1931 lines
119 KiB
Python
1931 lines
119 KiB
Python
# @generated from torch/__init__.pyi.in
|
|
|
|
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator
|
|
from torch._six import inf
|
|
|
|
import builtins
|
|
|
|
# These identifiers are reexported from other modules. These modules
|
|
# are not mypy-clean yet, so in order to use this stub file usefully
|
|
# from mypy you will need to specify --follow-imports=silent.
|
|
# Not all is lost: these imports still enable IDEs like PyCharm to offer
|
|
# autocomplete.
|
|
#
|
|
# Note: Why does the syntax here look so strange? Import visibility
|
|
# rules in stubs are different from normal Python files! You must use
|
|
# 'from ... import ... as ...' syntax to cause an identifier to be
|
|
# exposed (or use a wildcard); regular syntax is not exposed.
|
|
from .random import set_rng_state as set_rng_state, get_rng_state as get_rng_state, \
|
|
manual_seed as manual_seed, initial_seed as initial_seed, seed as seed
|
|
from ._tensor_str import set_printoptions as set_printoptions
|
|
from .functional import *
|
|
from .serialization import save as save, load as load
|
|
from .autograd import no_grad as no_grad, enable_grad as enable_grad, \
|
|
set_grad_enabled as set_grad_enabled
|
|
from ._ops import ops
|
|
from ._classes import classes
|
|
from . import autograd as autograd
|
|
from . import cuda as cuda
|
|
from . import optim as optim
|
|
from . import nn as nn
|
|
from . import multiprocessing as multiprocessing
|
|
from . import sparse as sparse
|
|
from . import onnx as onnx
|
|
from . import jit as jit
|
|
from . import hub as hub
|
|
from . import random as random
|
|
from . import distributions as distributions
|
|
from . import testing as testing
|
|
from . import quantization as quantization
|
|
from . import __config__ as __config__
|
|
from . import __future__ as __future__
|
|
|
|
class dtype: ...
|
|
|
|
class layout: ...
|
|
|
|
strided : layout = ...
|
|
|
|
class memory_format: ...
|
|
|
|
contiguous_format: memory_format = ...
|
|
|
|
class qscheme: ...
|
|
|
|
per_tensor_affine: qscheme = ...
|
|
|
|
# See https://github.com/python/mypy/issues/4146 for why these workarounds
|
|
# is necessary
|
|
_int = builtins.int
|
|
_float = builtins.float
|
|
_bool = builtins.bool
|
|
|
|
class device:
|
|
type: str
|
|
index: _int
|
|
|
|
@overload
|
|
def __init__(self, device: Union[_int, str]) -> None: ...
|
|
|
|
@overload
|
|
def __init__(self, type: str, index: _int) -> None: ...
|
|
|
|
class Size(Tuple[_int, ...]): ...
|
|
|
|
class Storage: ...
|
|
|
|
# See https://github.com/python/mypy/issues/4146 for why these workarounds
|
|
# is necessary
|
|
_dtype = dtype
|
|
_device = device
|
|
_qscheme = qscheme
|
|
_size = Union[Size, List[_int], Tuple[_int, ...]]
|
|
_layout = layout
|
|
|
|
# Meta-type for "numeric" things; matches our docs
|
|
Number = Union[builtins.int, builtins.float, builtins.bool]
|
|
|
|
class Generator:
|
|
device: _device = ...
|
|
|
|
@overload
|
|
def __init__(self, device: Optional[_device]=None) -> None: ...
|
|
|
|
@overload
|
|
def __init__(self, device: Union[_int, str]) -> None: ...
|
|
|
|
# TODO: One downside of doing it this way, is direct use of
|
|
# torch.tensor.Tensor doesn't get type annotations. Nobody
|
|
# should really do that, so maybe this is not so bad.
|
|
class Tensor:
|
|
requires_grad: _bool = ...
|
|
grad: Optional[Tensor] = ...
|
|
data: Tensor = ...
|
|
names: List[str] = ...
|
|
@property
|
|
def dtype(self) -> _dtype: ...
|
|
@property
|
|
def shape(self) -> Size: ...
|
|
@property
|
|
def device(self) -> _device: ...
|
|
@property
|
|
def T(self) -> Tensor: ...
|
|
@property
|
|
def grad_fn(self) -> Optional[Any]: ...
|
|
@property
|
|
def ndim(self) -> _int: ...
|
|
@property
|
|
def layout(self) -> _layout: ...
|
|
|
|
def __abs__(self) -> Tensor: ...
|
|
def __add__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __and__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __and__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __and__(self, other: Any) -> Tensor: ...
|
|
def __bool__(self) -> builtins.bool: ...
|
|
def __div__(self, other: Any) -> Tensor: ...
|
|
def __eq__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __float__(self) -> builtins.float: ...
|
|
def __floordiv__(self, other: Any) -> Tensor: ...
|
|
def __ge__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
|
|
def __gt__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __iadd__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __iand__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __iand__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __iand__(self, other: Any) -> Tensor: ...
|
|
def __idiv__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __ilshift__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __ilshift__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __ilshift__(self, other: Any) -> Tensor: ...
|
|
def __imul__(self, other: Any) -> Tensor: ...
|
|
def __index__(self) -> builtins.int: ...
|
|
def __int__(self) -> builtins.int: ...
|
|
def __invert__(self) -> Tensor: ...
|
|
@overload
|
|
def __ior__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __ior__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __ior__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __irshift__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __irshift__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __irshift__(self, other: Any) -> Tensor: ...
|
|
def __isub__(self, other: Any) -> Tensor: ...
|
|
def __itruediv__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __ixor__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __ixor__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __ixor__(self, other: Any) -> Tensor: ...
|
|
def __le__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __long__(self) -> builtins.int: ...
|
|
@overload
|
|
def __lshift__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __lshift__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __lshift__(self, other: Any) -> Tensor: ...
|
|
def __lt__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __matmul__(self, other: Any) -> Tensor: ...
|
|
def __mod__(self, other: Any) -> Tensor: ...
|
|
def __mul__(self, other: Any) -> Tensor: ...
|
|
def __ne__(self, other: Any) -> Tensor: ... # type: ignore
|
|
def __neg__(self) -> Tensor: ...
|
|
def __nonzero__(self) -> builtins.bool: ...
|
|
@overload
|
|
def __or__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __or__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __or__(self, other: Any) -> Tensor: ...
|
|
def __pow__(self, other: Any) -> Tensor: ...
|
|
def __radd__(self, other: Any) -> Tensor: ...
|
|
def __rfloordiv__(self, other: Any) -> Tensor: ...
|
|
def __rmul__(self, other: Any) -> Tensor: ...
|
|
def __rpow__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __rshift__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __rshift__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __rshift__(self, other: Any) -> Tensor: ...
|
|
def __rsub__(self, other: Any) -> Tensor: ...
|
|
def __rtruediv__(self, other: Any) -> Tensor: ...
|
|
def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
|
|
def __sub__(self, other: Any) -> Tensor: ...
|
|
def __truediv__(self, other: Any) -> Tensor: ...
|
|
@overload
|
|
def __xor__(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __xor__(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __xor__(self, other: Any) -> Tensor: ...
|
|
def _coalesced_(self, coalesced: _bool) -> Tensor: ...
|
|
def _dimI(self) -> _int: ...
|
|
def _dimV(self) -> _int: ...
