nertans python api
This commit is contained in:
parent
50714682d5
commit
99c9a6fcde
|
@ -0,0 +1,171 @@
|
|||
# Python api netrans_py 使用介绍
|
||||
|
||||
netrans_py 支持通过 python api 灵活地将模型转换成pnna 支持的格式。
|
||||
使用 ntrans_py 完成模型转换的步骤如下:
|
||||
1. 导入模型
|
||||
2. 生成并修改前处理配置文件 *_inputmeta.yml
|
||||
3. 量化模型
|
||||
4. 导出模型
|
||||
|
||||
## 安装
|
||||
在使用netrans_py之前,需要安装netrans_py。
|
||||
|
||||
设置环境变量 NETRANS_PATH 并指向该 bin 目录。
|
||||
<font color="#dd0000">注意:</font> 在该项目中,项目下载目录为 `/home/nudt_dps/netrans`,在您应用的过程中,可以使用 `pwd` 来确认您的项目目录。
|
||||
|
||||
```bash
|
||||
export NETRANS_PATH=/home/nudt_dps/netrans/bin
|
||||
```
|
||||
同时设置LD_LIBRARY_PATH(Ubuntu,其他系统根据具体情况设置):
|
||||
|
||||
```bash
|
||||
export LD_LIBRARY_PATH=/home/nudt_dps/netrans/bin:$LD_LIBRARY_PATH
|
||||
```
|
||||
注意这一步每次使用前都需要执行,或者您可以写入 .bashrc (路径为 `~/.bashrc` )。
|
||||
|
||||
然后进入目录 netrans_py 进行安装。
|
||||
```bash
|
||||
cd /home/nudt_dps/netrans/netrans_py
|
||||
pip3 install -e .
|
||||
```
|
||||
## netrans_py api
|
||||
### Netrans 导入api及创建实例
|
||||
创建 Netrans
|
||||
|
||||
描述: 实例化 Netrans 类。
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
from netrans import Netrans
|
||||
yolo_netrans = Netrans("../examples/darknet/yolov4_tiny")
|
||||
```
|
||||
|
||||
参数
|
||||
|
||||
| 参数名 | 类型 | 说明 |
|
||||
|:---| -- | -- |
|
||||
|model_path| str| 第一位置参数,模型文件的路径|
|
||||
|netans| str | 如果 NETRANS_PATH 没有设置,可通过该参数指定netrans的路径|
|
||||
|
||||
输出返回:
|
||||
无。
|
||||
|
||||
<font color="#dd0000">注意:</font> 模型目录准备需要和netrans_cli一致,具体数据准备要求见[introduction](./introduction.md)。
|
||||
|
||||
### Netrans.load_model 模型导入
|
||||
|
||||
描述: 将模型转换成 pnna 支持的格式。
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
yolo_netrans.load_model()
|
||||
```
|
||||
|
||||
参数:
|
||||
无。
|
||||
|
||||
输出返回:
|
||||
无。
|
||||
在工程目录下生成 pnna 支持的模型格式,以.json结尾的模型文件和 .data结尾的权重文件。
|
||||
|
||||
### Netrans.gen_inputmeta 预处理配置文件生成
|
||||
|
||||
描述: 将模型转换成 pnna 支持的格式。
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
yolo_netrans.gen_inputmeta()
|
||||
```
|
||||
|
||||
参数:
|
||||
无。
|
||||
|
||||
输出返回:
|
||||
无。
|
||||
|
||||
### Netrans.quantize 量化模型
|
||||
|
||||
描述: 对模型生成量化配置文件。
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
yolo_netrans.quantize("uint8")
|
||||
```
|
||||
|
||||
参数:
|
||||
|
||||
| 参数名 | 类型 | 说明 |
|
||||
|:---| -- | -- |
|
||||
|quantize_type| str| 第一位置参数,模型量化类型,仅支持 "uint8", "int8", "int16"|
|
||||
|
||||
输出返回:
|
||||
无。
|
||||
|
||||
### Netrans.export 模型导出
|
||||
|
||||
描述: 对模型生成量化配置文件。
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
yolo_netrans.export()
|
||||
```
|
||||
|
||||
参数:
|
||||
无。
|
||||
|
||||
输出返回:
|
||||
无。请在目录 “wksp/*/” 下检查是否生成nbg文件。
|
||||
|
||||
### Netrans.model2nbg 一键生成nbg文件
|
||||
|
||||
描述: 模型导入、量化、及nbg文件生产
|
||||
代码示例:
|
||||
|
||||
```py3
|
||||
# 无预处理
|
||||
yolo_netrans.model2nbg(quantize_type='uint8')
|
||||
# 需要对数据进行normlize, menas为128, scale 为 0.0039
|
||||
yolo_netrans.model2nbg(quantize_type='uint8',mean=128, scale = 0.0039)
|
||||
# 需要对数据分通道进行normlize, menas为128,127,125,scale 为 0.0039, 且reverse_channel 为 True
|
||||
yolo_netrans.model2nbg(quantize_type='uint8'mean=[128, 127, 125], scale = 0.0039, reverse_channel= True)
|
||||
# 已经进行初始化设置
|
||||
yolo_netrans.model2nbg(quantize_type='uint8', inputmeta=True)
|
||||
|
||||
```
|
||||
|
||||
参数
|
||||
| 参数名 | 类型 | 说明 |
|
||||
|:---| -- | -- |
|
||||
|quantize_type| str, ["uint8", "int8", "int16" ] | 量化类型,将模型量化成该参数指定的类型 |
|
||||
|inputmeta| bool,str, [Fasle, True, "inputmeta_filepath"] | 指定 inputmeta, 默认为False。 <br/> 如果为False,则会生成inputmeta模板,可使用mean、scale、reverse_channel 配合修改常用参数。<br/>如果已有现成的 inputmeta 文件,则可通过该参数进行指定,也可使用True, 则会自动索引 model_name_inputmeta.yml |
|
||||
|mean| float, int, list | 设置预处理中 normalize 的 mean 参数 |
|
||||
|scale| float, int, list | 设置预处理中 normalize 的 scale 参数 |
|
||||
|reverse_channel | bool | 设置预处理中的 reverse_channel 参数 |
|
||||
<!-- |||| -->
|
||||
|
||||
输出返回:
|
||||
请在目录 “wksp/*/” 下检查是否生成nbg文件。
|
||||
|
||||
## 使用实例
|
||||
|
||||
```
|
||||
from nertans import Netrans
|
||||
model_path = 'example/darknet/yolov4_tiny'
|
||||
netrans_path = "netrans/bin" # 如果进行了export定义申明,这一步可以不用
|
||||
|
||||
# 初始化netrans
|
