netrans model conversion examples
This commit is contained in:
parent
b39abda2fa
commit
5efdea39c5
|
@ -1,175 +0,0 @@
|
|||
# TensorFlow模型转换示例
|
||||
|
||||
本文档以 lenet 为例,介绍如何使用 Netrans 对 Tensorflow 模型进行转换。
|
||||
|
||||
Netrans 支持 TensorFlow 版本1.4.x, 2.0.x, 2.3.x, 2.6.x, 2.8.x, 2.10.x, 2.12.x 以tf.io.write_graph()保存的模型。
|
||||
|
||||
## 安装Netrans
|
||||
1. 先确定您的 Netrans 下载目录,使用以下命令将 Netrans 加入系统配置文件。记得使用您真实的 Netrans下载目录 替换下行命令中的文字。
|
||||
```bash
|
||||
export NETRANS_PATH=Netrans下载目录/bin
|
||||
```
|
||||
2. 安装 netrans_py
|
||||
```bash
|
||||
cd netrans_py
|
||||
pip3 install -e .
|
||||
```
|
||||
|
||||
## 数据准备
|
||||
转换 TensorFlow 模型时,模型工程目录应包含以下文件:
|
||||
- .pb 文件:冻结图模型文件
|
||||
- inputs_outputs.txt:输入输出节点定义文件
|
||||
- dataset.txt:数据路径配置文件
|
||||
|
||||
我们的示例 已经完成数据准备,可以使用下面命令进入目录执行。
|
||||
|
||||
```bash
|
||||
cd netrans/
|
||||
cd examples/tensorflow
|
||||
```
|
||||
|
||||
此时目录如下:
|
||||
```bash
|
||||
lenet/
|
||||
├── 0.jpg # 校准数据
|
||||
├── dataset.txt # 指定数据地址的文件
|
||||
├── inputs_outputs.txt # 输入输出节点定义文件
|
||||
└── lenet.pb # 冻结图模型文件
|
||||
```
|
||||
|
||||
|
||||
## 使用 nertans_cli 命令行工具
|
||||
使用 netrans_cli 之前,请先使用以下命令将 命令行脚本 拷贝至当前目录。
|
||||
```bash
|
||||
cp ../../netrans_cli/*sh ./
|
||||
```
|
||||
此时目录如下:
|
||||
```bash
|
||||
tensorflow/
|
||||
├── export.sh
|
||||
├── gen_inputmeta.sh
|
||||
├── import_model.sh
|
||||
├── infer.sh
|
||||
├── lenet
|
||||
│ ├── 0.jpg
|
||||
│ ├── dataset.txt
|
||||
│ ├── inputs_outputs.txt
|
||||
│ └── lenet.pb
|
||||
└── quantize.sh
|
||||
```
|
||||
### 模型导入
|
||||
```bash
|
||||
./import_model.sh lenet
|
||||
```
|
||||
|
||||
该步骤会生成 .json 结尾的网络结构文件和 .data 结尾的权重数据文件。
|
||||
|
||||
此时 lenet 的目录结构如下:
|
||||
```bash
|
||||
lenet/
|
||||
├── 0.jpg
|
||||
├── dataset.txt
|
||||
├── inputs_outputs.txt
|
||||
├── lenet.data
|
||||
├── lenet.json
|
||||
└── lenet.pb
|
||||
```
|
||||
|
||||
### 配置文件生成
|
||||
数据在推理前一般会经过预处理,为了确保模型可以正确的输入数据,需要生产对应的配置文件。
|
||||
|
||||
```bash
|
||||
./gen_inputmeta.sh lenet
|
||||
```
|
||||
|
||||
此时 lenet 的目录结构如下:
|
||||
```bash
|
||||
lenet/
|
||||
├── 0.jpg
|
||||
├── dataset.txt
|
||||
├── inputs_outputs.txt
|
||||
├── lenet.data
|
||||
├── lenet_inputmeta.yml
|
||||
├── lenet.json
|
||||
└── lenet.pb
|
||||
```
|
||||
|
||||
### 模型量化
|
||||
为了优化模型的推理效率,加快模型的推理速度,我们使用下行命令对模型进行量化处理。
|
||||
量化模型需要两个参数,目录(模型)名字和量化类型。量化类型包括:float,int16, int8 和 uint8。
|
||||
|
||||
```bash
|
||||
./quantize.sh lenet uint8
|
||||
|
||||
```
|
||||
|
||||
此时 lenet 的目录结构如下:
|
||||
```bash
|
||||
lenet/
|
||||
├── 0.jpg
|
||||
├── dataset.txt
|
||||
├── inputs_outputs.txt
|
||||
├── lenet_asymmetric_affine.quantize
|
||||
├── lenet.data
|
||||
├── lenet_inputmeta.yml
|
||||
├── lenet.json
|
||||
└── lenet.pb
|
||||
```
|
||||
### 模型导出
|
||||
最后我们使用 export.sh 将模型导出到nbg格式并生成应用程序工程。量化模型需要两个参数,目录(模型)名字和量化类型。量化类型包括:float,int16, int8 和 uint8。量化类型应于 quantize.sh 使用的一致。