|
|
def _indices(self) -> Tensor: ...
|
|
def _nnz(self) -> _int: ...
|
|
def _values(self) -> Tensor: ...
|
|
def abs(self) -> Tensor: ...
|
|
def abs_(self) -> Tensor: ...
|
|
def acos(self) -> Tensor: ...
|
|
def acos_(self) -> Tensor: ...
|
|
def add(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def add_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
|
|
def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
|
|
def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
|
|
def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
|
|
def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
|
|
def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def align_as(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def align_to(self, names: List[Union[str, None]]) -> Tensor: ...
|
|
@overload
|
|
def align_to(self, order: List[Union[str, None]], ellipsis_idx: _int) -> Tensor: ...
|
|
@overload
|
|
def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def all(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def all(self) -> Tensor: ...
|
|
def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
|
|
def angle(self) -> Tensor: ...
|
|
@overload
|
|
def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def any(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def any(self) -> Tensor: ...
|
|
def apply_(self, callable: Callable) -> Tensor: ...
|
|
def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
|
|
def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def argsort(self, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
|
|
def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
|
|
def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
|
|
def asin(self) -> Tensor: ...
|
|
def asin_(self) -> Tensor: ...
|
|
def atan(self) -> Tensor: ...
|
|
def atan2(self, other: Tensor) -> Tensor: ...
|
|
def atan2_(self, other: Tensor) -> Tensor: ...
|
|
def atan_(self) -> Tensor: ...
|
|
def backward(self, gradient: Optional[Tensor]=None, keep_graph: _bool=False, create_graph: _bool=False) -> None: ...
|
|
def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
@overload
|
|
def bernoulli(self, *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def bernoulli(self, p: _float, *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def bernoulli_(self, p: Tensor, *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def bernoulli_(self, p: _float=0.5, *, generator: Generator=None) -> Tensor: ...
|
|
def bfloat16(self) -> Tensor: ...
|
|
def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and_(self, other: Tensor) -> Tensor: ...
|
|
def bitwise_not(self) -> Tensor: ...
|
|
def bitwise_not_(self) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or_(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor_(self, other: Tensor) -> Tensor: ...
|
|
def bmm(self, mat2: Tensor) -> Tensor: ...
|
|
def bool(self) -> Tensor: ...
|
|
def byte(self) -> Tensor: ...
|
|
def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Generator=None) -> Tensor: ...
|
|
def ceil(self) -> Tensor: ...
|
|
def ceil_(self) -> Tensor: ...
|
|
def char(self) -> Tensor: ...
|
|
def cholesky(self, upper: _bool=False) -> Tensor: ...
|
|
def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
|
|
def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
|
|
def chunk(self, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def clamp_(self, min: _float=-inf, max: _float=inf) -> Tensor: ...
|
|
def clamp_max(self, max: Number) -> Tensor: ...
|
|
def clamp_max_(self, max: Number) -> Tensor: ...
|
|
def clamp_min(self, min: Number) -> Tensor: ...
|
|
def clamp_min_(self, min: Number) -> Tensor: ...
|
|
def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
def coalesce(self) -> Tensor: ...
|
|
def conj(self) -> Tensor: ...
|
|
def contiguous(self) -> Tensor: ...
|
|
def cos(self) -> Tensor: ...
|
|
def cos_(self) -> Tensor: ...
|
|
def cosh(self) -> Tensor: ...
|
|
def cosh_(self) -> Tensor: ...
|
|
def cpu(self) -> Tensor: ...
|
|
def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
|
|
def cuda(self, device: Optional[Union[_device, _int, str]]=None, non_blocking: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def cummax(self, dim: _int) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummax(self, dim: Union[str, None]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummin(self, dim: _int) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummin(self, dim: Union[str, None]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def cumprod(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def cumsum(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def dense_dim(self) -> _int: ...
|
|
def dequantize(self) -> Tensor: ...
|
|
def det(self) -> Tensor: ...
|
|
def detach(self) -> Tensor: ...
|
|
def detach_(self) -> Tensor: ...
|
|
def diag(self, diagonal: _int=0) -> Tensor: ...
|
|
def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
|
|
def diagflat(self, offset: _int=0) -> Tensor: ...
|
|
@overload
|
|
def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
|
|
@overload
|
|
def diagonal(self, *, outdim: Union[str, None], dim1: Union[str, None], dim2: Union[str, None], offset: _int=0) -> Tensor: ...
|
|
def digamma(self) -> Tensor: ...
|
|
def digamma_(self) -> Tensor: ...
|
|
def dim(self) -> _int: ...
|
|
def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
|
|
def div(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def div_(self, other: Union[Tensor, Number]) -> Tensor: ...
|
|
def dot(self, tensor: Tensor) -> Tensor: ...
|
|
def double(self) -> Tensor: ...
|
|
def eig(self, eigenvectors: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def element_size(self) -> _int: ...
|
|
@overload
|
|
def eq(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def eq(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def eq_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def eq_(self, other: Tensor) -> Tensor: ...
|
|
def equal(self, other: Tensor) -> _bool: ...
|
|
def erf(self) -> Tensor: ...
|
|
def erf_(self) -> Tensor: ...
|
|
def erfc(self) -> Tensor: ...
|
|
def erfc_(self) -> Tensor: ...
|
|
def erfinv(self) -> Tensor: ...
|
|
def erfinv_(self) -> Tensor: ...
|
|
def exp(self) -> Tensor: ...
|
|
def exp_(self) -> Tensor: ...
|
|
@overload
|
|
def expand(self, size: _size, *, implicit: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
|
|
def expand_as(self, other: Tensor) -> Tensor: ...
|
|
def expm1(self) -> Tensor: ...
|
|
def expm1_(self) -> Tensor: ...
|
|
def exponential_(self, lambd: _float=1, *, generator: Generator=None) -> Tensor: ...
|
|
def fft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def fill_(self, value: Number) -> Tensor: ...
|
|
@overload
|
|
def fill_(self, value: Tensor) -> Tensor: ...
|
|
def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
|
|
@overload
|
|
def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def flatten(self, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def flatten(self, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def flip(self, dims: _size) -> Tensor: ...
|
|
@overload
|
|
def flip(self, *dims: _int) -> Tensor: ...
|
|
def float(self) -> Tensor: ...
|
|
def floor(self) -> Tensor: ...
|
|
def floor_(self) -> Tensor: ...
|
|
def floor_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def floor_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
|
|
@overload
|
|
def fmod(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def fmod(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def fmod_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def fmod_(self, other: Tensor) -> Tensor: ...
|
|
def frac(self) -> Tensor: ...
|
|
def frac_(self) -> Tensor: ...
|
|
@overload
|
|
def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def gather(self, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def ge(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def ge(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def ge_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def ge_(self, other: Tensor) -> Tensor: ...
|
|
def geometric_(self, p: _float, *, generator: Generator=None) -> Tensor: ...
|
|
def geqrf(self) -> Tuple[Tensor, Tensor]: ...
|
|
def ger(self, vec2: Tensor) -> Tensor: ...
|
|
def get_device(self) -> _int: ...
|
|
@overload
|
|
def gt(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def gt(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def gt_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def gt_(self, other: Tensor) -> Tensor: ...
|
|
def half(self) -> Tensor: ...