||||
net = Netrans(model_path,netrans=netrans_path)
|
||||
# 模型载入
|
||||
net.load_model()
|
||||
# 生成 inputmeta 文件
|
||||
net.gen_inputmeta()
|
||||
# 配置预处理 normlize 的参数
|
||||
net.config(scale=1,mean=0)
|
||||
# 模型量化
|
||||
net.quantize("uint8")
|
||||
# 模型导出
|
||||
net.export()
|
||||
|
||||
# 模型直接量化成 int16 并导出, 直接复用刚配置好的 inputmeta
|
||||
net.model2nbg(quantize_type = "int16", inputmeta=True)
|
||||
```
|
|
@ -0,0 +1,58 @@
|
|||
import argparse
|
||||
from netrans import Netrans
|
||||
|
||||
def main():
|
||||
# 创建参数解析器
|
||||
parser = argparse.ArgumentParser(
|
||||
description='神经网络模型转换工具',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter # 自动显示默认值
|
||||
)
|
||||
|
||||
# 必填位置参数
|
||||
parser.add_argument(
|
||||
'model_path',
|
||||
type=str,
|
||||
help='输入模型路径(必须参数)'
|
||||
)
|
||||
|
||||
# 可选参数组
|
||||
quant_group = parser.add_argument_group('量化参数')
|
||||
quant_group.add_argument(
|
||||
'-q', '--quantize_type',
|
||||
type=str,
|
||||
choices=['uint8', 'int8', 'int16', 'float'],
|
||||
default='uint8',
|
||||
metavar='TYPE',
|
||||
help='量化类型(可选值:%(choices)s)'
|
||||
)
|
||||
quant_group.add_argument(
|
||||
'-m', '--mean',
|
||||
type=int,
|
||||
default=0,
|
||||
help='归一化均值(默认:%(default)s)'
|
||||
)
|
||||
quant_group.add_argument(
|
||||
'-s', '--scale',
|
||||
type=float,
|
||||
default=1.0,
|
||||
help='量化缩放系数(默认:%(default)s)'
|
||||
)
|
||||
|
||||
# 解析参数
|
||||
args = parser.parse_args()
|
||||
|
||||
# 执行模型转换
|
||||
try:
|
||||
model = Netrans(model_path=args.model_path)
|
||||
model.model2nbg(
|
||||
quantize_type=args.quantize_type,
|
||||
mean=args.mean,
|
||||
scale=args.scale
|
||||
)
|
||||
print(f"模型 {args.model_path} 转换成功")
|
||||
except FileNotFoundError:
|
||||
print(f"错误:模型文件 {args.model_path} 不存在")
|
||||
exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,150 @@
|
|||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
import shutil
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
# 检查 NETRANS_PATH 环境变量是否设置
|
||||
|
||||
# 定义数据集文件路径
|
||||
dataset = 'dataset.txt'
|
||||
|
||||
class Export(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
|
||||
@check_path
|
||||
def export_network(self):
|
||||
|
||||
netrans = self.netrans
|
||||
quantized = self.quantize_type
|
||||
name = self.model_name
|
||||
netrans_path = self.netrans_path
|
||||
|
||||
ovxgenerator = netrans + " export ovxlib"
|
||||
# 进入模型目录
|
||||
# os.chdir(name)
|
||||
|
||||
# 根据量化类型设置参数
|
||||
if quantized == 'float':
|
||||
type_ = 'float'
|
||||
quantization_type = 'none_quantized'
|
||||
generate_path = './wksp/none_quantized'
|
||||
elif quantized == 'uint8':
|
||||
type_ = 'quantized'
|
||||
quantization_type = 'asymmetric_affine'
|
||||
generate_path = './wksp/asymmetric_affine'
|
||||
elif quantized == 'int8':
|
||||
type_ = 'quantized'
|
||||
quantization_type = 'dynamic_fixed_point-8'
|
||||
generate_path = './wksp/dynamic_fixed_point-8'
|
||||
elif quantized == 'int16':
|
||||
type_ = 'quantized'
|
||||
quantization_type = 'dynamic_fixed_point-16'
|
||||
generate_path = './wksp/dynamic_fixed_point-16'
|
||||
else:
|
||||
print("=========== wrong quantization_type ! ( float / uint8 / int8 / int16 )===========")
|
||||
sys.exit(1)
|
||||
|
||||
# 创建输出目录
|
||||
os.makedirs(generate_path, exist_ok=True)
|
||||
|
||||
# 构建命令
|
||||
if quantized == 'float':
|
||||
cmd = f"{ovxgenerator} \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--dtype {type_} \
|
||||
--pack-nbg-viplite \
|
||||
--optimize 'VIP8000NANOQI_PLUS_PID0XB1'\
|
||||
--target-ide-project 'linux64' \
|
||||
--viv-sdk {netrans_path}/pnna_sdk \
|
||||
--output-path {generate_path}/{name}_{quantization_type}"
|
||||
else:
|
||||
if not os.path.exists(f"{name}_{quantization_type}.quantize"):
|
||||
print(f"\033[31m Can not find {name}_{quantization_type}.quantize \033[0m")
|
||||
sys.exit(1)
|
||||
if not os.path.exists(f"{name}_postprocess_file.yml"):
|
||||
cmd = f"{ovxgenerator} \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--dtype {type_} \
|
||||
--pack-nbg-viplite \
|
||||
--optimize 'VIP8000NANOQI_PLUS_PID0XB1'\
|
||||
--viv-sdk {netrans_path}/pnna_sdk \
|
||||