|
||||
|
||||
```bash
|
||||
./export.sh lenet uint8
|
||||
```
|
||||
此时 lenet 的目录结构如下:
|
||||
|
||||
```bash
|
||||
lenet/
|
||||
├── 0.jpg
|
||||
├── dataset.txt
|
||||
├── inputs_outputs.txt
|
||||
├── lenet_asymmetric_affine.quantize
|
||||
├── lenet.data
|
||||
├── lenet_inputmeta.yml
|
||||
├── lenet.json
|
||||
├── lenet.pb
|
||||
└── wksp
|
||||
└── asymmetric_affine
|
||||
├── BUILD
|
||||
├── dump_core_graph.json
|
||||
├── graph.json
|
||||
├── lenetasymmetricaffine.2012.vcxproj
|
||||
├── lenet_asymmetric_affine.export.data
|
||||
├── lenetasymmetricaffine.vcxproj
|
||||
├── main.c
|
||||
├── makefile.linux
|
||||
├── network_binary.nb
|
||||
├── vnn_global.h
|
||||
├── vnn_lenetasymmetricaffine.c
|
||||
├── vnn_lenetasymmetricaffine.h
|
||||
├── vnn_post_process.c
|
||||
├── vnn_post_process.h
|
||||
├── vnn_pre_process.c
|
||||
└── vnn_pre_process.h
|
||||
```
|
||||
## 使用 netrans_py python api
|
||||
|
||||
### 3.2.1 安装netrans_py
|
||||
```bash
|
||||
cd netrans_py
|
||||
pip3 install -e .
|
||||
```
|
||||
|
||||
### 准备示例脚本
|
||||
|
||||
```bash
|
||||
cd ../example/tensorflow
|
||||
cp ../../netrans_py/example.py ./
|
||||
|
||||
```
|
||||
|
||||
### 运行示例脚本
|
||||
|
||||
```bash
|
||||
python3 example.py lenet -q uint8
|
||||
```
|
|
@ -1,137 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ -z "$NETRANS_PATH" ]; then
|
||||
echo "Need to set enviroment variable NETRANS_PATH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
OVXGENERATOR=$NETRANS_PATH/pnnacc
|
||||
|
||||
OVXGENERATOR="$OVXGENERATOR export ovxlib"
|
||||
|
||||
DATASET=dataset.txt
|
||||
|
||||
VERIFT='FLASE'
|
||||
function export_network()
|
||||
{
|
||||
NAME=$1
|
||||
pushd $NAME
|
||||
|
||||
QUANTIZED=$2
|
||||
|
||||
if [ ${QUANTIZED} = 'float' ]; then
|
||||
TYPE=float;
|
||||
quantization_type="none_quantized"
|
||||
generate_path='./wksp/none_quantized'
|
||||
elif [ ${QUANTIZED} = 'uint8' ]; then
|
||||
quantization_type="asymmetric_affine"
|
||||
generate_path='./wksp/asymmetric_affine'
|
||||
TYPE=quantized;
|
||||
elif [ ${QUANTIZED} = 'int8' ]; then
|
||||
quantization_type="dynamic_fixed_point-8"
|
||||
generate_path='./wksp/dynamic_fixed_point-8'
|
||||
TYPE=quantized;
|
||||
elif [ ${QUANTIZED} = 'int16' ]; then
|
||||
quantization_type="dynamic_fixed_point-16"
|
||||
generate_path='./wksp/dynamic_fixed_point-16'
|
||||
TYPE=quantized;
|
||||
else
|
||||
echo "=========== wrong quantization_type ! ( float / uint8 / int8 / int16 )==========="
|
||||
exit -1
|
||||
fi
|
||||
|
||||
echo " ======================================================================="
|
||||
echo " =========== Start Generate $NAME ovx C code with type of ${quantization_type} ==========="
|
||||
echo " ======================================================================="
|
||||
|
||||
mkdir -p "${generate_path}"
|
||||
|
||||