|
|
def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
|
|
def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
|
|
def ifft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def index_add(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_add(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
|
|
def index_add_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy_(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill_(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill_(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
|
|
def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
|
|
def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_select(self, dim: Union[str, None], index: Tensor) -> Tensor: ...
|
|
def indices(self) -> Tensor: ...
|
|
def int(self) -> Tensor: ...
|
|
def int_repr(self) -> Tensor: ...
|
|
def inverse(self) -> Tensor: ...
|
|
def irfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
|
|
def is_coalesced(self) -> _bool: ...
|
|
def is_complex(self) -> _bool: ...
|
|
def is_contiguous(self) -> _bool: ...
|
|
is_cuda: _bool
|
|
def is_distributed(self) -> _bool: ...
|
|
def is_floating_point(self) -> _bool: ...
|
|
is_leaf: _bool
|
|
is_mkldnn: _bool
|
|
def is_nonzero(self) -> _bool: ...
|
|
def is_pinned(self) -> _bool: ...
|
|
is_quantized: _bool
|
|
def is_same_size(self, other: Tensor) -> _bool: ...
|
|
def is_set_to(self, tensor: Tensor) -> _bool: ...
|
|
def is_signed(self) -> _bool: ...
|
|
is_sparse: _bool
|
|
def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
|
|
def item(self) -> Number: ...
|
|
@overload
|
|
def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def kthvalue(self, k: _int, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def le(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def le(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def le_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def le_(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
|
|
@overload
|
|
def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
|
|
@overload
|
|
def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
|
|
@overload
|
|
def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
|
|
def lgamma(self) -> Tensor: ...
|
|
def lgamma_(self) -> Tensor: ...
|
|
def log(self) -> Tensor: ...
|
|
def log10(self) -> Tensor: ...
|
|
def log10_(self) -> Tensor: ...
|
|
def log1p(self) -> Tensor: ...
|
|
def log1p_(self) -> Tensor: ...
|
|
def log2(self) -> Tensor: ...
|
|
def log2_(self) -> Tensor: ...
|
|
def log_(self) -> Tensor: ...
|
|
def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def log_softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def logdet(self) -> Tensor: ...
|
|
def logical_and(self, other: Tensor) -> Tensor: ...
|
|
def logical_and_(self, other: Tensor) -> Tensor: ...
|
|
def logical_not(self) -> Tensor: ...
|
|
def logical_not_(self) -> Tensor: ...
|
|
def logical_or(self, other: Tensor) -> Tensor: ...
|
|
def logical_or_(self, other: Tensor) -> Tensor: ...
|
|
def logical_xor(self, other: Tensor) -> Tensor: ...
|
|
def logical_xor_(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def logsumexp(self, dim: List[Union[str, None]], keepdim: _bool=False) -> Tensor: ...
|
|
def long(self) -> Tensor: ...
|
|
def lstsq(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def lt(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def lt(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def lt_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def lt_(self, other: Tensor) -> Tensor: ...
|
|
def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
|
|
def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ...
|
|
@overload
|
|
def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
|
|
def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
|
|
def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
|
|
def masked_select(self, mask: Tensor) -> Tensor: ...
|
|
def matmul(self, other: Tensor) -> Tensor: ...
|
|
def matrix_power(self, n: _int) -> Tensor: ...
|
|
@overload
|
|
def max(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def max(self) -> Tensor: ...
|
|
@overload
|
|
def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def mean(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def mean(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def median(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def median(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def median(self) -> Tensor: ...
|
|
@overload
|
|
def min(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def min(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def min(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def min(self) -> Tensor: ...
|
|
def mm(self, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def mode(self, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def mode(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def mul(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def mul_(self, other: Union[Tensor, Number]) -> Tensor: ...
|
|
def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Generator=None) -> Tensor: ...
|
|
def mv(self, vec: Tensor) -> Tensor: ...
|
|
def mvlgamma(self, p: _int) -> Tensor: ...
|
|
def mvlgamma_(self, p: _int) -> Tensor: ...
|
|
@overload
|
|
def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
|
|
@overload
|
|
def narrow(self, dim: _int, start: Tensor, length: _int) -> Tensor: ...
|
|
def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
|
|
def ndimension(self) -> _int: ...
|
|
@overload
|
|
def ne(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def ne(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def ne_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def ne_(self, other: Tensor) -> Tensor: ...
|
|
def neg(self) -> Tensor: ...
|
|
def neg_(self) -> Tensor: ...
|
|
def nelement(self) -> _int: ...
|
|
@overload
|
|
def new_empty(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def new_empty(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def new_full(self, size: _size, fill_value: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def new_zeros(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def new_zeros(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def normal_(self, mean: _float=0, std: _float=1, *, generator: Generator=None) -> Tensor: ...
|
|
def numel(self) -> _int: ...
|
|
def numpy(self) -> Any: ...
|
|
def orgqr(self, input2: Tensor) -> Tensor: ...
|
|
def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def permute(self, dims: _size) -> Tensor: ...
|
|
@overload
|
|
def permute(self, *dims: _int) -> Tensor: ...
|
|
def pin_memory(self) -> Tensor: ...
|
|
def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
|
|
def polygamma(self, n: _int) -> Tensor: ...
|
|
def polygamma_(self, n: _int) -> Tensor: ...
|
|
@overload
|
|
def pow(self, exponent: Number) -> Tensor: ...
|
|
@overload
|
|
def pow(self, exponent: Tensor) -> Tensor: ...
|
|
@overload
|
|
def pow_(self, exponent: Number) -> Tensor: ...
|
|
@overload
|
|
def pow_(self, exponent: Tensor) -> Tensor: ...
|
|
def prelu(self, weight: Tensor) -> Tensor: ...
|
|
@overload
|
|
def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def prod(self, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
|
|
def q_per_channel_axis(self) -> _int: ...
|
|
def q_per_channel_scales(self) -> Tensor: ...
|
|
def q_per_channel_zero_points(self) -> Tensor: ...
|
|
def q_scale(self) -> _float: ...
|
|
def q_zero_point(self) -> _int: ...
|
|
def qr(self, some: _bool=True) -> Tuple[Tensor, Tensor]: ...
|
|
def qscheme(self) -> _qscheme: ...
|
|
@overload
|
|
def random_(self, from_: _int, to: Optional[_int], *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def random_(self, to: _int, *, generator: Generator=None) -> Tensor: ...
|
|
@overload
|
|
def random_(self, *, generator: Generator=None) -> Tensor: ...
|
|
def reciprocal(self) -> Tensor: ...
|
|
def reciprocal_(self) -> Tensor: ...
|
|
def refine_names(self, names: List[Union[str, None]]) -> Tensor: ...
|
|
def relu(self) -> Tensor: ...
|
|
def relu_(self) -> Tensor: ...
|
|
@overload
|
|
def remainder(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def remainder(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def remainder_(self, other: Number) -> Tensor: ...
|
|
@overload
|
|
def remainder_(self, other: Tensor) -> Tensor: ...
|
|
def rename(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
|
|
def rename_(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
|
|
def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
|
|
def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
|
|
@overload
|
|
def repeat(self, repeats: _size) -> Tensor: ...
|
|
@overload
|
|
def repeat(self, *repeats: _int) -> Tensor: ...
|
|
@overload
|
|
def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
|
|
@overload
|
|
def repeat_interleave(self, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
|
|
def requires_grad_(self, mode: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def reshape(self, shape: _size) -> Tensor: ...