--model-quantize {name}_{quantization_type}.quantize \
|
||||
--with-input-meta {name}_inputmeta.yml \
|
||||
--target-ide-project 'linux64' \
|
||||
--output-path {generate_path}/{quantization_type}"
|
||||
else:
|
||||
cmd = f"{ovxgenerator} \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--dtype {type_} \
|
||||
--pack-nbg-viplite \
|
||||
--optimize 'VIP8000NANOQI_PLUS_PID0XB1'\
|
||||
--viv-sdk {netrans_path}/pnna_sdk \
|
||||
--model-quantize {name}_{quantization_type}.quantize \
|
||||
--with-input-meta {name}_inputmeta.yml \
|
||||
--target-ide-project 'linux64' \
|
||||
--postprocess-file {name}_postprocess_file.yml \
|
||||
--output-path {generate_path}/{quantization_type}"
|
||||
|
||||
|
||||
# 执行命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
if result.returncode == 0:
|
||||
print("\033[31m SUCCESS \033[0m")
|
||||
else:
|
||||
print(f"\033[31m ERROR ! {result.stderr} \033[0m")
|
||||
|
||||
|
||||
# temp='wksp/temp'
|
||||
# os.makedirs(temp, exist_ok=True)
|
||||
|
||||
src_ngb = f'{generate_path}_nbg_viplite/network_binary.nb'
|
||||
try :
|
||||
shutil.copy(src_ngb, generate_path)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: {src_ngb} is not found")
|
||||
except Exception as e :
|
||||
print(f"a error occurred : {e}")
|
||||
|
||||
try:
|
||||
shutil.rmtree(f"{generate_path}_nbg_viplite")
|
||||
except:
|
||||
sys.exit()
|
||||
|
||||
# try :
|
||||
# shutil.move(temp, generate_path )
|
||||
# except:
|
||||
# sys.exit()
|
||||
# 返回原始目录
|
||||
# os.chdir('..')
|
||||
|
||||
def main():
|
||||
# 检查命令行参数数量
|
||||
if len(sys.argv) < 3:
|
||||
print("Input a network name and quantized type ( float / uint8 / int8 / int16 )")
|
||||
sys.exit(1)
|
||||
# 检查网络目录是否存在
|
||||
network_name = sys.argv[1]
|
||||
# check_env(network_name)
|
||||
if not os.path.exists(os.path.exists(network_name)):
|
||||
print(f"Directory {network_name} does not exist !")
|
||||
sys.exit(2)
|
||||
|
||||
netrans_path = os.environ['NETRANS_PATH']
|
||||
# netrans = os.path.join(os.environ['NETRANS_PATH'], 'pnnacc')
|
||||
# 调用导出函数ss
|
||||
cla = creat_cla(netrans_path, network_name, sys.argv[2])
|
||||
func = Export(cla)
|
||||
func.export_network()
|
||||
|
||||
# export_network(netrans, network_name, sys.argv[2])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,49 @@
|
|||
__all__ = ['extensions']
|
||||
|
||||
class model_extensions:
|
||||
def __init__(self, model, model_data, model_quantize, input_meta, output_meta):
|
||||
self._model = model
|
||||
self._model_data = model_data
|
||||
self._model_quantize = model_quantize
|
||||
self._input_meta = input_meta
|
||||
self._output_meta = output_meta
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
return self._model
|
||||
|
||||
@property
|
||||
def model_data(self):
|
||||
return self._model_data
|
||||
|
||||
@property
|
||||
def model_quantize(self):
|
||||
return self._model_quantize
|
||||
|
||||
@property
|
||||
def input_meta(self):
|
||||
return self._input_meta
|
||||
|
||||
@property
|
||||
def output_meta(self):
|
||||
return self._output_meta
|
||||
|
||||
class file_model:
|
||||
def __init__(self,extensions):
|
||||
self._extensions = extensions
|
||||
|
||||
@property
|
||||
def extensions(self):
|
||||
return self._extensions
|
||||
|
||||
x_extensions = model_extensions(
|
||||
'.json',
|
||||
'.data',
|
||||
'.quantize',
|
||||
'_inputmeta.yml',
|
||||
'.yml'
|
||||
)
|
||||
|
||||
_file_model = file_model(x_extensions)
|
||||
|
||||
extensions = _file_model.extensions
|
|
@ -0,0 +1,38 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
|
||||
class InputmetaGen(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
|
||||
@check_path
|
||||
def inputmeta_gen(self):
|
||||
netrans_path = self.netrans
|
||||
network_name = self.model_name
|
||||
# 进入网络名称指定的目录
|
||||
# os.chdir(network_name)
|
||||
# check_env(network_name)
|
||||
|
||||
# 执行 pegasus 命令
|
||||
os.system(f"{netrans_path} generate inputmeta --model {network_name}.json --separated-database")
|
||||
# os.chdir("..")
|
||||
|
||||
def main():
|
||||
# 检查命令行参数数量是否正确
|
||||
if len(sys.argv) != 2:
|
||||
print("Enter a network name!")