# if want to import c code into win IDE , change --target-ide-project command-line param from 'linux64' -> 'win32'
|
||||
if [ ${QUANTIZED} = 'float' ]; then
|
||||
cmd="$OVXGENERATOR \
|
||||
--model ${NAME}.json \
|
||||
--model-data ${NAME}.data \
|
||||
--model-quantize ${NAME}.quantize \
|
||||
--dtype ${TYPE} \
|
||||
--pack-nbg-viplite \
|
||||
--model-quantize ${NAME}_${quantization_type}.quantize \
|
||||
--with-input-meta ${NAME}_inputmeta.yml\
|
||||
--optimize 'VIP8000NANOQI_PLUS_PID0XB1'\
|
||||
#--optimize None\
|
||||
--target-ide-project 'linux64' \
|
||||
--viv-sdk ${NETRANS_PATH}/pnna_sdk \
|
||||
--output-path ${generate_path}/${NAME}_${quantization_type}"
|
||||
else
|
||||
|
||||
if [ -f ${NAME}_${quantization_type}.quantize ]; then
|
||||
echo -e "\033[31m using ${NAME}_${quantization_type}.quantize \033[0m"
|
||||
else
|
||||
echo -e "\033[31m Can not find ${NAME}_${quantization_type}.quantize \033[0m"
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
cmd="$OVXGENERATOR \
|
||||
--model ${NAME}.json \
|
||||
--model-data ${NAME}.data \
|
||||
--model-quantize ${NAME}.quantize \
|
||||
--dtype ${TYPE} \
|
||||
--pack-nbg-viplite \
|
||||
--model-quantize ${NAME}_${quantization_type}.quantize \
|
||||
--with-input-meta ${NAME}_inputmeta.yml\
|
||||
--optimize 'VIP8000NANOQI_PLUS_PID0XB1'\
|
||||
--target-ide-project 'linux64' \
|
||||
--viv-sdk ${NETRANS_PATH}/pnna_sdk \
|
||||
--output-path ${generate_path}/${NAME}_${quantization_type}"
|
||||
fi
|
||||
if [${VERIFY}='TRUE']; then
|
||||
echo $cmd
|
||||
fi
|
||||
eval $cmd
|
||||
|
||||
# copy input file into source code folder
|
||||
# sourcefile="`cat ${DATASET}`"
|
||||
# cpcmd="cp -fr $sourcefile ${generate_path}/"
|
||||
|
||||
# echo $cpcmd
|
||||
# eval $cpcmd
|
||||
|
||||
# temp='wksp/temp'
|
||||
|
||||
# mkcmd="mkdir -p ${temp}"
|
||||
# eval $mkcmd
|
||||
|
||||
# sourcefile="`cat ${DATASET}`"
|
||||
# cpcmd="cp -fr $sourcefile ${temp}/"
|
||||
|
||||
# echo $cpcmd
|
||||
# eval $cpcmd
|
||||
|
||||
cpcmd="cp ${generate_path}_nbg_viplite/network_binary.nb ${generate_path}/"
|
||||
eval $cpcmd
|
||||
|
||||
delcmd="rm -rf ${generate_path}_nbg_viplite"
|
||||
eval $delcmd
|
||||
|
||||
# rm -rf ${generate_path}
|
||||
# mvcmd="mv ${temp} ${generate_path}"
|
||||
|
||||
# eval $mvcmd
|
||||
|
||||
echo " ======================================================================="
|
||||
echo " =========== End Generate $NAME ovx C code with type of ${quantization_type} ==========="
|
||||
echo " ======================================================================="
|
||||
|
||||
popd
|
||||
}
|
||||
|
||||
if [ "$#" -lt 2 ]; then
|
||||
echo "Input a network name and quantized type ( float / uint8 / int8 / int16 )"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
if [ ! -e "${1%/}" ]; then
|
||||
echo "Directory ${1%/} does not exist !"