|
|
@overload
|
|
def reshape(self, *shape: _int) -> Tensor: ...
|
|
def reshape_as(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def resize_(self, size: _size, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
@overload
|
|
def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
def rfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
|
|
def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
|
|
def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
|
|
def round(self) -> Tensor: ...
|
|
def round_(self) -> Tensor: ...
|
|
def rsqrt(self) -> Tensor: ...
|
|
def rsqrt_(self) -> Tensor: ...
|
|
@overload
|
|
def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def scatter(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter_add(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
|
|
def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def select(self, dim: Union[str, None], index: _int) -> Tensor: ...
|
|
@overload
|
|
def select(self, dim: _int, index: _int) -> Tensor: ...
|
|
@overload
|
|
def set_(self, source: Storage) -> Tensor: ...
|
|
@overload
|
|
def set_(self, source: Storage, storage_offset: _int, size: _size, stride: _size=()) -> Tensor: ...
|
|
@overload
|
|
def set_(self, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def set_(self) -> Tensor: ...
|
|
def short(self) -> Tensor: ...
|
|
def sigmoid(self) -> Tensor: ...
|
|
def sigmoid_(self) -> Tensor: ...
|
|
def sign(self) -> Tensor: ...
|
|
def sign_(self) -> Tensor: ...
|
|
def sin(self) -> Tensor: ...
|
|
def sin_(self) -> Tensor: ...
|
|
def sinh(self) -> Tensor: ...
|
|
def sinh_(self) -> Tensor: ...
|
|
@overload
|
|
def size(self) -> Size: ...
|
|
@overload
|
|
def size(self, _int) -> _int: ...
|
|
def slogdet(self) -> Tuple[Tensor, Tensor]: ...
|
|
def smm(self, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def solve(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def sort(self, dim: _int=-1, descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def sort(self, dim: Union[str, None], descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def sparse_dim(self) -> _int: ...
|
|
def sparse_mask(self, mask: Tensor) -> Tensor: ...
|
|
def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
|
|
def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
|
|
def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def sqrt(self) -> Tensor: ...
|
|
def sqrt_(self) -> Tensor: ...
|
|
def square(self) -> Tensor: ...
|
|
def square_(self) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self, dim: _int) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self, dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def squeeze_(self) -> Tensor: ...
|
|
@overload
|
|
def squeeze_(self, dim: _int) -> Tensor: ...
|
|
@overload
|
|
def squeeze_(self, dim: Union[str, None]) -> Tensor: ...
|
|
def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
@overload
|
|
def std(self, unbiased: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def std(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def std(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
|
|
def storage(self) -> Storage: ...
|
|
def storage_offset(self) -> _int: ...
|
|
@overload
|
|
def stride(self) -> Tuple[_int]: ...
|
|
@overload
|
|
def stride(self, _int) -> _int: ...
|
|
def sub(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sub_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
|
|
@overload
|
|
def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def sum(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def sum(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def sum_to_size(self, size: _size) -> Tensor: ...
|
|
@overload
|
|
def sum_to_size(self, *size: _int) -> Tensor: ...
|
|
def svd(self, some: _bool=True, compute_uv: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def symeig(self, eigenvectors: _bool=False, upper: _bool=True) -> Tuple[Tensor, Tensor]: ...
|
|
def t(self) -> Tensor: ...
|
|
def t_(self) -> Tensor: ...
|
|
def take(self, index: Tensor) -> Tensor: ...
|
|
def tan(self) -> Tensor: ...
|
|
def tan_(self) -> Tensor: ...
|
|
def tanh(self) -> Tensor: ...
|
|
def tanh_(self) -> Tensor: ...
|
|
@overload
|
|
def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
|
|
def to_dense(self) -> Tensor: ...
|
|
def to_mkldnn(self) -> Tensor: ...
|
|
@overload
|
|
def to_sparse(self, sparse_dim: _int) -> Tensor: ...
|
|
@overload
|
|
def to_sparse(self) -> Tensor: ...
|
|
def tolist(self) -> List: ...
|
|
def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> Tuple[Tensor, Tensor]: ...
|
|
def trace(self) -> Tensor: ...
|
|
@overload
|
|
def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
|
|
@overload
|
|
def transpose(self, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
|
|
def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
|
|
def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def tril(self, diagonal: _int=0) -> Tensor: ...
|
|
def tril_(self, diagonal: _int=0) -> Tensor: ...
|
|
def triu(self, diagonal: _int=0) -> Tensor: ...
|
|
def triu_(self, diagonal: _int=0) -> Tensor: ...
|
|
def true_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def true_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
|
|
def trunc(self) -> Tensor: ...
|
|
def trunc_(self) -> Tensor: ...
|
|
@overload
|
|
def type(self, dtype: None=None, non_blocking: _bool=False) -> str: ...
|
|
@overload
|
|
def type(self, dtype: Union[str, _dtype], non_blocking: _bool=False) -> Tensor: ...
|
|
def type_as(self, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def unbind(self, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
@overload
|
|
def unbind(self, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
@overload
|
|
def unflatten(self, dim: Union[str, None], sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
|
|
@overload
|
|
def unflatten(self, dim: _int, sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
|
|
def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
|
|
def uniform_(self, from_: _float=0, to: _float=1, *, generator: Generator=None) -> Tensor: ...
|
|
def unsqueeze(self, dim: _int) -> Tensor: ...
|
|
def unsqueeze_(self, dim: _int) -> Tensor: ...
|
|
def values(self) -> Tensor: ...
|
|
@overload
|
|
def var(self, unbiased: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def var(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def var(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def view(self, size: _size) -> Tensor: ...
|
|
@overload
|
|
def view(self, *size: _int) -> Tensor: ...
|
|
def view_as(self, other: Tensor) -> Tensor: ...
|
|
def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
|
|
def zero_(self) -> Tensor: ...
|
|
|
|
# Manually defined methods from torch/tensor.py
|
|
def __len__(self) -> _int: ...
|
|
def __iter__(self) -> Iterator[Tensor]: ...
|
|
def __contains__(self, item: Union[Tensor, Number]) -> _bool: ...
|
|
def register_hook(self, hook: Callable) -> Any: ...
|
|
def retain_grad(self) -> None: ...
|
|
def is_shared(self) -> _bool: ...
|
|
def share_memory_(self) -> None: ...
|
|
# TODO: fill in the types for these, or otherwise figure out some
|
|
# way to not have to write these out again...
|
|
def nonzero(self, *, as_tuple=True): ...
|
|
def norm(self, p="fro", dim=None, keepdim=False): ...
|
|
def stft(self, n_fft, hop_length=None, win_length=None, window=None,
|
|
center=True, pad_mode='reflect', normalized=False, onesided=True): ...
|
|
def split(self, split_size, dim=0): ...
|
|
def unique(self, sorted=True, return_inverse=False, dim=None): ...
|
|
def unique_consecutive(self, sorted=True, return_inverse=False, return_counts=False, dim=None): ...
|
|
def lu(self, pivot=True, get_infos=False): ...
|
|
|
|
@overload
|
|
def __and__(self: Tensor, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __and__(self: Tensor, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __lshift__(self: Tensor, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __lshift__(self: Tensor, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __or__(self: Tensor, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __or__(self: Tensor, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __rshift__(self: Tensor, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __rshift__(self: Tensor, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def __xor__(self: Tensor, other: Number) -> Tensor: ...