|
||||
sys.exit(2)
|
||||
|
||||
# 检查提供的目录是否存在
|
||||
network_name = sys.argv[1]
|
||||
# 构建 netrans 可执行文件的路径
|
||||
netrans_path =os.getenv('NETRANS_PATH')
|
||||
cla = creat_cla(netrans_path, network_name)
|
||||
func = InputmetaGen(cla)
|
||||
func.inputmeta_gen()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,225 @@
|
|||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
|
||||
def check_status(result):
|
||||
if result.returncode == 0:
|
||||
print("\033[31m LOAD MODEL SUCCESS \033[0m")
|
||||
else:
|
||||
print(f"\033[31m ERROR: {result.stderr} \033[0m")
|
||||
|
||||
|
||||
def import_caffe_network(name, netrans_path):
|
||||
# 定义转换工具的路径
|
||||
convert_caffe =netrans_path + " import caffe"
|
||||
|
||||
# 定义模型文件路径
|
||||
model_json_path = f"{name}.json"
|
||||
model_data_path = f"{name}.data"
|
||||
model_prototxt_path = f"{name}.prototxt"
|
||||
model_caffemodel_path = f"{name}.caffemodel"
|
||||
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} Caffe model ===========")
|
||||
|
||||
# 构建转换命令
|
||||
if os.path.isfile(model_caffemodel_path):
|
||||
cmd = f"{convert_caffe} \
|
||||
--model {model_prototxt_path} \
|
||||
--weights {model_caffemodel_path} \
|
||||
--output-model {model_json_path} \
|
||||
--output-data {model_data_path}"
|
||||
else:
|
||||
print("=========== fake Caffe model data file =============")
|
||||
cmd = f"{convert_caffe} \
|
||||
--model {model_prototxt_path} \
|
||||
--output-model {model_json_path} \
|
||||
--output-data {model_data_path}"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
os.system(cmd)
|
||||
|
||||
def import_tensorflow_network(name, netrans_path):
|
||||
# 定义转换工具的命令
|
||||
convertf_cmd = f"{netrans_path} import tensorflow"
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} Tensorflow model ===========")
|
||||
|
||||
# 读取 inputs_outputs.txt 文件中的参数
|
||||
with open('inputs_outputs.txt', 'r') as f:
|
||||
inputs_outputs_params = f.read().strip()
|
||||
|
||||
# 构建转换命令
|
||||
cmd = f"{convertf_cmd} \
|
||||
--model {name}.pb \
|
||||
--output-data {name}.data \
|
||||
--output-model {name}.json \
|
||||
{inputs_outputs_params}"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
check_status(result)
|
||||
|
||||
def import_onnx_network(name, netrans_path):
|
||||
# 定义转换工具的命令
|
||||
convert_onnx_cmd = f"{netrans_path} import onnx"
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} ONNX model ===========")
|
||||
if os.path.exists(f"{name}_outputs.txt"):
|
||||
output_path = os.path.join(os.getcwd(), name+"_outputs.txt")
|
||||
with open(output_path, 'r', encoding='utf-8') as file:
|
||||
outputs = str(file.readline().strip())
|
||||
cmd = f"{convert_onnx_cmd} \
|
||||
--model {name}.onnx \
|
||||
--output-model {name}.json \
|
||||
--output-data {name}.data \
|
||||
--outputs '{outputs}'"
|
||||
else:
|
||||
# 构建转换命令
|
||||
cmd = f"{convert_onnx_cmd} \
|
||||
--model {name}.onnx \
|
||||
--output-model {name}.json \
|
||||
--output-data {name}.data"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
check_status(result)
|
||||
|
||||
####### TFLITE
|
||||
def import_tflite_network(name, netrans_path):
|
||||
# 定义转换工具的路径或命令
|
||||
convert_tflite = f"{netrans_path} import tflite"
|
||||
|
||||
# 定义模型文件路径
|
||||
model_json_path = f"{name}.json"
|
||||
model_data_path = f"{name}.data"
|
||||
model_tflite_path = f"{name}.tflite"
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} TFLite model ===========")
|
||||
|
||||
# 构建转换命令
|
||||
cmd = f"{convert_tflite} \
|
||||
--model {model_tflite_path} \
|
||||
--output-model {model_json_path} \
|
||||
--output-data {model_data_path}"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
check_status(result)
|
||||
|
||||
|
||||
def import_darknet_network(name, netrans_path):
|
||||
# 定义转换工具的命令
|
||||
convert_darknet_cmd = f"{netrans_path} import darknet"
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} darknet model ===========")
|
||||
|
||||
# 构建转换命令
|
||||
cmd = f"{convert_darknet_cmd} \
|
||||
--model {name}.cfg \
|
||||
--weight {name}.weights \
|
||||
--output-model {name}.json \
|
||||
--output-data {name}.data"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
check_status(result)
|
||||
|
||||
def import_pytorch_network(name, netrans_path):
|
||||
# 定义转换工具的命令
|
||||
convert_pytorch_cmd = f"{netrans_path} import pytorch"
|
||||
|
||||
# 打印转换信息
|
||||
print(f"=========== Converting {name} pytorch model ===========")
|
||||
|
||||
# 读取 input_size.txt 文件中的参数
|
||||
try:
|
||||
with open('input_size.txt', 'r') as file:
|
||||
input_size_params = ' '.join(file.readlines())
|
||||
except FileNotFoundError:
|
||||
print("Error: input_size.txt not found.")