|
||||
exit -2
|
||||
fi
|
||||
|
||||
export_network ${1%/} ${2%/}
|
|
@ -1,28 +0,0 @@
|
|||
#!/bin/sh
|
||||
|
||||
if [ -z "$NETRANS_PATH" ]; then
|
||||
echo "Need to set enviroment variable NETRANS_PATH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
echo "Enter a network name !"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
if [ ! -e "${1%/}" ]; then
|
||||
echo "Directory ${1%/} does not exist !"
|
||||
exit 3
|
||||
fi
|
||||
|
||||
|
||||
netrans=$NETRANS_PATH/pnnacc
|
||||
|
||||
|
||||
|
||||
NAME=${1%/}
|
||||
cd $NAME
|
||||
$netrans generate \
|
||||
inputmeta \
|
||||
--model ${NAME}.json \
|
||||
--separated-database \
|
|
@ -1,209 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ -z "$NETRANS_PATH" ]; then
|
||||
echo "Need to set enviroment variable NETRANS_PATH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
function import_caffe_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTCAFFE=$NETRANS_PATH/pnnacc
|
||||
|
||||
CONVERTCAFFE="$CONVERTCAFFE import caffe"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME Caffe model ==========="
|
||||
if [ -f ${NAME}.caffemodel ]; then
|
||||
cmd="$CONVERTCAFFE \
|
||||
--model ${NAME}.prototxt \
|
||||
--weights ${NAME}.caffemodel \
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data"
|
||||
else
|
||||
echo "=========== fake Caffe model data file==========="
|
||||
cmd="$CONVERTCAFFE \
|
||||
--model ${NAME}.prototxt \
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data"
|
||||
fi
|
||||
}
|
||||
|
||||
function import_tensorflow_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTF=$NETRANS_PATH/pnnacc
|
||||
|
||||
CONVERTF="$CONVERTF import tensorflow"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME Tensorflow model ==========="
|
||||
cmd="$CONVERTF \
|
||||
--model ${NAME}.pb \
|
||||
--output-data ${NAME}.data \
|
||||
--output-model ${NAME}.json \
|
||||
$(cat inputs_outputs.txt)"
|
||||
}
|
||||
|
||||
function import_onnx_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTONNX=$NETRANS_PATH/pnnacc
|
||||
CONVERTONNX="$CONVERTONNX import onnx"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME ONNX model ==========="
|
||||
cmd="$CONVERTONNX \
|
||||
--model ${NAME}.onnx \
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data"
|
||||
}
|
||||
|
||||
function import_tflite_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTTFLITE=$NETRANS_PATH/pnnacc
|
||||
CONVERTTFLITE="$CONVERTTFLITE import tflite"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME TFLite model ==========="
|
||||
cmd="$CONVERTTFLITE \
|
||||
--model ${NAME}.tflite \
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data"
|
||||
}
|
||||
|
||||
function import_darknet_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTDARKNET=$NETRANS_PATH/pnnacc
|
||||
CONVERTDARKNET="$CONVERTDARKNET import darknet"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME darknet model ==========="
|
||||
cmd="$CONVERTDARKNET \
|
||||
--model ${NAME}.cfg \
|
||||
--weight ${NAME}.weights \
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data"
|
||||
}
|
||||
|
||||
function import_pytorch_network()
|
||||
{
|
||||
NAME=$1
|
||||
CONVERTPYTORCH=$NETRANS_PATH/pnnacc
|
||||
CONVERTPYTORCH="$CONVERTPYTORCH import pytorch"
|
||||
|
||||
|
||||
if [ -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m rm ${NAME}.json \033[0m"