|
|
@overload
|
|
def __xor__(self: Tensor, other: Tensor) -> Tensor: ...
|
|
def _adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
|
|
def _addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def _addr_(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def _amp_non_finite_check_and_unscale_(self: Tensor, found_inf: Tensor, inv_scale: Tensor) -> None: ...
|
|
def _amp_update_scale(growth_tracker: Tensor, current_scale: Tensor, found_inf: Tensor, scale_growth_factor: _float, scale_backoff_factor: _float, growth_interval: _int) -> Tensor: ...
|
|
def _baddbmm_mkl_(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def _batch_norm_impl_index(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, _int]: ...
|
|
def _cast_Byte(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Char(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Double(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Float(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Half(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Int(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Long(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cast_Short(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int, benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool) -> Tensor: ...
|
|
def _convolution_nogroup(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size) -> Tensor: ...
|
|
def _copy_from(self: Tensor, dst: Tensor, non_blocking: _bool=False) -> Tensor: ...
|
|
def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int=0, zero_infinity: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def _cudnn_init_dropout_state(dropout: _float, train: _bool, dropout_seed: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
|
|
def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: _int, mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, bidirectional: _bool) -> Tensor: ...
|
|
def _cufft_clear_plan_cache(device_index: _int) -> None: ...
|
|
def _cufft_get_plan_cache_max_size(device_index: _int) -> _int: ...
|
|
def _cufft_get_plan_cache_size(device_index: _int) -> _int: ...
|
|
def _cufft_set_plan_cache_max_size(device_index: _int, max_size: _int) -> None: ...
|
|
def _cummax_helper(self: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ...
|
|
def _cummin_helper(self: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ...
|
|
def _debug_has_internal_overlap(self: Tensor) -> _int: ...
|
|
def _dim_arange(like: Tensor, dim: _int) -> Tensor: ...
|
|
def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor) -> Tensor: ...
|
|
def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None, include_last_offset: _bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
|
|
@overload
|
|
def _empty_affine_quantized(size: _size, *, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def _empty_affine_quantized(*size: _int, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def _empty_per_channel_affine_quantized(size: _size, *, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def _empty_per_channel_affine_quantized(*size: _int, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def _fft_with_size(self: Tensor, signal_ndim: _int, complex_input: _bool, complex_output: _bool, inverse: _bool, checked_signal_sizes: _size, normalized: _bool, onesided: _bool, output_sizes: _size) -> Tensor: ...
|
|
def _fused_dropout(self: Tensor, p: _float, generator: Generator=None) -> Tuple[Tensor, Tensor]: ...
|
|
def _has_compatible_shallow_copy_type(self: Tensor, from_: Tensor) -> _bool: ...
|
|
def _index_copy_(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
def _index_put_impl_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False, unsafe: _bool=False) -> Tensor: ...
|
|
def _log_softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
|
|
def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
|
|
def _lu_solve_helper(self: Tensor, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
|
|
def _lu_with_info(self: Tensor, pivot: _bool=True, check_errors: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def _make_per_channel_quantized_tensor(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int) -> Tensor: ...
|
|
def _make_per_tensor_quantized_tensor(self: Tensor, scale: _float, zero_point: _int) -> Tensor: ...
|
|
def _masked_scale(self: Tensor, mask: Tensor, scale: _float) -> Tensor: ...
|
|
def _max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def _min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def _mkldnn_reshape(self: Tensor, shape: _size) -> Tensor: ...
|
|
def _mkldnn_transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
|
|
def _mkldnn_transpose_(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
|
|
def _mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def _multinomial_alias_draw(J: Tensor, q: Tensor, num_samples: _int, *, generator: Generator=None) -> Tensor: ...
|
|
def _multinomial_alias_setup(probs: Tensor) -> Tuple[Tensor, Tensor]: ...
|
|
def _nnpack_available() -> _bool: ...
|
|
def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[_int, _size], stride: Union[_int, _size]=1) -> Tensor: ...
|
|
def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: _bool, padding_value: Number, total_length: _int) -> Tuple[Tensor, Tensor]: ...
|
|
def _reshape_from_tensor(self: Tensor, shape: Tensor) -> Tensor: ...
|
|
def _s_where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
|
|
def _sample_dirichlet(self: Tensor, generator: Generator=None) -> Tensor: ...
|
|
def _shape_as_tensor(self: Tensor) -> Tensor: ...
|
|
def _sobol_engine_draw(quasi: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int, dtype: Optional[_dtype]) -> Tuple[Tensor, Tensor]: ...
|
|
def _sobol_engine_ff_(self: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int) -> Tensor: ...
|
|
def _sobol_engine_initialize_state_(self: Tensor, dimension: _int) -> Tensor: ...
|
|
def _sobol_engine_scramble_(self: Tensor, ltm: Tensor, dimension: _int) -> Tensor: ...
|
|
def _softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
|
|
def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
|
|
def _sparse_addmm(self: Tensor, sparse: Tensor, dense: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
def _sparse_mm(sparse: Tensor, dense: Tensor) -> Tensor: ...
|
|
@overload
|
|
def _sparse_sum(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def _sparse_sum(self: Tensor, *, dtype: _dtype) -> Tensor: ...
|
|
@overload
|
|
def _sparse_sum(self: Tensor, dim: Union[_int, _size]) -> Tensor: ...
|
|
@overload
|
|
def _sparse_sum(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
|
|
def _standard_gamma(self: Tensor, generator: Generator=None) -> Tensor: ...
|
|
def _standard_gamma_grad(self: Tensor, output: Tensor) -> Tensor: ...
|
|
def _std(self: Tensor, unbiased: _bool=True) -> Tensor: ...
|
|
def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int=1) -> Tensor: ...
|
|
def _unique(self: Tensor, sorted: _bool=True, return_inverse: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def _unique2(self: Tensor, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int) -> _bool: ...
|
|
def _use_cudnn_rnn_flatten_weight() -> _bool: ...
|
|
def _var(self: Tensor, unbiased: _bool=True) -> Tensor: ...
|
|
def _weight_norm(v: Tensor, g: Tensor, dim: _int=0) -> Tensor: ...
|
|
def _weight_norm_cuda_interface(v: Tensor, g: Tensor, dim: _int=0) -> Tuple[Tensor, Tensor]: ...
|
|
def abs(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def abs_(self: Tensor) -> Tensor: ...
|
|
def acos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def acos_(self: Tensor) -> Tensor: ...
|
|
def adaptive_avg_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
|
|
def adaptive_max_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def add(input: Union[Tensor, Number], other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def add(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def add(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addcdiv(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addcmul(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmv(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
|
|
def addmv_(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
|
|
@overload
|
|
def addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
def affine_grid_generator(theta: Tensor, size: _size, align_corners: _bool) -> Tensor: ...
|
|
@overload
|
|
def all(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def all(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def all(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def allclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
|
|
def alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def angle(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def any(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def any(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def any(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def arange(start: Number, end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def arange(end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
def argmax(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
|
|
def argmin(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def argsort(self: Tensor, dim: _int=-1, descending: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def argsort(self: Tensor, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
|
|
def as_strided(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
|
|
def as_strided_(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
|
|
def as_tensor(data: Any, dtype: _dtype=None, device: Optional[_device]=None) -> Tensor: ...
|
|
def asin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def asin_(self: Tensor) -> Tensor: ...