|
||||
sys.exit(1)
|
||||
|
||||
# 构建转换命令
|
||||
cmd = f"{convert_pytorch_cmd} \
|
||||
--model {name}.pt \
|
||||
--output-model {name}.json \
|
||||
--output-data {name}.data \
|
||||
{input_size_params}"
|
||||
|
||||
# 执行转换命令
|
||||
# print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
check_status(result)
|
||||
|
||||
# 使用示例
|
||||
# import_tensorflow_network('model_name', '/path/to/NETRANS_PATH')
|
||||
class ImportModel(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
# print(source_obj.__dict__)
|
||||
|
||||
@check_path
|
||||
def import_network(self):
|
||||
if self.verbose is True :
|
||||
print("begin load model")
|
||||
# print(self.model_path)
|
||||
print(os.getcwd())
|
||||
print(f"{self.model_name}.weights")
|
||||
name = self.model_name
|
||||
netrans_path = self.netrans
|
||||
if os.path.isfile(f"{name}.prototxt"):
|
||||
import_caffe_network(name, netrans_path)
|
||||
elif os.path.isfile(f"{name}.pb"):
|
||||
import_tensorflow_network(name, netrans_path)
|
||||
elif os.path.isfile(f"{name}.onnx"):
|
||||
import_onnx_network(name, netrans_path)
|
||||
elif os.path.isfile(f"{name}.tflite"):
|
||||
import_tflite_network(name, netrans_path)
|
||||
elif os.path.isfile(f"{name}.weights"):
|
||||
import_darknet_network(name, netrans_path)
|
||||
elif os.path.isfile(f"{name}.pt"):
|
||||
import_pytorch_network(name, netrans_path)
|
||||
else :
|
||||
# print(os.getcwd())
|
||||
print("=========== can not find suitable model files ===========")
|
||||
sys.exit(-3)
|
||||
# os.chdir("..")
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) != 2 :
|
||||
print("Input a network")
|
||||
sys.exit(-1)
|
||||
|
||||
network_name = sys.argv[1]
|
||||
# check_env(network_name)
|
||||
|
||||
netrans_path = os.environ['NETRANS_PATH']
|
||||
# netrans = os.path.join(netrans_path, 'pnnacc')
|
||||
clas = creat_cla(netrans_path, network_name,verbose=False)
|
||||
func = ImportModel(clas)
|
||||
func.import_network()
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,95 @@
|
|||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
|
||||
class Infer(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
|
||||
@check_path
|
||||
def inference_network(self):
|
||||
netrans = self.netrans
|
||||
quantized = self.quantize_type
|
||||
name = self.model_name
|
||||
# print(self.__dict__)
|
||||
|
||||
netrans += " inference"
|
||||
# 进入模型目录
|
||||
|
||||
# 定义类型和量化类型
|
||||
if quantized == 'float':
|
||||
type_ = 'float32'
|
||||
quantization_type = 'float32'
|
||||
elif quantized == 'uint8':
|
||||
quantization_type = 'asymmetric_affine'
|
||||
type_ = 'quantized'
|
||||
elif quantized == 'int8':
|
||||
quantization_type = 'dynamic_fixed_point-8'
|
||||
type_ = 'quantized'
|
||||
elif quantized == 'int16':
|
||||
quantization_type = 'dynamic_fixed_point-16'
|
||||
type_ = 'quantized'
|
||||
else:
|
||||
print("=========== wrong quantization_type ! ( float / uint8 / int8 / int16 )===========")
|
||||
sys.exit(-1)
|
||||
|
||||
# 构建推理命令
|
||||
inf_path = './inf'
|
||||
cmd = f"{netrans} \
|
||||
--dtype {type_} \
|
||||
--batch-size 1 \
|
||||
--model-quantize {name}_{quantization_type}.quantize \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--output-dir {inf_path} \
|
||||
--with-input-meta {name}_inputmeta.yml \
|
||||
--device CPU"
|
||||
|
||||
# 执行推理命令
|
||||
if self.verbose is True:
|
||||
print(cmd)
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
|
||||
# 检查执行结果
|
||||
if result.returncode == 0:
|
||||
print("\033[32m SUCCESS \033[0m")
|
||||
else:
|
||||
print(f"\033[31m ERROR: {result.stderr} \033[0m")
|
||||
|
||||
# 返回原始目录
|
||||
|
||||
def main():
|
||||
# 检查命令行参数数量
|
||||
if len(sys.argv) < 3:
|
||||
print("Input a network name and quantized type ( float / uint8 / int8 / int16 )")
|
||||
sys.exit(-1)
|
||||
|
||||
# 检查网络目录是否存在
|
||||
network_name = sys.argv[1]
|
||||
if not os.path.exists(network_name):
|
||||
print(f"Directory {network_name} does not exist !")