|
||||
rm ${NAME}.json
|
||||
fi
|
||||
|
||||
if [ -f ${NAME}.data ]; then
|
||||
echo -e "\033[31m rm ${NAME}.data \033[0m"
|
||||
rm ${NAME}.data
|
||||
fi
|
||||
|
||||
echo "=========== Converting $NAME pytorch model ==========="
|
||||
cmd="$CONVERTPYTORCH \
|
||||
--model ${NAME}.pt \q
|
||||
--output-model ${NAME}.json \
|
||||
--output-data ${NAME}.data \
|
||||
$(cat input_size.txt)"
|
||||
}
|
||||
|
||||
function import_network()
|
||||
{
|
||||
NAME=$1
|
||||
pushd $NAME
|
||||
|
||||
|
||||
if [ -f ${NAME}.prototxt ]; then
|
||||
import_caffe_network ${1%/}
|
||||
elif [ -f ${NAME}.pb ]; then
|
||||
import_tensorflow_network ${1%/}
|
||||
elif [ -f ${NAME}.onnx ]; then
|
||||
import_onnx_network ${1%/}
|
||||
elif [ -f ${NAME}.tflite ]; then
|
||||
import_tflite_network ${1%/}
|
||||
elif [ -f ${NAME}.weights ]; then
|
||||
import_darknet_network ${1%/}
|
||||
elif [ -f ${NAME}.pt ]; then
|
||||
import_pytorch_network ${1%/}
|
||||
else
|
||||
echo "=========== can not find suitable model files ==========="
|
||||
fi
|
||||
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
|
||||
if [ -f ${NAME}.data -a -f ${NAME}.json ]; then
|
||||
echo -e "\033[31m SUCCESS \033[0m"
|
||||
else
|
||||
echo -e "\033[31m ERROR ! \033[0m"
|
||||
fi
|
||||
popd
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
echo "Input a network name !"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
if [ ! -e "${1%/}" ]; then
|
||||
echo "Directory ${1%/} does not exist !"
|
||||
exit -2
|
||||
fi
|
||||
|
||||
import_network ${1%/}
|
|
@ -1,65 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ -z "$NETRANS_PATH" ]; then
|
||||
echo "Need to set enviroment variable NETRANS_PATH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TENSORZONX=$NETRANS_PATH/pnnacc
|
||||
|
||||
TENSORZONX="$TENSORZONX inference"
|
||||
|
||||
DATASET=./dataset.txt
|
||||
|
||||
function inference_network()
|
||||
{
|
||||
NAME=$1
|
||||
pushd $NAME
|
||||
QUANTIZED=$2
|
||||
inf_path='./inf'
|
||||
|
||||
if [ ${QUANTIZED} = 'float' ]; then
|
||||
TYPE=float32;
|
||||
quantization_type="float32"
|
||||
elif [ ${QUANTIZED} = 'uint8' ]; then
|
||||
quantization_type="asymmetric_affine"
|
||||
TYPE=quantized;
|
||||
elif [ ${QUANTIZED} = 'int8' ]; then
|
||||
quantization_type="dynamic_fixed_point-8"
|
||||
TYPE=quantized;
|
||||
elif [ ${QUANTIZED} = 'int16' ]; then
|
||||
quantization_type="dynamic_fixed_point-16"
|
||||
TYPE=quantized;
|
||||
else
|
||||
echo "=========== wrong quantization_type ! ( float / uint8 / int8 / int16 )==========="
|
||||
exit -1
|
||||
fi
|
||||
|
||||
cmd="$TENSORZONX \
|
||||
--dtype ${TYPE} \
|
||||
--batch-size 1 \
|
||||
--model-quantize ${NAME}_${quantization_type}.quantize \
|
||||
--model ${NAME}.json \
|
||||
--model-data ${NAME}.data \
|
||||
--output-dir ${inf_path} \
|
||||
--with-input-meta ${NAME}_inputmeta.yml \
|
||||
--device CPU"
|
||||
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
echo "=========== End inference $NAME model ==========="
|
||||
|
||||
popd
|
||||
}
|
||||
|
||||
if [ "$#" -lt 2 ]; then
|
||||
echo "Input a network name and quantized type ( float / uint8 / int8 / int16 )"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
if [ ! -e "${1%/}" ]; then
|
||||
echo "Directory ${1%/} does not exist !"