|
|
def atan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def atan2(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def atan_(self: Tensor) -> Tensor: ...
|
|
def avg_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, ceil_mode: _bool=False, count_include_pad: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def baddbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def bartlett_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def bartlett_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
|
|
def batch_norm_backward_elemt(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], mean_dy: Tensor, mean_dy_xmu: Tensor) -> Tensor: ...
|
|
def batch_norm_backward_reduce(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], input_g: _bool, weight_g: _bool, bias_g: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
|
|
def batch_norm_elemt(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, invstd: Tensor, eps: _float, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def batch_norm_gather_stats(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, count: _int) -> Tuple[Tensor, Tensor]: ...
|
|
def batch_norm_gather_stats_with_counts(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, counts: _size) -> Tuple[Tensor, Tensor]: ...
|
|
def batch_norm_stats(input: Tensor, eps: _float) -> Tuple[Tensor, Tensor]: ...
|
|
def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def bernoulli(self: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bernoulli(self: Tensor, p: _float, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
|
|
def bincount(self: Tensor, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bitwise_and(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def bitwise_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bitwise_or(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def bitwise_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def blackman_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def blackman_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def bmm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def can_cast(from_: _dtype, to: _dtype) -> _bool: ...
|
|
@overload
|
|
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, None], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def ceil(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def ceil_(self: Tensor) -> Tensor: ...
|
|
def celu(self: Tensor, alpha: Number=1.0) -> Tensor: ...
|
|
def celu_(self: Tensor, alpha: Number=1.0) -> Tensor: ...
|
|
def cholesky(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def cholesky_inverse(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def cholesky_solve(self: Tensor, input2: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def chunk(self: Tensor, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def clamp_max(self: Tensor, max: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def clamp_max_(self: Tensor, max: Number) -> Tensor: ...
|
|
def clamp_min(self: Tensor, min: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def clamp_min_(self: Tensor, min: Number) -> Tensor: ...
|
|
def clone(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
def combinations(self: Tensor, r: _int=2, with_replacement: _bool=False) -> Tensor: ...
|
|
def conj(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def constant_pad_nd(self: Tensor, pad: _size, value: Number=0) -> Tensor: ...
|
|
def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
|
|
def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
|
|
def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
|
|
def conv_tbc(self: Tensor, weight: Tensor, bias: Tensor, pad: _int=0) -> Tensor: ...
|
|
def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
|
|
def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
|
|
def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
|
|
def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int) -> Tensor: ...
|
|
def cos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def cos_(self: Tensor) -> Tensor: ...
|
|
def cosh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def cosh_(self: Tensor) -> Tensor: ...
|
|
def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int=1, eps: _float=1e-08) -> Tensor: ...
|
|
def cross(self: Tensor, other: Tensor, dim: Optional[_int]=None, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ...
|
|
def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
|
|
@overload
|
|
def cudnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
@overload
|
|
def cudnn_convolution(self: Tensor, weight: Tensor, padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
@overload
|
|
def cudnn_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
@overload
|
|
def cudnn_convolution_transpose(self: Tensor, weight: Tensor, padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
def cudnn_grid_sampler(self: Tensor, grid: Tensor) -> Tensor: ...
|
|
def cudnn_is_acceptable(self: Tensor) -> _bool: ...
|
|
@overload
|
|
def cummax(self: Tensor, dim: _int, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummax(self: Tensor, dim: Union[str, None], *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummin(self: Tensor, dim: _int, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cummin(self: Tensor, dim: Union[str, None], *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def cumprod(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def cumprod(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def cumsum(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def cumsum(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def dequantize(self: Tensor) -> Tensor: ...
|
|
def det(self: Tensor) -> Tensor: ...
|
|
def detach(self: Tensor) -> Tensor: ...
|
|
def detach_(self: Tensor) -> Tensor: ...
|
|
def diag(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def diag_embed(self: Tensor, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
|
|
def diagflat(self: Tensor, offset: _int=0) -> Tensor: ...
|
|
@overload
|
|
def diagonal(self: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
|
|
@overload
|
|
def diagonal(self: Tensor, *, outdim: Union[str, None], dim1: Union[str, None], dim2: Union[str, None], offset: _int=0) -> Tensor: ...
|
|
def digamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def dist(self: Tensor, other: Tensor, p: Number=2) -> Tensor: ...
|
|
def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def dot(self: Tensor, tensor: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def eig(self: Tensor, eigenvectors: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def embedding(weight: Tensor, indices: Tensor, padding_idx: _int=-1, scale_grad_by_freq: _bool=False, sparse: _bool=False) -> Tensor: ...
|
|
def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None, include_last_offset: _bool=False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
|
|
def embedding_renorm_(self: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ...
|
|
@overload
|
|
def empty(size: _size, *, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def empty(*size: _int, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def empty(size: _size, *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def empty_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def empty_strided(size: _size, stride: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def eq(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def eq(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def equal(self: Tensor, other: Tensor) -> _bool: ...
|
|
def erf(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def erf_(self: Tensor) -> Tensor: ...
|
|
def erfc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def erfc_(self: Tensor) -> Tensor: ...
|
|
def erfinv(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def exp(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def exp_(self: Tensor) -> Tensor: ...
|
|
def expm1(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def expm1_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def eye(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def eye(n: _int, m: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def fake_quantize_per_channel_affine(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
|
|
def fake_quantize_per_tensor_affine(self: Tensor, scale: _float, zero_point: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
|
|
def fbgemm_linear_fp16_weight(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
|
|
def fbgemm_linear_fp16_weight_fp32_activation(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
|
|
def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
|
|
def fbgemm_linear_int8_weight_fp32_activation(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
|
|
def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ...
|
|
def fbgemm_pack_gemm_matrix_fp16(input: Tensor) -> Tensor: ...
|
|
@overload
|
|
def fbgemm_pack_quantized_matrix(input: Tensor) -> Tensor: ...
|
|
@overload
|
|
def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ...
|
|
def feature_alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def feature_alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def feature_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def feature_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
|
|
def fft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def fill_(self: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def fill_(self: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def flatten(self: Tensor, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
|
|
@overload
|
|
def flatten(self: Tensor, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def flatten(self: Tensor, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def flatten(self: Tensor, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
|
|
def flip(self: Tensor, dims: _size) -> Tensor: ...
|
|
def floor(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def floor_(self: Tensor) -> Tensor: ...
|
|
def floor_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def fmod(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def fmod(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def frac(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def frac_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def frobenius_norm(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def frobenius_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def from_file(filename: str, shared: Optional[_bool]=None, size: Optional[_int]=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def from_numpy(ndarray) -> Tensor: ...
|
|
@overload
|
|
def full(size: _size, fill_value: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def full(size: _size, fill_value: Number, *, names: List[Union[str, None]], dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
def full_like(self: Tensor, fill_value: Number, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def gather(self: Tensor, dim: _int, index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def gather(self: Tensor, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def ge(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def ge(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def geqrf(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def ger(self: Tensor, vec2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def get_default_dtype() -> _dtype: ...
|
|
def get_num_interop_threads() -> _int: ...
|
|
def get_num_threads() -> _int: ...
|
|
def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
|
|
def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
|
|
def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
|
|
def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enabled: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def gt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def gt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def hamming_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def hamming_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, beta: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def hann_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def hann_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def hardshrink(self: Tensor, lambd: Number=0.5) -> Tensor: ...