|
||||
sys.exit(-2)
|
||||
# print("here")
|
||||
# 定义 netrans 路径
|
||||
# netrans = os.path.join(os.environ['NETRANS_PATH'], 'pnnacc')
|
||||
network_name = sys.argv[1]
|
||||
# check_env(network_name)
|
||||
|
||||
netrans_path = os.environ['NETRANS_PATH']
|
||||
# netrans = os.path.join(netrans_path, 'pnnacc')
|
||||
quantize_type = sys.argv[2]
|
||||
cla = creat_cla(netrans_path, network_name,quantize_type,False)
|
||||
|
||||
# 调用量化函数
|
||||
func = Infer(cla)
|
||||
func.inference_network()
|
||||
|
||||
# 定义数据集文件路径
|
||||
# dataset_path = './dataset.txt'
|
||||
# 调用推理函数
|
||||
# inference_network(network_name, sys.argv[2])
|
||||
|
||||
if __name__ == '__main__':
|
||||
# print("main")
|
||||
main()
|
|
@ -0,0 +1,142 @@
|
|||
import sys, os
|
||||
import subprocess
|
||||
# import yaml
|
||||
from ruamel.yaml import YAML
|
||||
from ruamel import yaml
|
||||
import file_model
|
||||
from import_model import ImportModel
|
||||
from quantize import Quantize
|
||||
from export import Export
|
||||
from gen_inputmeta import InputmetaGen
|
||||
# from utils import check_path
|
||||
import warnings
|
||||
warnings.simplefilter('ignore', yaml.error.UnsafeLoaderWarning)
|
||||
class Netrans():
|
||||
|
||||
def __init__(self, model_path, netrans=None, verbose=False):
|
||||
self.verbose = verbose
|
||||
self.model_path = os.path.abspath(model_path)
|
||||
self.set_netrans(netrans)
|
||||
_, self.model_name = os.path.split(self.model_path)
|
||||
# self.model_name,_ = os.path.splitext(self.model_name)
|
||||
|
||||
|
||||
"""
|
||||
pipe line
|
||||
"""
|
||||
def model2nbg(self, quantize_type, inputmeta=False, **kargs):
|
||||
self.load_model()
|
||||
self.config(inputmeta, **kargs)
|
||||
self.quantize(quantize_type)
|
||||
self.export()
|
||||
|
||||
"""
|
||||
set netrans
|
||||
"""
|
||||
def get_os_netrans_path(self):
|
||||
# print(os.environ.get('NETRANS_PATH'))
|
||||
return os.environ.get('NETRANS_PATH')
|
||||
|
||||
def check_netarans(self):
|
||||
res = subprocess.run([self.netrans], text=True)
|
||||
if res.returncode != 0:
|
||||
print("pleace check the netrans")
|
||||
# return False
|
||||
sys.exit()
|
||||
else :
|
||||
return
|
||||
|
||||
def set_netrans(self, netrans_path=None):
|
||||
if netrans_path is not None :
|
||||
netrans_path = os.path.abspath(netrans_path)
|
||||
else :
|
||||
netrans_path = self.get_os_netrans_path()
|
||||
# print(netrans_path)
|
||||
if os.path.exists(netrans_path):
|
||||
self.netrans = os.path.join(netrans_path, 'pnnacc')
|
||||
self.netrans_path = netrans_path
|
||||
else :
|
||||
print('NETRANS_PATH NOT BEEN SETTED')
|
||||
"""
|
||||
edit config
|
||||
"""
|
||||
# @check_path
|
||||
def config(self, inputmeta=False, **kargs):
|
||||
if isinstance(inputmeta, str):
|
||||
self.input_meta = inputmeta
|
||||
elif isinstance(inputmeta, bool):
|
||||
self.input_meta = os.path.join(self.model_path,'%s%s'%(self.model_name, file_model.extensions.input_meta))
|
||||
if inputmeta is False : self.inputmeta_gen()
|
||||
else :
|
||||
sys.exit("check inputmeta file")
|
||||
|
||||
if len(kargs) == 0 : return
|
||||
if kargs['mean']==0 and kargs['scale'] ==1 : return
|
||||
if isinstance(kargs['mean'], list) or isinstance(kargs['scale'], (int, float)) or isinstance(kargs['reverse_channel'], bool):
|
||||
with open(self.input_meta,'r') as f :
|
||||
yaml = YAML()
|
||||
data = yaml.load(f)
|
||||
data = self.upload_cfg(data,**kargs)
|
||||
with open(self.input_meta,'w') as f :
|
||||
yaml = YAML()
|
||||
yaml.dump(data, f)
|
||||
|
||||
def upload_cfg(self, data, channel=3, **kargs):
|
||||
grey = config['input_meta']['databases'][0]['ports'][0]['preprocess']['preproc_node_params'] == 'IMAGE_GRAY'
|
||||
if kargs.get('mean') is not None:
|
||||
mean = handel_param(kargs['mean'],grey)
|
||||
self.upload_cfg_mean(data, mean)
|
||||
if kargs.get('scale') is not None:
|
||||
scale = handel_param(kargs['scale'],grey)
|
||||
self.upload_cfg_scale(data, scale)
|
||||
if kargs.get('reverse_channel') is not None:
|
||||
if isinstance(kargs['reverse_channel'],bool):
|
||||
self.upload_cfg_reverse_channel(data, kargs['reverse_channel'])
|
||||
return data
|
||||
|
||||
def upload_cfg_mean(self, data, mean):
|
||||
for db in data['input_meta']['databases']:
|
||||
db['ports'][0]['preprocess']['mean'] = mean
|
||||
def upload_cfg_scale(self, data, scale):
|
||||
for db in data['input_meta']['databases']:
|
||||
db['ports'][0]['preprocess']['scale'] = scale
|
||||
def upload_cfg_reverse_channel(self, data, reverse_channel):
|
||||
for db in data['input_meta']['databases']:
|
||||
db['ports'][0]['preprocess']['reverse_channel'] = reverse_channel
|
||||
|
||||
def load_model(self):
|
||||
func = ImportModel(self)
|
||||
func.import_network()
|
||||
|
||||
def inputmeta_gen(self):
|
||||
func = InputmetaGen(self)
|
||||
func.inputmeta_gen()
|
||||
|
||||
def quantize(self, quantize_type):
|
||||
