 89.15 12.41 15.03

3rdQu. 1 1 1 1 26 68 18 20.03

Max. 144 93 18 14 33718 98155 23.02 23.98

Figure 2 includes the names of the selected projects, while
Table IV presents the summary data for some of the metrics
in those projects.

During our CDP research, we work with both open source
and closed source repositories. We share here only the open
source based part of our dataset which poses a threat as it
may not generalize to other contexts, e.g., commercial/closed
source software projects. It is also worth mentioning that
the TravisTorrent dataset we build upon restricted the project
space using filtering criteria to Ruby or Java non-fork, non-toy,
somewhat popular (> 10 watchers on GITHUB) projects with
some history of TRAVIS CI use (> 50 builds) [7].

The goal of the paper is to briefly describe the dataset we
have shared. However, our role as researchers, even if generally
beyond the scope of this data paper, is not only to collect data,
but also to transform them into understanding. As an exam-
ple of interesting insights or ideas for what future research
questions could be answered with the provided dataset, we are
presenting the box plots for the build commit times in the 10
largest large and 10 randomly chosen projects. Assuming these
small samples are representative to some extent, we could draw
two interesting, albeit preliminary, hypotheses from this plot.
The first one, derived from Figure 2 and Table IV, is that for
the larger projects commits that trigger the CI build are done
later in day time, whereas they are done earlier in the average.
The second one is that the open source projects integrations are
done generally well before 8 PM so on average open source
developers are not night owls as they are usually perceived.
Actually, the builds are done based on commits done in normal
business hours, between 9 AM and 5 PM.

IV. FUTURE WORK AND CONCLUSIONS

We are using the dataset presented in this paper to create
prediction models for continuous prediction of success/fail
continuous integrations. We are working currently on a pilot
CDP project in a commercial software development environ-
ment, at a company managed by one of the authors of this
paper, but we are going to release the whole CDP project
together with tools used to gather the data using dual open
source and commercial licences. We are going to enrich the
dataset we collected with more metrics that, according to
existing empirical evidence by other researchers, can be used
as features in our prediction models. It might even be possible
(through cooperation with one of the cloud providers) to
expose our prediction models over the web in a ready to use
manner to aid development of open source projects.

By opening our database to the public we hope to attract
an audience and feedback to our project, as well as attract
researchers to enhance the dataset by new metrics or new



Fig. 2. Build commit local time for 10 random and 10 largest projects in our dataset

kinds of metrics, to build prediction models on the basis of a
dataset from more than one thousand of software projects and
even more unique developers, or to predict other dependent
variables that can be useful for practitioners. Areas in which
our data could aid future research are broad and include: defect
prediction on software change level, stability and maturity
studies on long running software projects, developers activity
and results examination, or exploration of trends in continuous
integration over a period of time.

The database is available as a CSV (with semicolon as
separator and double quote as string delimiter) file at figshare2

and as a Microsoft SQL Server 2012 dump file3.

ACKNOWLEDGMENT

The authors would like to thank the authors of TravisTor-
rent [7] who provided us a set of data that we were able to
extend to use for our purposes. We would also like to thank the
employees of the CODEFUSION company for their valuable
input and help in tools development.

REFERENCES

[1] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[2] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, pp. 531–577, 2012.

2https://figshare.com/s/302814fa28cb1fbde705
3https://figshare.com/s/394e2f8d7dc6da405721

[3] M. Jureczko and L. Madeyski, “Cross–Project Defect Prediction
With Respect To Code Ownership Model: An Empirical Study,”
e-Informatica Software Engineering Journal, vol. 9, no. 1, pp. 21–35,
2015. [Online]. Available: http://dx.doi.org/10.5277/e-Inf150102

[4] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181–196, Mar. 2008. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2007.70773

[5] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2013.

[6] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-
in-time defect prediction,” in Software Quality, Reliability and Security
(QRS), 2015 IEEE International Conference on, Aug 2015, pp. 17–26.

[7] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
Travis CI and GitHub for Full-Stack Research on Continuous Integra-
tion,” in Proceedings of the 14th Working onference on Mining Software
Repositories, 2017.

[8] L. Madeyski and M. Kawalerowicz, “Continuous Test-Driven
Development—A Novel Agile Software Development Practice and
Supporting Tool,” in ENASE 2013 - Proceedings of the 8th International
Conference on Evaluation of Novel Approaches to Software Engineer-
ing, J. Filipe and L. Maciaszek, Eds., 2013, pp. 260–267.

[9] L. Madeyski and M. Kawalerowicz, “Software Engineering Needs Agile
Experimentation: A New Practice and Supporting Tool,” in Software
Engineering: Challenges and Solutions, ser. Advances in Intelligent
Systems and Computing, L. Madeyski, M. Śmiałek, B. Hnatkowska,
and Z. Huzar, Eds. Springer, 2017, vol. 504, pp. 149–162.

[10] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings
of the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.

[11] L. Madeyski and M. Jureczko, “Which process metrics can significantly
improve defect prediction models? An empirical study,” Software
Quality Journal, vol. 23, no. 3, pp. 393–422, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11219-014-9241-7

https://figshare.com/s/302814fa28cb1fbde705
https://figshare.com/s/394e2f8d7dc6da405721
http://dx.doi.org/10.5277/e-Inf150102
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1007/s11219-014-9241-7

	I Introduction
	II Data collection and storage
	III Description of dataset
	IV Future work and conclusions
	References