|
|
def histc(self: Tensor, bins: _int=100, min: Number=0, max: Number=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def ifft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
|
|
def imag(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_add(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_add(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_copy(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
|
|
def index_put(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
|
|
def index_put_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def index_select(self: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def index_select(self: Tensor, dim: Union[str, None], index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
|
|
def int_repr(self: Tensor) -> Tensor: ...
|
|
def inverse(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def irfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
|
|
def is_complex(self: Tensor) -> _bool: ...
|
|
def is_distributed(self: Tensor) -> _bool: ...
|
|
def is_floating_point(self: Tensor) -> _bool: ...
|
|
def is_grad_enabled() -> _bool: ...
|
|
def is_nonzero(self: Tensor) -> _bool: ...
|
|
def is_same_size(self: Tensor, other: Tensor) -> _bool: ...
|
|
def is_signed(self: Tensor) -> _bool: ...
|
|
def isclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
|
|
def isfinite(self: Tensor) -> Tensor: ...
|
|
def isinf(self: Tensor) -> Tensor: ...
|
|
def isnan(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def kthvalue(self: Tensor, k: _int, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def kthvalue(self: Tensor, k: _int, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def layer_norm(input: Tensor, normalized_shape: _size, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enable: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def le(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def le(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def lerp(self: Tensor, end: Tensor, weight: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def lerp(self: Tensor, end: Tensor, weight: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def lgamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def linspace(start: Number, end: Number, steps: _int=100, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def log(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def log10(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def log10_(self: Tensor) -> Tensor: ...
|
|
def log1p(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def log1p_(self: Tensor) -> Tensor: ...
|
|
def log2(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def log2_(self: Tensor) -> Tensor: ...
|
|
def log_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def log_softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def log_softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def logdet(self: Tensor) -> Tensor: ...
|
|
def logical_and(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def logical_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def logical_or(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def logical_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def logspace(start: Number, end: Number, steps: _int=100, base: _float=10.0, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def logsumexp(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def logsumexp(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
@overload
|
|
def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def lstsq(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def lt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def lt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def lu_solve(self: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def masked_fill(self: Tensor, mask: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def masked_fill(self: Tensor, mask: Tensor, value: Tensor) -> Tensor: ...
|
|
def masked_scatter(self: Tensor, mask: Tensor, source: Tensor) -> Tensor: ...
|
|
def masked_select(self: Tensor, mask: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def matmul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def matrix_power(self: Tensor, n: _int) -> Tensor: ...
|
|
@overload
|
|
def matrix_rank(self: Tensor, tol: _float, symmetric: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def matrix_rank(self: Tensor, symmetric: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def max(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def max_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
|
|
def max_pool1d_with_indices(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
def max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
|
|
def max_pool3d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def mean(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def mean(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def mean(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def median(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def median(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def median(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def min(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def min(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def min(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def miopen_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
def miopen_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
def miopen_depthwise_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
|
|
def miopen_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
|
|
def mkldnn_adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
|
|
def mkldnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int) -> Tensor: ...
|
|
def mkldnn_convolution_backward_weights(weight_size: _size, grad_output: Tensor, self: Tensor, padding: _size, stride: _size, dilation: _size, groups: _int, bias_defined: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def mkldnn_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
|
|
def mm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def mode(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def mul(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def multinomial(self: Tensor, num_samples: _int, replacement: _bool=False, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def mv(self: Tensor, vec: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def mvlgamma(self: Tensor, p: _int) -> Tensor: ...
|
|
@overload
|
|
def narrow(self: Tensor, dim: _int, start: _int, length: _int) -> Tensor: ...
|
|
@overload
|
|
def narrow(self: Tensor, dim: _int, start: Tensor, length: _int) -> Tensor: ...
|
|
def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def native_layer_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], M: _int, N: _int, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def native_norm(self: Tensor, p: Number=2) -> Tensor: ...
|
|
@overload
|
|
def ne(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def ne(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def neg(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def neg_(self: Tensor) -> Tensor: ...
|
|
def norm_except_dim(v: Tensor, pow: _int=2, dim: _int=0) -> Tensor: ...
|
|
@overload
|
|
def normal(mean: Tensor, std: _float=1, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def normal(mean: _float, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def normal(mean: Tensor, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def normal(mean: _float, std: _float, size: _size, *, generator: Generator=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def nuclear_norm(self: Tensor, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def nuclear_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def numel(self: Tensor) -> _int: ...
|
|
@overload
|
|
def ones(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def ones(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def ones(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def ones(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def ones_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def orgqr(self: Tensor, input2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def ormqr(self: Tensor, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def pairwise_distance(x1: Tensor, x2: Tensor, p: _float=2, eps: _float=1e-06, keepdim: _bool=False) -> Tensor: ...
|
|
def pdist(self: Tensor, p: _float=2) -> Tensor: ...
|
|
def pinverse(self: Tensor, rcond: _float=1e-15) -> Tensor: ...
|
|
def pixel_shuffle(self: Tensor, upscale_factor: _int) -> Tensor: ...
|
|
def poisson(self: Tensor, generator: Generator=None) -> Tensor: ...
|
|
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: _bool, full: _bool, eps: _float, reduction: _int) -> Tensor: ...
|
|
def polygamma(n: _int, self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def pow(self: Tensor, exponent: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def pow(self: Tensor, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def pow(self: Number, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def prelu(self: Tensor, weight: Tensor) -> Tensor: ...
|
|
@overload
|
|
def prod(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def prod(self: Tensor, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def prod(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def promote_types(type1: _dtype, type2: _dtype) -> _dtype: ...
|
|
def q_per_channel_axis(self: Tensor) -> _int: ...
|
|
def q_per_channel_scales(self: Tensor) -> Tensor: ...
|
|
def q_per_channel_zero_points(self: Tensor) -> Tensor: ...
|
|
def q_scale(self: Tensor) -> _float: ...
|
|
def q_zero_point(self: Tensor) -> _int: ...
|
|
def qr(self: Tensor, some: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def quantize_per_channel(self: Tensor, scales: Tensor, zero_points: Tensor, axis: _int, dtype: _dtype) -> Tensor: ...
|
|
def quantize_per_tensor(self: Tensor, scale: _float, zero_point: _int, dtype: _dtype) -> Tensor: ...
|
|
def quantized_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, var: Tensor, eps: _float, output_scale: _float, output_zero_point: _int) -> Tensor: ...
|
|
@overload
|
|
def quantized_gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def quantized_gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
|
|
@overload
|
|
def quantized_lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
@overload
|
|
def quantized_lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tuple[Tensor, Tensor]: ...
|
|
def quantized_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
|
|
def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
|
|
def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
|
|
@overload
|
|
def rand(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def rand(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def rand_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randint(low: _int, high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def randint(high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
@overload
|
|
def randint_like(self: Tensor, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randint_like(self: Tensor, low: _int, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randn(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def randn_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randperm(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def randperm(n: _int, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def range(start: Number, end: Number, step: Number=1, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
def real(self: Tensor) -> Tensor: ...
|
|
def reciprocal(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def reciprocal_(self: Tensor) -> Tensor: ...
|
|
def relu(self: Tensor) -> Tensor: ...
|
|
def relu_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def remainder(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def remainder(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def renorm(self: Tensor, p: Number, dim: _int, maxnorm: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def repeat_interleave(repeats: Tensor) -> Tensor: ...