self.quantize_type = quantize_type
|
||||
func = Quantize(self)
|
||||
func.quantize_network()
|
||||
|
||||
def export(self, **kargs):
|
||||
if kargs.get('quantize_type') :
|
||||
self.quantize_type = kargs['quantize_type']
|
||||
func = Export(self)
|
||||
func.export_network()
|
||||
|
||||
|
||||
|
||||
def handel_param(param, grey=False):
|
||||
if grey : return param
|
||||
else :
|
||||
return param if isinstance(param, list) else [param]*3
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
network = '../../model_zoo/yolov4_tiny'
|
||||
yolo = Netrans(network)
|
||||
yolo.inputmeta_gen()
|
||||
# yolo.model2nb("uint8")
|
||||
# yolo.load_model()
|
||||
# yolo.config(mean=[0,0,0],scale=1)
|
||||
# yolo.quantize('uint8')
|
||||
# yolo.export()
|
|
@ -0,0 +1,93 @@
|
|||
import os
|
||||
import sys
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
|
||||
class Quantize(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
|
||||
@check_path
|
||||
def quantize_network(self):
|
||||
netrans = self.netrans
|
||||
quantized_type = self.quantize_type
|
||||
name = self.model_name
|
||||
# check_env(name)
|
||||
# print(os.getcwd())
|
||||
netrans += " quantize"
|
||||
# 根据量化类型设置量化参数
|
||||
if quantized_type == 'float':
|
||||
print("=========== do not need quantized===========")
|
||||
return
|
||||
elif quantized_type == 'uint8':
|
||||
quantization_type = "asymmetric_affine"
|
||||
elif quantized_type == 'int8':
|
||||
quantization_type = "dynamic_fixed_point-8"
|
||||
elif quantized_type == 'int16':
|
||||
quantization_type = "dynamic_fixed_point-16"
|
||||
else:
|
||||
print("=========== wrong quantization_type ! ( uint8 / int8 / int16 )===========")
|
||||
return
|
||||
|
||||
# 输出量化信息
|
||||
print(" =======================================================================")
|
||||
print(f" ==== Start Quantizing {name} model with type of {quantization_type} ===")
|
||||
print(" =======================================================================")
|
||||
current_directory = os.getcwd()
|
||||
txt_path = current_directory+"/dataset.txt"
|
||||
with open(txt_path, 'r', encoding='utf-8') as file:
|
||||
num_lines = len(file.readlines())
|
||||
|
||||
# 移除已存在的量化文件
|
||||
quantize_file = f"{name}_{quantization_type}.quantize"
|
||||
if os.path.exists(quantize_file):
|
||||
print(f"\033[31m rm {quantize_file} \033[0m")
|
||||
os.remove(quantize_file)
|
||||
|
||||
# 构建并执行量化命令
|
||||
cmd = f"{netrans} \
|
||||
--batch-size 1 \
|
||||
--qtype {quantized_type} \
|
||||
--rebuild \
|
||||
--quantizer {quantization_type.split('-')[0]} \
|
||||
--model-quantize {quantize_file} \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--with-input-meta {name}_inputmeta.yml \
|
||||
--device CPU \
|
||||
--algorithm kl_divergence \
|
||||
--iterations {num_lines}"
|
||||
|
||||
os.system(cmd)
|
||||
|
||||
# 检查量化结果
|
||||
if os.path.exists(quantize_file):
|
||||
print("\033[31m QUANTIZED SUCCESS \033[0m")
|
||||
else:
|
||||
print("\033[31m ERROR ! \033[0m")
|
||||
|
||||
|
||||
def main():
|
||||
# 检查命令行参数数量
|
||||
if len(sys.argv) < 3:
|
||||
print("Input a network name and quantized type ( uint8 / int8 / int16 )")
|
||||
sys.exit(-1)
|
||||
|
||||
# 检查网络目录是否存在
|
||||
network_name = sys.argv[1]
|
||||
|
||||
# 定义 netrans 路径
|
||||
# netrans = os.path.join(os.environ['NETRANS_PATH'], 'pnnacc')
|
||||
# network_name = sys.argv[1]
|
||||
# check_env(network_name)
|
||||
|
||||
netrans_path = os.environ['NETRANS_PATH']
|
||||
# netrans = os.path.join(netrans_path, 'pnnacc')
|
||||
quantize_type = sys.argv[2]
|
||||
cla = creat_cla(netrans_path, network_name,quantize_type)
|
||||
|
||||
# 调用量化函数
|
||||
run = Quantize(cla)
|
||||
run.quantize_network()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,91 @@
|
|||
import os
|
||||
import sys
|
||||
from utils import check_path, AttributeCopier, creat_cla
|
||||
|
||||
class Quantize(AttributeCopier):
|
||||
def __init__(self, source_obj) -> None:
|
||||
super().__init__(source_obj)
|
||||
|
||||
@check_path
|
||||
def quantize_network(self):
|
||||
netrans = self.netrans
|
||||
quantized_type = self.quantize_type
|
||||
name = self.model_name
|
||||
# check_env(name)
|
||||
# print(os.getcwd())
|
||||
netrans += " quantize"
|
||||
# 根据量化类型设置量化参数
|
||||
if quantized_type == 'float':
|
||||
print("=========== do not need quantized===========")
|
||||
return
|
||||
elif quantized_type == 'uint8':
|
||||
quantization_type = "asymmetric_affine"
|
||||
elif quantized_type == 'int8':
|
||||
quantization_type = "dynamic_fixed_point-8"
|
||||
elif quantized_type == 'int16':
|
||||
quantization_type = "dynamic_fixed_point-16"
|
||||
else:
|
||||
print("=========== wrong quantization_type ! ( uint8 / int8 / int16 )===========")
|
||||
return
|
||||
|
||||
# 输出量化信息
|
||||
print(" =======================================================================")
|
||||