|
||||
exit -2
|
||||
fi
|
||||
|
||||
inference_network ${1%/} ${2%/}
|
Binary file not shown.
Before Width: | Height: | Size: 553 B |
|
@ -1 +0,0 @@
|
|||
0.jpg
|
|
@ -1 +0,0 @@
|
|||
--inputs input/x-input --outputs output --input-size-list "28,28,1"
|
Binary file not shown.
|
@ -1,76 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ -z "$NETRANS_PATH" ]; then
|
||||
echo "Need to set enviroment variable NETRANS_PATH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TENSORZONEX=$NETRANS_PATH/pnnacc
|
||||
TENSORZONEX="$TENSORZONEX quantize"
|
||||
|
||||
|
||||
DATASET=./dataset.txt
|
||||
|
||||
function quantize_network()
|
||||
{
|
||||
NAME=$1
|
||||
pushd $NAME
|
||||
|
||||
QUANTIZED=$2
|
||||
|
||||
if [ ${QUANTIZED} = 'float' ]; then
|
||||
echo "=========== do not need quantied==========="
|
||||
exit -1
|
||||
elif [ ${QUANTIZED} = 'uint8' ]; then
|
||||
quantization_type="asymmetric_affine"
|
||||
elif [ ${QUANTIZED} = 'int8' ]; then
|
||||
quantization_type="dynamic_fixed_point-8"
|
||||
elif [ ${QUANTIZED} = 'int16' ]; then
|
||||
quantization_type="dynamic_fixed_point-16"
|
||||
else
|
||||
echo "=========== wrong quantization_type ! ( uint8 / int8 / int16 )==========="
|
||||
exit -1
|
||||
fi
|
||||
|
||||
echo " ======================================================================="
|
||||
echo " ==== Start Quantizing $NAME model with type of ${quantization_type} ==="
|
||||
echo " ======================================================================="
|
||||
|
||||
if [ -f ${NAME}_${quantization_type}.quantize ]; then
|
||||
echo -e "\033[31m rm ${NAME}_${quantization_type}.quantize \033[0m"
|
||||
rm ${NAME}_${quantization_type}.quantize
|
||||
fi
|
||||
|
||||
cmd="$TENSORZONEX \
|
||||
--batch-size 1 \
|
||||
--qtype ${QUANTIZED} \
|
||||
--rebuild \
|
||||
--quantizer ${quantization_type%-*} \
|
||||
--model-quantize ${NAME}_${quantization_type}.quantize \
|
||||
--model ${NAME}.json \
|
||||
--model-data ${NAME}.data \
|
||||
--with-input-meta ${NAME}_inputmeta.yml \
|
||||
--device CPU"
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
|
||||
if [ -f ${NAME}_${quantization_type}.quantize ]; then
|
||||
echo -e "\033[31m SUCCESS \033[0m"
|
||||
else
|
||||
echo -e "\033[31m ERROR ! \033[0m"
|
||||
fi
|
||||
|
||||
popd
|
||||
}
|
||||
|
||||
if [ "$#" -lt 2 ]; then
|
||||
echo "Input a network name and quantized type ( uint8 / int8 / int16 )"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
if [ ! -e "${1%/}" ]; then
|
||||
echo "Directory ${1%/} does not exist !"
|
||||
exit -2
|
||||
fi
|
||||
|
||||
quantize_network ${1%/} ${2%/}
|
Loading…
Reference in New Issue