|
|
@overload
|
|
def repeat_interleave(self: Tensor, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
|
|
@overload
|
|
def repeat_interleave(self: Tensor, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
|
|
def reshape(self: Tensor, shape: _size) -> Tensor: ...
|
|
def resize_as_(self: Tensor, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
|
|
@overload
|
|
def result_type(tensor: Tensor, other: Tensor) -> _dtype: ...
|
|
@overload
|
|
def result_type(tensor: Tensor, other: Number) -> _dtype: ...
|
|
@overload
|
|
def result_type(scalar: Number, tensor: Tensor) -> _dtype: ...
|
|
@overload
|
|
def result_type(scalar1: Number, scalar2: Number) -> _dtype: ...
|
|
def rfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
|
|
@overload
|
|
def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
|
|
def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
|
|
def roll(self: Tensor, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
|
|
def rot90(self: Tensor, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
|
|
def round(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def round_(self: Tensor) -> Tensor: ...
|
|
def rrelu(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
|
|
def rrelu_(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
|
|
def rsqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def rsqrt_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def rsub(self: Tensor, other: Tensor, *, alpha: Number=1) -> Tensor: ...
|
|
@overload
|
|
def rsub(self: Tensor, other: Number, alpha: Number=1) -> Tensor: ...
|
|
def scalar_tensor(s: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def scatter(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
|
|
@overload
|
|
def scatter_add(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def scatter_add(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
|
|
@overload
|
|
def select(self: Tensor, dim: Union[str, None], index: _int) -> Tensor: ...
|
|
@overload
|
|
def select(self: Tensor, dim: _int, index: _int) -> Tensor: ...
|
|
def selu(self: Tensor) -> Tensor: ...
|
|
def selu_(self: Tensor) -> Tensor: ...
|
|
def set_flush_denormal(mode: _bool) -> _bool: ...
|
|
def set_num_interop_threads(num: _int) -> None: ...
|
|
def set_num_threads(num: _int) -> None: ...
|
|
def sigmoid(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sigmoid_(self: Tensor) -> Tensor: ...
|
|
def sign(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sin_(self: Tensor) -> Tensor: ...
|
|
def sinh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sinh_(self: Tensor) -> Tensor: ...
|
|
def slogdet(self: Tensor) -> Tuple[Tensor, Tensor]: ...
|
|
def smm(self: Tensor, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
@overload
|
|
def softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
|
|
def solve(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def sort(self: Tensor, dim: _int=-1, descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def sort(self: Tensor, dim: Union[str, None], descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def sparse_coo_tensor(indices: Tensor, values: Union[Tensor,List], size: Optional[_size]=None, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def split_with_sizes(self: Tensor, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def sqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def sqrt_(self: Tensor) -> Tensor: ...
|
|
def square(self: Tensor) -> Tensor: ...
|
|
def square_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self: Tensor, dim: _int) -> Tensor: ...
|
|
@overload
|
|
def squeeze(self: Tensor, dim: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def sspaddmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def sspaddmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
|
|
@overload
|
|
def sspaddmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
|
|
def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def std(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def std(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def std(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def std_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def std_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def std_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def sub(input: Union[Tensor, Number], other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def sub(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def sub(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
|
|
@overload
|
|
def sum(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def sum(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def sum(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def svd(self: Tensor, some: _bool=True, compute_uv: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def symeig(self: Tensor, eigenvectors: _bool=False, upper: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def t(self: Tensor) -> Tensor: ...
|
|
def take(self: Tensor, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def tan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def tan_(self: Tensor) -> Tensor: ...
|
|
def tanh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def tanh_(self: Tensor) -> Tensor: ...
|
|
def tensor(data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
|
|
def threshold(self: Tensor, threshold: Number, value: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def threshold_(self: Tensor, threshold: Number, value: Number) -> Tensor: ...
|
|
def topk(self: Tensor, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def trace(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
|
|
@overload
|
|
def transpose(self: Tensor, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
|
|
@overload
|
|
def trapz(y: Tensor, x: Tensor, *, dim: _int=-1) -> Tensor: ...
|
|
@overload
|
|
def trapz(y: Tensor, *, dx: _float=1, dim: _int=-1) -> Tensor: ...
|
|
def triangular_solve(self: Tensor, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
|
|
def tril(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def tril_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def triu(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def triu_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def true_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def trunc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
def trunc_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def unbind(self: Tensor, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
@overload
|
|
def unbind(self: Tensor, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def unique_dim(self: Tensor, dim: _int, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
|
|
def unsqueeze(self: Tensor, dim: _int) -> Tensor: ...
|
|
@overload
|
|
def var(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def var(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def var(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
|
|
@overload
|
|
def var_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def var_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def var_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
|
|
@overload
|
|
def where(condition: Tensor) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
|
|
def zero_(self: Tensor) -> Tensor: ...
|
|
@overload
|
|
def zeros(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def zeros(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def zeros(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
@overload
|
|
def zeros(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
def zeros_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
|
|
|
|
class DoubleStorage(Storage): ...
|
|
class FloatStorage(Storage): ...
|
|
class LongStorage(Storage): ...
|
|
class IntStorage(Storage): ...
|
|
class ShortStorage(Storage): ...
|
|
class CharStorage(Storage): ...
|
|
class ByteStorage(Storage): ...
|
|
class BoolStorage(Storage): ...
|
|
class DoubleTensor(Tensor): ...
|
|
class FloatTensor(Tensor): ...
|
|
class LongTensor(Tensor): ...
|
|
class IntTensor(Tensor): ...
|
|
class ShortTensor(Tensor): ...
|
|
class CharTensor(Tensor): ...
|
|
class ByteTensor(Tensor): ...
|
|
class BoolTensor(Tensor): ...
|
|
|
|
float32: dtype = ...
|
|
float: dtype = ...
|
|
float64: dtype = ...
|
|
double: dtype = ...
|
|
float16: dtype = ...
|
|
bfloat16: dtype = ...
|
|
half: dtype = ...
|
|
uint8: dtype = ...
|
|
int8: dtype = ...
|
|
int16: dtype = ...
|
|
short: dtype = ...
|
|
int32: dtype = ...
|
|
int: dtype = ...
|
|
int64: dtype = ...
|
|
long: dtype = ...
|
|
complex32: dtype = ...
|
|
complex64: dtype = ...
|
|
complex128: dtype = ...
|
|
quint8: dtype = ...
|
|
qint8: dtype = ...
|
|
qint32: dtype = ...
|
|
bool: dtype = ...
|
|
|
|
# Pure Python functions defined in torch/__init__.py
|
|
|
|
def typename(obj) -> str: ...
|
|
def is_tensor(obj) -> _bool: ...
|
|
def is_storage(obj) -> _bool: ...
|
|
def set_default_tensor_type(type) -> None: ... # ick, what a bad legacy API
|
|
def set_default_dtype(d : _dtype) -> None: ...
|
|
def manager_path() -> str: ...
|
|
def compiled_with_cxx11_abi() -> _bool: ...
|
|
|
|
# The return value of this function depends on the value of `as_tuple`,
|
|
# (similar to `unique`, `lu`, etc.); as such, it is not
|
|
# possible to type correctly
|
|
def nonzero(input: Tensor, *, out: Optional[Tensor]=None, as_tuple: Optional[_bool]=None): ...
|