print(f" ==== Start Quantizing {name} model with type of {quantization_type} ===")
|
||||
print(" =======================================================================")
|
||||
|
||||
# 移除已存在的量化文件
|
||||
quantize_file = f"{name}_{quantization_type}.quantize"
|
||||
current_directory = os.getcwd()
|
||||
txt_path = current_directory+"/dataset.txt"
|
||||
with open(txt_path, 'r', encoding='utf-8') as file:
|
||||
num_lines = len(file.readlines())
|
||||
|
||||
|
||||
# 构建并执行量化命令
|
||||
cmd = f"{netrans} \
|
||||
--qtype {quantized_type} \
|
||||
--hybrid \
|
||||
--quantizer {quantization_type.split('-')[0]} \
|
||||
--model-quantize {quantize_file} \
|
||||
--model {name}.json \
|
||||
--model-data {name}.data \
|
||||
--with-input-meta {name}_inputmeta.yml \
|
||||
--device CPU \
|
||||
--algorithm kl_divergence \
|
||||
--divergence-nbins 2048 \
|
||||
--iterations {num_lines}"
|
||||
|
||||
os.system(cmd)
|
||||
|
||||
# 检查量化结果
|
||||
if os.path.exists(quantize_file):
|
||||
print("\033[31m QUANTIZED SUCCESS \033[0m")
|
||||
else:
|
||||
print("\033[31m ERROR ! \033[0m")
|
||||
|
||||
|
||||
def main():
|
||||
# 检查命令行参数数量
|
||||
if len(sys.argv) < 3:
|
||||
print("Input a network name and quantized type ( uint8 / int8 / int16 )")
|
||||
sys.exit(-1)
|
||||
|
||||
# 检查网络目录是否存在
|
||||
network_name = sys.argv[1]
|
||||
|
||||
# 定义 netrans 路径
|
||||
# netrans = os.path.join(os.environ['NETRANS_PATH'], 'pnnacc')
|
||||
# network_name = sys.argv[1]
|
||||
# check_env(network_name)
|
||||
|
||||
netrans_path = os.environ['NETRANS_PATH']
|
||||
# netrans = os.path.join(netrans_path, 'pnnacc')
|
||||
quantize_type = sys.argv[2]
|
||||
cla = creat_cla(netrans_path, network_name,quantize_type)
|
||||
|
||||
# 调用量化函数
|
||||
run = Quantize(cla)
|
||||
run.quantize_network()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,16 @@
|
|||
from setuptools import setup, find_packages
|
||||
|
||||
with open("README.md", "r", encoding="utf-8") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
setup(
|
||||
name="netrans",
|
||||
version="0.1.0",
|
||||
author="nudt_dsp",
|
||||
url="https://gitlink.org.cn/gwg_xujiao/netrans",
|
||||
packages=find_packages(include=["netrans_py"]),
|
||||
package_dir={"": "."}, # 指定根目录映射关系[8](@ref)
|
||||
install_requires=[
|
||||
"ruamel.yaml==0.18.6"
|
||||
]
|
||||
)
|
|
@ -0,0 +1,80 @@
|
|||
import sys
|
||||
import os
|
||||
# from functools import wraps
|
||||
|
||||
# def check_path(netrans, model_path):
|
||||
# def decorator(func):
|
||||
# @wraps(func)
|
||||
# def wrapper(netrans, model_path, *args, **kargs):
|
||||
# check_dir(model_path)
|
||||
# check_netrans(netrans)
|
||||
# if os.getcwd() != model_path :
|
||||
# os.chdir(model_path)
|
||||
# return func(netrans, model_path, *args, **kargs)
|
||||
# return wrapper
|
||||
# return decorator
|
||||
|
||||
def check_path(func):
|
||||
def wrapper(cla, *args, **kargs):
|
||||
check_netrans(cla.netrans)
|
||||
if os.getcwd() != cla.model_path :
|
||||
os.chdir(cla.model_path)
|
||||
return func(cla, *args, **kargs)
|
||||
return wrapper
|
||||
|
||||
|
||||
def check_dir(network_name):
|
||||
if not os.path.exists(network_name):
|
||||
print(f"Directory {network_name} does not exist !")
|
||||
sys.exit(-1)
|
||||
os.chdir(network_name)
|
||||
|
||||
def check_netrans(netrans):
|
||||
if 'NETRANS_PATH' not in os.environ :
|
||||
return
|
||||
if netrans != None and os.path.exists(netrans) is True:
|
||||
return
|
||||
print("Need to set enviroment variable NETRANS_PATH")
|
||||
sys.exit(1)
|
||||
|
||||
def remove_history_file(name):
|
||||
os.chdir(name)
|
||||
if os.path.isfile(f"{name}.json"):
|
||||
os.remove(f"{name}.json")
|
||||
if os.path.isfile(f"{name}.data"):
|
||||
os.remove(f"{name}.data")
|
||||
os.chdir('..')
|
||||
|
||||
def check_env(name):
|
||||
check_dir(name)
|
||||
# check_netrans()
|
||||
# remove_history_file(name)
|
||||
|
||||
|
||||
class AttributeCopier:
|
||||
def __init__(self, source_obj) -> None:
|
||||
self.copy_attribute_name(source_obj)
|
||||
|
||||
def copy_attribute_name(self, source_obj):
|
||||
for attribute_name in self._get_attribute_names(source_obj):
|
||||
setattr(self, attribute_name, getattr(source_obj, attribute_name))
|
||||
|
||||
@staticmethod
|
||||
def _get_attribute_names(source_obj):
|
||||
return source_obj.__dict__.keys()
|
||||
|
||||
class creat_cla(): #dataclass @netrans_params
|
||||
def __init__(self, netrans_path, name, quantized_type = 'uint8',verbose=False) -> None:
|
||||
self.netrans_path = netrans_path
|
||||
self.netrans = os.path.join(self.netrans_path, 'pnnacc')
|
||||
self.model_name=self.model_path = name
|
||||
self.model_path = os.path.abspath(self.model_path)
|
||||
self.verbose=verbose
|
||||
self.quantize_type = quantized_type
|
||||
|
||||
if __name__ == "__main__":
|
||||
dir_name = "yolo"
|
||||
os.mkdir(dir_name)
|
||||
check_dir(dir_name)
|
||||
|
||||
|
Loading…
Reference in New Issue